HashMap

欢马劈雪     最近更新时间:2020-08-04 05:37:59

203

HashMap 也是我们使用非常多的 Collection,它是基于哈希表的 Map 接口的实现,以 key-value 的形式存在。在 HashMap 中,key-value 总是会当做一个整体来处理,系统会根据 hash 算法来来计算 key-value 的存储位置,我们总是可以通过 key 快速地存、取 value。下面就来分析 HashMap 的存取。

一、定义

HashMap 实现了 Map 接口,继承 AbstractMap。其中 Map 接口定义了键映射到值的规则,而 AbstractMap 类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实 AbstractMap 类已经实现了Map,这里标注 Map LZ 觉得应该是更加清晰吧!


    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable

二、构造函数

HashMap 提供了三个构造函数:

HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。

在这里提到了两个参数:初始容量,加载因子。这两个参数是影响 HashMap 性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是 O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为 0.75,一般情况下我们是无需修改的。

HashMap 是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

我们知道在 Java 中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap 也是如此。实际上 HashMap 是一个“链表散列”,如下是它数据结构:

fig.1

从上图我们可以看出 HashMap 底层实现还是数组,只是数组的每一项都是一条链。其中参数 initialCapacity 就代表了该数组的长度。下面为 HashMap 构造函数的源码:


    public HashMap(int initialCapacity, float loadFactor) {
            //初始容量不能<0
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: "
                        + initialCapacity);
            //初始容量不能 > 最大容量值,HashMap的最大容量值为2^30
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            //负载因子不能 < 0
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: "
                        + loadFactor);

            // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。
            int capacity = 1;
            while (capacity < initialCapacity)
                capacity <<= 1;

            this.loadFactor = loadFactor;
            //设置HashMap的容量极限,当HashMap的容量达到该极限时就会进行扩容操作
            threshold = (int) (capacity * loadFactor);
            //初始化table数组
            table = new Entry[capacity];
            init();
        }

从源码中可以看出,每次新建一个 HashMap 时,都会初始化一个 table 数组。table 数组的元素为 Entry 节点。


    static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            final int hash;

            /**
             * Creates new entry.
             */
            Entry(int h, K k, V v, Entry<K,V> n) {
                value = v;
                next = n;
                key = k;
                hash = h;
            }
            .......
        }

其中 Entry 为 HashMap 的内部类,它包含了键 key、值 value、下一个节点 next,以及 hash 值,这是非常重要的,正是由于 Entry 才构成了 table 数组的项为链表。

上面简单分析了 HashMap 的数据结构,下面将探讨 HashMap 是如何实现快速存取的。

四、存储实现:put(key,vlaue)

首先我们先看源码


    public V put(K key, V value) {
            //当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
            if (key == null)
                return putForNullKey(value);
            //计算key的hash值
            int hash = hash(key.hashCode());                   ------(1)
            //计算key hash 值在 table 数组中的位置
            int i = indexFor(hash, table.length);             ------(2)
            //从i出开始迭代 e,找到 key 保存的位置
            for (Entry<K, V> e = table[i]; e != null; e = e.next) {
                Object k;
                //判断该条链上是否有hash值相同的(key相同)
                //若存在相同,则直接覆盖value,返回旧value
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;    //旧值 = 新值
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;     //返回旧值
                }
            }
            //修改次数增加1
            modCount++;
            //将key、value添加至i位置处
            addEntry(hash, key, value, i);
            return null;
        }

通过源码我们可以清晰看到 HashMap 保存数据的过程为:首先判断 key 是否为 null,若为 null,则直接调用 putForNullKey 方法。若不为空则先计算 key 的 hash 值,然后根据 hash 值搜索在 table 数组中的索引位置,如果 table 数组在该位置处有元素,则通过比较是否存在相同的 key,若存在则覆盖原来 key 的 value,否则将该元素保存在链头(最先保存的元素放在链尾)。若 table 在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

1、 先看迭代处。此处迭代原因就是为了防止存在相同的 key 值,若发现两个 hash 值(key)相同时,HashMap 的处理方式是用新 value 替换旧 value,这里并没有处理 key,这就解释了 HashMap 中没有两个相同的 key。

2、 在看(1)、(2)处。这里是 HashMap 的精华所在。首先是 hash 方法,该方法为一个纯粹的数学计算,就是计算 h 的 hash 值。


    static int hash(int h) {
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
        }

我们知道对于 HashMap 的 table 而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算 hash 值后,怎么才能保证 table 元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap 是这样处理的:调用 indexFor 方法。


    static int indexFor(int h, int length) {
            return h & (length-1);
        }

HashMap 的底层数组长度总是 2 的 n 次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证 HashMap 的底层数组长度为 2 的 n 次方。当 length 为 2 的 n 次方时,h&(length – 1) 就相当于对 length 取模,而且速度比直接取模快得多,这是 HashMap 在速度上的一个优化。至于为什么是 2 的 n 次方下面解释。

我们回到 indexFor 方法,该方法仅有一条语句:h&(length – 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布 table 数据和充分利用空间。

这里我们假设 length 为 16(2^n) 和 15,h 为 5、6、7。

fig.2

当 n=15 时,6 和 7 的结果一样,这样表示他们在 table 存储的位置是相同的,也就是产生了碰撞,6、7 就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看 0-15。

fig.3

从上面的图表中我们看到总共发生了 8 此碰撞,同时发现浪费的空间非常大,有 1、3、5、7、9、11、13、15 处没有记录,也就是没有存放数据。这是因为他们在与 14 进行 & 运算时,得到的结果最后一位永远都是 0,即 0001、0011、0101、0111、1001、1011、1101、1111 位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当 length = 16 时,length – 1 = 15 即 1111,那么进行低位 & 运算时,值总是与原来 hash 值相同,而进行高位运算时,其值等于其低位值。所以说当 length = 2^n 时,不同的 hash 值发生碰撞的概率比较小,这样就会使得数据在 table 数组中分布较均匀,查询速度也较快。

这里我们再来复习 put 的流程:当我们想一个 HashMap 中添加一对 key-value 时,系统首先会计算 key 的 hash 值,然后根据 hash 值确认在 table 中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其 key 的 hash 值。如果两个 hash 值相等且 key 值相等 (e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的 Entry 的 value 覆盖原来节点的 value。如果两个 hash 值相等但 key 值不等 ,则将该节点插入该链表的链头。具体的实现过程见 addEntry 方法,如下:


    void addEntry(int hash, K key, V value, int bucketIndex) {
            //获取bucketIndex处的Entry
            Entry<K, V> e = table[bucketIndex];
            //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry 
            table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
            //若HashMap中元素的个数超过极限了,则容量扩大两倍
            if (size++ >= threshold)
                resize(2 * table.length);
        }

这个方法中有两点需要注意:

一、链的产生

这是一个非常优雅的设计。系统总是将新的 Entry 对象添加到 bucketIndex 处。如果 bucketIndex 处已经有了对象,那么新添加的 Entry 对象将指向原有的 Entry 对象,形成一条 Entry 链,但是若 bucketIndex 处没有 Entry 对象,也就是 e==null,那么新添加的 Entry 对象指向 null,也就不会产生 Entry 链了。

二、扩容问题。

展开阅读全文