/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.rsa;
import java.math.BigInteger;
import java.util.*;
import java.security.SecureRandom;
import java.security.interfaces.*;
import javax.crypto.BadPaddingException;
import sun.security.jca.JCAUtil;
/**
* Core of the RSA implementation. Has code to perform public and private key
* RSA operations (with and without CRT for private key ops). Private CRT ops
* also support blinding to twart timing attacks.
*
* The code in this class only does the core RSA operation. Padding and
* unpadding must be done externally.
*
* Note: RSA keys should be at least 512 bits long
*
* @since 1.5
* @author Andreas Sterbenz
*/
public final class RSACore {
// globally enable/disable use of blinding
private final static boolean ENABLE_BLINDING = true;
// cache for blinding parameters. Map<BigInteger, BlindingParameters>
// use a weak hashmap so that cached values are automatically cleared
// when the modulus is GC'ed
private final static Map<BigInteger, BlindingParameters>
blindingCache = new WeakHashMap<>();
private RSACore() {
// empty
}
/**
* Return the number of bytes required to store the magnitude byte[] of
* this BigInteger. Do not count a 0x00 byte toByteArray() would
* prefix for 2's complement form.
*/
public static int getByteLength(BigInteger b) {
int n = b.bitLength();
return (n + 7) >> 3;
}
/**
* Return the number of bytes required to store the modulus of this
* RSA key.
*/
public static int getByteLength(RSAKey key) {
return getByteLength(key.getModulus());
}
// temporary, used by RSACipher and RSAPadding. Move this somewhere else
public static byte[] convert(byte[] b, int ofs, int len) {
if ((ofs == 0) && (len == b.length)) {
return b;
} else {
byte[] t = new byte[len];
System.arraycopy(b, ofs, t, 0, len);
return t;
}
}
/**
* Perform an RSA public key operation.
*/
public static byte[] rsa(byte[] msg, RSAPublicKey key)
throws BadPaddingException {
return crypt(msg, key.getModulus(), key.getPublicExponent());
}
/**
* Perform an RSA private key operation. Uses CRT if the key is a
* CRT key with additional verification check after the signature
* is computed.
*/
@Deprecated
public static byte[] rsa(byte[] msg, RSAPrivateKey key)
throws BadPaddingException {
return rsa(msg, key, true);
}
/**
* Perform an RSA private key operation. Uses CRT if the key is a
* CRT key. Set 'verify' to true if this function is used for
* generating a signature.
*/
public static byte[] rsa(byte[] msg, RSAPrivateKey key, boolean verify)
throws BadPaddingException {
if (key instanceof RSAPrivateCrtKey) {
return crtCrypt(msg, (RSAPrivateCrtKey)key, verify);
} else {
return priCrypt(msg, key.getModulus(), key.getPrivateExponent());
}
}
/**
* RSA public key ops. Simple modPow().
*/
private static byte[] crypt(byte[] msg, BigInteger n, BigInteger exp)
throws BadPaddingException {
BigInteger m = parseMsg(msg, n);
BigInteger c = m.modPow(exp, n);
return toByteArray(c, getByteLength(n));
}
/**
* RSA non-CRT private key operations.
*/
private static byte[] priCrypt(byte[] msg, BigInteger n, BigInteger exp)
throws BadPaddingException {
BigInteger c = parseMsg(msg, n);
BlindingRandomPair brp = null;
BigInteger m;
if (ENABLE_BLINDING) {
brp = getBlindingRandomPair(null, exp, n);
c = c.multiply(brp.u).mod(n);
m = c.modPow(exp, n);
m = m.multiply(brp.v).mod(n);
} else {
m = c.modPow(exp, n);
}
return toByteArray(m, getByteLength(n));
}
/**
* RSA private key operations with CRT. Algorithm and variable naming
* are taken from PKCS#1 v2.1, section 5.1.2.
