使用ForkJoin

黑派客     最近更新时间:2020-01-16 05:33:16

516

Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行。

我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一个线程内完成:

┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

还有一种方法,可以把数组拆成两部分,分别计算,最后加起来就是最终结果,这样可以用两个线程并行执行:

┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

如果拆成两部分还是很大,我们还可以继续拆,用4个线程并行执行:

┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘

这就是Fork/Join任务的原理:判断一个任务是否足够小,如果是,直接计算,否则,就分拆成几个小任务分别计算。这个过程可以反复“裂变”成一系列小任务。

我们来看如何使用Fork/Join对大数据进行并行求和:

import java.util.Random;
import java.util.concurrent.*;
public class Main {
    public static void main(String[] args) throws Exception {
        // 创建2000个随机数组成的数组:
        long[] array = new long[2000];
        long expectedSum = 0;
        for (int i = 0; i < array.length; i++) {
            array[i] = random();
            expectedSum += array[i];
        }
        System.out.println("Expected sum: " + expectedSum);
        // fork/join:
        ForkJoinTask<Long> task = new SumTask(array, 0, array.length);
        long startTime = System.currentTimeMillis();
        Long result = ForkJoinPool.commonPool().invoke(task);
        long endTime = System.currentTimeMillis();
        System.out.println("Fork/join sum: " + result + " in " + (endTime - startTime) + " ms.");
    }

    static Random random = new Random(0);

    static long random() {
        return random.nextInt(10000);
    }
}

class SumTask extends RecursiveTask<Long> {
    static final int THRESHOLD = 500;
    long[] array;
    int start;
    int end;

    SumTask(long[] array, int start, int end) {
        this.array = array;
        this.start = start;
        this.end = end;
    }

    @Override
    protected Long compute() {
        if (end - start <= THRESHOLD) {
            // 如果任务足够小,直接计算:
            long sum = 0;
            for (int i = start; i < end; i++) {
                sum += this.array[i];
                // 故意放慢计算速度:
                try {
                    Thread.sleep(1);
                } catch (InterruptedException e) {
                }
            }
            return sum;
        }
        // 任务太大,一分为二:
        int middle = (end + start) / 2;
        System.out.println(String.format("split %d~%d ==> %d~%d, %d~%d", start, end, start, middle, middle, end));
        SumTask subtask1 = new SumTask(this.array, start, middle);
        SumTask subtask2 = new SumTask(this.array, middle, end);
        invokeAll(subtask1, subtask2);
        Long subresult1 = subtask1.join();
        Long subresult2 = subtask2.join();
        Long result = subresult1 + subresult2;
        System.out.println("result = " + subresult1 + " + " + subresult2 + " ==> " + result);
        return result;
    }
}

观察上述代码的执行过程,一个大的计算任务0~2000首先分裂为两个小任务0~1000和1000~2000,这两个小任务仍然太大,继续分裂为更小的0~500,500~1000,1000~1500,1500~2000,最后,计算结果被依次合并,得到最终结果。

因此,核心代码SumTask继承自RecursiveTask,在compute()方法中,关键是如何“分裂”出子任务并且提交子任务:

展开阅读全文