深度解读 MySQL 优化器的 GROUP BY 优化策略

1. 背景介绍

在 MySQL 中,GROUP BY 功能至关重要,它允许用户依据一个或多个列的值对结果集进行分组,通常与聚合函数

(如 COUNT, SUM, AVG 等)结合使用。在日常查询中,包含 GROUP BY 子句的查询效率往往较低,主要原因是 GROUP BY 操作涉及临时表的构建,这会引发频繁的磁盘 I/O 操作,或是在计算聚合函数时增加了额外的计算开销。

本文主要介绍 GROUP BY 的工作原理,并结合代码剖析 MySQL 优化器对 GROUP BY 子句的优化策略。下文将基于 MySQL 8.0.22,聚焦 GROUP BY 在优化器中的源码实现。

2. 工作原理

在 MySQL 中,查询优化器对 GROUP BY 子句进行了多种优化,以提高处理复杂聚合查询

的效率。总体来说,GROUP BY 的实现方式大概分为四种:

1)松散索引扫描

松散索引扫描实际上就是 MySQL 利用索引扫描实现 GROUP BY,并不需要扫描所有满足条件的索引键,即可完成操作得到结果。

松散索引扫描必须满足以下条件:

  • SELECT 语句访问单表;
  • GROUP BY fileld,fileld 必须为索引的最左前缀;
  • 查询中如果使用了聚合函数只能是 MIN() 和 MAX()。聚合函数中的列必须在索引中,并且必须紧跟在 GROUP BY 子句中的列之后;
  • 查询中除了 GROUP BY 子句中引用的部分外,索引的其他部分必须是常量(聚合函数 MIN() 和 MAX() 中的列除外);
  • 对于索引中的列,必须索引完整的列值,而不仅仅是前缀。如果仅仅使用前缀,是不能用于松散索引扫描的。

为了方便理解,我们可以创建一张 orders 表,包含一个二级索引。

  -- 创建表 
CREATE TABLE orders ( 
 id INT AUTO_INCREMENT PRIMARY KEY,
 customer_id INT NOT NULL,
 order_date DATE NOT NULL,
 product_id INT NOT NULL,
 quantity INT NOT NULL); 
-- 插入数据 
INSERT INTO orders (customer_id, order_date, product_id, quantity)
VALUES (1, '2024-01-01', 101, 5),
 (1, '2024-01-01', 102, 10),
 (2, '2024-01-02', 101, 3),
 (2, '2024-01-02', 103, 2),
 (1, '2024-01-03', 102, 15),
 (2, '2024-01-03', 101, 7),
 (1, '2024-01-04', 103, 1),
 (2, '2024-01-04', 102, 5);
-- 创建索引 
CREATE INDEX idx_customer_id_order_date_quantity ON orders(customer_id, order_date, quantity);

我们先来看看这条 SQL 语句的执行计划,group by customer_id 可以使用二级索引,并且可以满足松散索引的条件。在执行计划的 Extra 列中显示Using index for group-by,表明该查询使用的是松散索引扫描。

# 1、松散索引扫描
mysql> explain select customer_id, MAX(order_date) from orders group by customer_id;
+----+-------------+--------+------------+-------+-------------------------------------+-------------------------------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys
  | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+-------+-------------------------------------+-------------------------------------+---------+------+------+----------+--------------------------+
| 1 | SIMPLE | orders | NULL | range | idx_customer_id_order_date_quantity | idx_customer_id_order_date_quantity | 4 | NULL | 3 | 100.00 | Using index for group-by |
+----+-------------+--------+------------+-------+-------------------------------------+-------------------------------------+---------+------+------+----------+--------------------------+

2)紧凑索引扫描

如果查询不符合松散索引扫描的条件,仍有可能使用索引。如果 WHERE 子句与 GROUP BY 子句结合后的字段符合最左前缀原则,那么查询也可以利用索引,这种情况称为紧凑索引扫描。

例如,这条 SQL 的执行计划:group by order_date 无法使用二级索引,但 where customer_id=1group by order_date 结合后的字段(customer_id,order_date)能满足最左前缀原则,因此也能走紧凑索引扫描,且走紧凑索引的过程中就完成分组操作,并且可以避免对结果进行额外的排序。

