大语言模型训练需要数万亿的各类型数据。如何构造海量“高质量”数据对于大语言模型的训练具有至关重要的作用。虽然,截止到2023 年9 月为止,还没有非常好的大模型的理论分析和解释,也缺乏对语言模型训练数据的严格说明和定义。但是,大多数研究人员都普遍认为训练数据是影响大语言模型效果以及样本泛化能力的关键因素之一。从此前的研究来看,预训练数据需要涵盖各种类型,包括网络数据、图书、论文、百科和社交媒体等,还需要覆盖尽可能多的领域、语言、文化和视角,从而提高大语言模型的泛化能力和适应性。本文将介绍当前常见的大语言模型训练数据的来源、处理方法、预训练数据对大语言模型影响的分析以及常见开源数据集合等。
语言模型目标是建模自然语言的概率分布,在自然语言处理研究中具有重要的作用,是自然语言处理基础任务之一。大量的研究从n 元语言模型(n-gram Language Models)、神经语言模型(Neural Language Models,NLM)以及预训练语言模型(Pre-trained Language Models,PLM)等不同角度开展了系列工作。这些研究在不同阶段都对自然语言处理任务有着重要作用。随着基于Transformer 各类语言模型的发展以及预训练微调范式在自然语言处理各类任务中取得突破性进展,从2020 年OpenAI 发布GPT-3 开始,大语言模型研究也逐渐深入。虽然大语言模型的参数量巨大,通过有监督微调和强化学习能够完成非常多的任务,但是其基础理论也仍然离不开对语言的建模。
大规模语言模型(Large Language Models,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018 年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT,GPT 等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。2019 年大模型呈现爆发式的增长,特别是2022 年11 月ChatGPT(Chat Generative Pre-trained Transformer)发布后,更是引起了全世界的广泛关注。用户可以使用自然语言与系统交互,从而实现包括问答、分类、摘要、翻译、聊天等从理解到生成的各种任务。大型语言模型展现出了强大的对世界知识掌握和对语言的理解。