在本地idea测试环境使用Spark:下载客户端与模板代码并解压
解决Spark数据倾斜中8大棘手问题的实用方法,对 Spark/Hadoop 这样的分布式大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜。
Parquet仅仅是一种存储格式,它是语言、平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet适配的组件包括下面这些,可以看出基本上通常使用的查询引擎和计算框架都已适配,并且可以很方便的将其它序列化工具生成的数据转换成Parquet格式。
基于 Spark 的用户程序,即由用户编写的调用 Spark API 的应用程序,它由集群上的一个驱动(Driver)程序和多个执行器(Executor)程序组成。其中应用程序的入口为用户所定义的 main 方法。
绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。这种情况很常见。
Spark是一个函数式的大数据处理框架,可以让你专注于数据分析,其中RDD是不可变的数据集合,可以进行转换去实现程序逻辑,通常转换次数大于行动次数,但是转换时懒惰的,仅在调用下游的行动时才触发转换操作~
通常大家只是说Spark是基于内存计算的,速度比MapReduce要快。或者说内存中迭代计算。其实我们要抓住问题的本质。
Spark SQL支持读写Hive,不过Hive本身包含了大量的依赖,这些依赖spark默认是没有的。如果Hive的依赖在Classpath中,那么Spark可以自动加载(注意Spark的worker节点也需要提供这些依赖)。默认配置Hive只需要把相关的hive-site.xml core-site.xml hdfs-site.xml 放到conf目录下即可。
随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片、音频、文本)进行大数据处理的业务场景越来越多。本文会介绍Spark如何与深度学习框架进行协同工作,在大数据的处理过程利用深度学习框架对非结构化数据进行处理。
Spark 是 UC Berkeley AMP Lab 开源的通用分布式并行计算框架,目前已成为 Apache 软件基金会的顶级开源项目。Spark 支持多种编程语言,包括 Java、Python、R 和 Scala,同时 Spark 也支持 Hadoop 的底层存储系统 HDFS,但 Spark 不依赖 Hadoop。
在大数据/数据库领域,数据的存储格式直接影响着系统的读写性能。Spark针对不同的用户/开发者,支持了多种数据文件存储方式。
众所周知,在大数据/数据库领域,数据的存储格式直接影响着系统的读写性能。spark是一种基于内存的快速、通用、可扩展的大数据计算引擎,适用于新时代的数据处理场景。
有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。
我们知道,大部分Spark计算都是在内存中完成的,所以Spark的瓶颈一般来自于集群(standalone, yarn, mesos, k8s)的资源紧张,CPU,网络带宽,内存。Spark的性能,想要它快,就得充分利用好系统资源,尤其是内存和CPU。有时候我们也需要做一些优化调整来减少内存占用,例如将小文件进行合并的操作。
BlockManager的作用?我理解是负责做RDD的存储,如何存下来给后续任务去使用。
首先回顾一下spark中的Block Manager和memory Store是做什么的。它主要是将没有序列化的java对象数组或者序列化的byte Buffer放到内存中。
MapReduce是将中间结果保存到磁盘中,减少了内存占用,牺牲了计算性能。Spark是将计算的中间结果保存到内存中,可以反复利用,提高了处理数据的性能。
Apache Spark 3.0.0版本包含3400多个补丁,是开源社区做出巨大贡献的结晶,在Python和SQL功能方面带来了重大进展并且将重点聚焦在了开发和生产的易用性上。同时,今年也是Spark开源10周年,这些举措反映了Spark自开源以来,是如何不断的满足更广泛的受众需求以及更多的应用场景。
Spark与Elasticsearch(es)的结合,是近年来大数据解决方案很火热的一个话题。一个是出色的分布式计算引擎,另一个是出色的搜索引擎。近年来,越来越多的成熟方案落地到行业产品中,包括我们耳熟能详的Spark+ES+HBase日志分析平台。
自适应查询优化(Adaptive Query Execution, AQE) 是 Spark 3.0 版本引入的重大特性之一,可以在运行时动态的优化用户的 SQL 执行计划,很大程度上提高了 Spark 作业的性能和稳定性。AQE 包含动态分区合并、Join 数据倾斜自动优化、动态 Join 策略选择等多个子特性,这些特性可以让用户省去很多需要根据作业负载逐个手动调优,甚至修改业务逻辑的痛苦过程,极大的提升了 Spark 自身的易用性和灵活性。
关注时代Java