在执行计划中,如果使用了紧凑索引扫描,就会去除 Using temporary,使用 Using index 进行分组。

# 2、紧凑索引扫描
mysql> explain select customer_id, MAX(quantity) from orders where customer_id=1 group by order_date;
+----+-------------+--------+------------+------+-------------------------------------+-------------------------------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys  | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+-------------------------------------+-------------------------------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | orders | NULL | ref | idx_customer_id_order_date_quantity | idx_customer_id_order_date_quantity | 4 | const | 4 | 100.00 | Using index |
+----+-------------+--------+------------+------+-------------------------------------+-------------------------------------+---------+-------+------+----------+-------------+

3)临时表

如果无法直接使用索引来优化分组操作,MySQL 可能会使用临时表来存储中间结果。在这种情况下,MySQL 会执行全表扫描或索引扫描,并创建一个临时表来存储每个分组的数据,同时还需要更新每个分组对应的值。如果结果集非常大甚至超过了内存的限制,MySQL 会将部分结果写入磁盘上的临时文件,然后再进行排序和分组操作。这样会导致大量的磁盘 I/O 操作,执行代价也会很大。

# 设置sql_mode(默认使用ONLY_FULL_GROUP_BY模式)
mysql> SET sql_mode =’’;
# 3、临时表
mysql> explain select customer_id, product_id from orders group by order_date;
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+
| 1 | SIMPLE | orders | NULL | ALL | idx_customer_id_order_date_quantity | NULL | NULL | NULL | 8 | 100.00 | Using temporary |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+

4)外部排序

在 MySQL 8.0.13 以前的版本中,支持在 SQL 语句中使用带有 ASC 或 DESC 关键字的 GROUP BY 子句。此外,即使查询结果不需要排序,也会默认返回按组顺序排序的结果。但是在 MySQL 8.0.13 及其以后的版本中,GROUP BY 子句不再支持排序功能。如果 GROUP BY 走索引,那么返回的结果就是有序的;如果 GROUP BY 未走索引,那么返回的结果是无序的。

总之,MySQL 8.0.13 及其以后的版本的 GROUP BY 子句不会再对结果集做额外的外部排序操作。

3、GROUP BY 优化源码介绍

MySQL使用查询优化器来决定如何执行GROUP BY查询。涉及对索引的选择、是否使用临时表等决策。

1)数据结构

(1)JOIN

JOIN 类主要负责生成执行计划,它包含了处理带有 GROUP BY 子句的查询所需的一些关键属性:

  • streaming_aggregation:表示是否使用流式聚合来处理分组操作。
  • grouped:标记查询是否包含 GROUP BY 子句。如果查询中有 GROUP BY 子句,该值为 true。
  • implicit_grouping:表示是否隐式分组。如果查询中没有显式的 GROUP BY 子句,但存在聚合函数(如 SUM(), AVG() 等),则视为隐式分组。
  • group_optimized_away:标记是否将 GROUP BY 子句优化掉了。如果 GROUP BY 子句中的所有字段都是常量,MySQL 可以将这些字段优化掉,以简化查询处理。
  • m_ordered_index_usage:是否使用有序索引进行分组或排序操作。
  • group_list:group_list 用于存储 GROUP BY 子句的信息,包括分组字段。
  • tmp_table_param:存储与创建临时表相关的参数,用于处理分组查询时可能需要创建的临时表。
class JOIN {
 bool streaming_aggregation{false}; // 是否使用流式聚合来处理分组操作
 bool grouped; // 标记查询是否包含GROUP BY子句
 bool implicit_grouping; // 表示是否隐式分组
 bool group_optimized_away{false}; // 标记是否将GROUP BY子句优化掉了。
 
 enum ORDERED_INDEX_USAGE {
 ORDERED_INDEX_VOID = 0, // No ordered index avail.
 ORDERED_INDEX_GROUP_BY, // Use index for GROUP BY
 ORDERED_INDEX_ORDER_BY // Use index for ORDER BY
 } m_ordered_index_usage{ORDERED_INDEX_VOID};
 
 ORDER_with_src order, group_list;
 Temp_table_param tmp_table_param;
}

(2)Temp_table_param

Temp_table_param 类主要用于管理内部临时表的参数和配置。当 MySQL 执行查询时,有时需要创建临时表来存储中间结果,特别是在进行复杂的连接操作、分组、排序或子查询

时。Temp_table_param 类提供了创建和管理这些临时表所需的机制。临时表中涉及的 GROUP BY 的变量如下:

  • precomputed_group_by:标记是否已经预先计算了分组操作。如果为 true,表示在查询执行的过程中,分组操作已经被优化或者通过索引直接完成,因此不需要创建临时表来处理分组。
  • allow_group_via_temp_table:标记是否允许使用临时表来处理分组操作。如果为 true,表示 MySQL 可以创建临时表来存储分组后的结果。如果为 false,则表示 MySQL 不应使用临时表进行分组。
  • sum_func_count:记录查询中聚合函数的数量。如果优化器优化掉(使用常量替换聚合函数),此值需要更新。
class Temp_table_param {
 bool precomputed_group_by;
 bool allow_group_via_temp_table{true};
 uint sum_func_count;
}

2)优化 GROUP BY

在 MySQL 8.0 中,查询优化器对 DISTINCT、GROUP BY 和 ORDER BY 的逻辑是一起实现的。函数 optimize_distinct_group_order() 用于优化涉及 DISTINCT、GROUP BY 和 ORDER BY 的查询。这个函数的目标是尽可能地减少排序操作和临时表的使用,从而提高查询效率。

(1)单表场景的 GROUP BY 优化

首先,代码检查是否是单表查询,并且存在 GROUP BY 子句(group_list 非空)。同时,检查是否有聚合函数(sum_func_count 为 0)。

如果存在 GROUP BY 子句并且没有 rollup 并且 GROUP BY 字段存在唯一索引

,那么就不需要做 GROUP 操作。并将 group_list 清空。因为唯一索引的存在意味着每组只会对应一个结果行,无需再进行分组。这一步通过走唯一索引,可以避免额外的排序或分组操作,从而提高查询效率。

(2)去除 GROUP BY 中的常量

去除 GROUP BY 子句的常量,并检查 group_list 是否只包含简单的表达式。消除完常量后 group_list 为空并且原先就是有 GROUP BY 子句(grouped 为 true),这意味着 group_list 都被优化掉了,group_optimized_away 被设置为 true。

(3)计算 GROUP BY 所需要的 buffer

计算结果保存在 join 的 tmp_table_param 中。

总体来看,optimize_distinct_group_order() 函数通过单表场景的优化、去除常量表达式等方面来优化排序 GROUP BY,从而提高查询效率。

bool JOIN::optimize_distinct_group_order() { 
 // 1、单表场景的GROUP BY优化
 if (!group_list.empty(); rollup_state == RollupState::NONE 
 list_contains_unique_index(tab, find_field_in_order_list,
 (void *)group_list.order)) {
 group_list.clean();
 grouped = false;
 }
 // 2、去除GROUP BY子句的常量
 ORDER *old_group_list = group_list.order;
 group_list = ORDER_with_src(
 remove_const(group_list.order, where_cond,
 rollup_state == RollupState::NONE, simple_group, true), group_list.src);
 if (group_list.empty() && grouped) {
 group_optimized_away = true;
 }
 // 3、计算GROUP BY需要的buffer大小
 calc_group_buffer(this, group_list.order);
 send_group_parts = tmp_table_param.group_parts; /* Save org parts */
}

3)临时表

在优化器无法利用索引的时候,MySQL 就必须读取需要的数据至临时表,然后通过临时表完成 GROUP BY 操作。make_tmp_tables_info() 函数的主要目的是基于查询执行计划,为涉及到的每一个 QEP_TAB(Query Execution Plan Tab)对象生成临时表的元信息。这包括确定每个临时表的列、数据类型、存储引擎

、以及是否需要排序等属性。

(1)松散索引扫描优化

松散索引扫描保证了 grouping+min/max 的提前完成,此时 tmp_table_param->precomputed_group_by=true,把分组聚集结果写入第一个 tmp table。

(2)创建临时表

如果无法走索引的情况,那么需要创建临时表。根据 GROUP BY 对应的字段和查询的字段生成临时表完成 GROUP BY。

  • 初始化一个临时分组对象 tmp_group
  • 计算fields中隐藏字段的数量
  • 创建临时表。调用 create_intermediate_table 函数来创建中间临时表。

参数解释:qep_tab[curr_tmp_table]:指向当前要创建临时表的 QEP_TAB 对象的指针。*curr_fields:指向当前字段列表的指针。tmp_group:临时分组对象。

  • 设置当前创建的临时表为执行临时表
  • 临时表已经分组的,在某些情况下将分组列表转换为排序列表。如果临时表已经被分组,并且没有明确的 ORDER BY 子句,但需要保持分组结果的排序,那么它会将分组列表用作排序列表,以确保输出结果按照分组字段的顺序排列。这样做可以保证查询结果的一致性和预期的排序行为。
  bool JOIN::make_tmp_tables_info() {
 // 1、松散索引扫描优化
 if (qep_tab && qep_tab[0].quick() &&
 qep_tab[0].quick()->is_loose_index_scan())
 tmp_table_param.precomputed_group_by =
 !qep_tab[0].quick()->is_agg_loose_index_scan();
 if (need_tmp_before_win) {
 tmp_tables++;
 // 2、创建临时表
 if (create_intermediate_table(&qep_tab[curr_tmp_table], *curr_fields, tmp_group, !group_list.empty() && simple_group))
 return true;
  // 3、设置写入函数
 setup_tmptable_write_func(&qep_tab[curr_tmp_table], & trace_this_outer);
 ...
 // 4、检查group by是否必须考虑排序,由于MySQL 8.0 GROUP BY不支持排序
 // group->direction在一开始解析时就被设置为ORDER_NOT_RELEVANT
 if (exec_tmp_table->group) {
 if (order.empty() && !skip_sort_order) {
 for (ORDER *group = group_list.order; group; group = group->next) {
 if (group->direction != ORDER_NOT_RELEVANT) {
 order = group_list; /* order by group */
 break;
 }
  }
 }
 group_list.clean();
 }
 // 以下为ORDER BY排序逻辑(略)
 DBUG_PRINT("info", ("Sorting for order by/group by"));
}

4、GaussDB(for MySQL) 兼容性支持

1) GROUP BY 支持排序

为了解决客户从 MySQL 5.7 版本迁移到 GaussDB(for MySQL) 的兼容性问题,GaussDB(for MySQL) 支持 GROUP BY 隐式排序能力和带有 ASC/DESC 关键字的 GROUP BY 子句的排序功能。

开关 rds_compatibility_mode 设置方式如下:

  • ALLOW_GROUP_BY_IMPLICIT_SORTING:是否打开 group by 隐式排序
  • ALLOW_GROUP_BY_ASC_DESC:兼容 GROUP BY field ASC/DESC 语法
  # 关闭隐式排序和语法兼容(默认)
mysql> explain select customer_id, product_id from orders group by order_date;
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+
| 1 | SIMPLE | orders | NULL | ALL | idx_customer_id_order_date_quantity | NULL | NULL | NULL | 8 | 100.00 | Using temporary |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+-----------------+
1 row in set, 1 warning (0.00 sec)
mysql> set rds_compatibility_mode='ALLOW_GROUP_BY_IMPLICIT_SORTING,ALLOW_GROUP_BY_ASC_DESC';
Query OK, 0 rows affected (0.00 sec)
# 打开隐式排序和语法兼容
mysql> explain select customer_id, product_id from orders group by order_date;
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+---------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+---------------------------------+
| 1 | SIMPLE | orders | NULL | ALL | idx_customer_id_order_date_quantity | NULL | NULL | NULL | 8 | 100.00 | Using temporary; Using filesort |
+----+-------------+--------+------------+------+-------------------------------------+------+---------+------+------+----------+---------------------------------+

2) GROUP BY 支持并行查询

GaussDB(for MySQL) 支持并行查询处理,这包括对带有 GROUP BY 子句的查询的并行处理。对于带有 GROUP BY 子句的查询,MySQL 可以并行处理不同的分组,从而加速查询执行。并行查询详细介绍见官网地址。

GaussDB(for MySQL) PQ 使用方式:

展开阅读全文

本文系作者在时代Java发表,未经许可,不得转载。

如有侵权,请联系nowjava@qq.com删除。

编辑于

关注时代Java

关注时代Java