*/
private static byte[] crtCrypt(byte[] msg, RSAPrivateCrtKey key,
boolean verify) throws BadPaddingException {
BigInteger n = key.getModulus();
BigInteger c0 = parseMsg(msg, n);
BigInteger c = c0;
BigInteger p = key.getPrimeP();
BigInteger q = key.getPrimeQ();
BigInteger dP = key.getPrimeExponentP();
BigInteger dQ = key.getPrimeExponentQ();
BigInteger qInv = key.getCrtCoefficient();
BigInteger e = key.getPublicExponent();
BigInteger d = key.getPrivateExponent();
BlindingRandomPair brp;
if (ENABLE_BLINDING) {
brp = getBlindingRandomPair(e, d, n);
c = c.multiply(brp.u).mod(n);
}
// m1 = c ^ dP mod p
BigInteger m1 = c.modPow(dP, p);
// m2 = c ^ dQ mod q
BigInteger m2 = c.modPow(dQ, q);
// h = (m1 - m2) * qInv mod p
BigInteger mtmp = m1.subtract(m2);
if (mtmp.signum() < 0) {
mtmp = mtmp.add(p);
}
BigInteger h = mtmp.multiply(qInv).mod(p);
// m = m2 + q * h
BigInteger m = h.multiply(q).add(m2);
if (ENABLE_BLINDING) {
m = m.multiply(brp.v).mod(n);
}
if (verify && !c0.equals(m.modPow(e, n))) {
throw new BadPaddingException("RSA private key operation failed");
}
return toByteArray(m, getByteLength(n));
}
/**
* Parse the msg into a BigInteger and check against the modulus n.
*/
private static BigInteger parseMsg(byte[] msg, BigInteger n)
throws BadPaddingException {
BigInteger m = new BigInteger(1, msg);
if (m.compareTo(n) >= 0) {
throw new BadPaddingException("Message is larger than modulus");
}
return m;
}
/**
* Return the encoding of this BigInteger that is exactly len bytes long.
* Prefix/strip off leading 0x00 bytes if necessary.
* Precondition: bi must fit into len bytes
*/
private static byte[] toByteArray(BigInteger bi, int len) {
byte[] b = bi.toByteArray();
int n = b.length;
if (n == len) {
return b;
}
// BigInteger prefixed a 0x00 byte for 2's complement form, remove it
if ((n == len + 1) && (b[0] == 0)) {
byte[] t = new byte[len];
System.arraycopy(b, 1, t, 0, len);
return t;
}
// must be smaller
assert (n < len);
byte[] t = new byte[len];
System.arraycopy(b, 0, t, (len - n), n);
return t;
}
/**
* Parameters (u,v) for RSA Blinding. This is described in the RSA
* Bulletin#2 (Jan 96) and other places:
*
* ftp://ftp.rsa.com/pub/pdfs/bull-2.pdf
*
* The standard RSA Blinding decryption requires the public key exponent
* (e) and modulus (n), and converts ciphertext (c) to plaintext (p).
*
* Before the modular exponentiation operation, the input message should
* be multiplied by (u (mod n)), and afterward the result is corrected
* by multiplying with (v (mod n)). The system should reject messages
* equal to (0 (mod n)). That is:
*
* 1. Generate r between 0 and n-1, relatively prime to n.
* 2. Compute x = (c*u) mod n
* 3. Compute y = (x^d) mod n
* 4. Compute p = (y*v) mod n
*
* The Java APIs allows for either standard RSAPrivateKey or
* RSAPrivateCrtKey RSA keys.
*
* If the public exponent is available to us (e.g. RSAPrivateCrtKey),
* choose a random r, then let (u, v):
*
* u = r ^ e mod n
* v = r ^ (-1) mod n
*
* The proof follows:
*
* p = (((c * u) ^ d mod n) * v) mod n
* = ((c ^ d) * (u ^ d) * v) mod n
* = ((c ^ d) * (r ^ e) ^ d) * (r ^ (-1))) mod n
* = ((c ^ d) * (r ^ (e * d)) * (r ^ (-1))) mod n
* = ((c ^ d) * (r ^ 1) * (r ^ (-1))) mod n (see below)
* = (c ^ d) mod n
*
* because in RSA cryptosystem, d is the multiplicative inverse of e:
*
* (r^(e * d)) mod n
* = (r ^ 1) mod n
* = r mod n
*
* However, if the public exponent is not available (e.g. RSAPrivateKey),
* we mitigate the timing issue by using a similar random number blinding
* approach using the private key:
*
* u = r
* v = ((r ^ (-1)) ^ d) mod n
*
* This returns the same plaintext because:
*
* p = (((c * u) ^ d mod n) * v) mod n
* = ((c ^ d) * (u ^ d) * v) mod n
* = ((c ^ d) * (u ^ d) * ((u ^ (-1)) ^d)) mod n
* = (c ^ d) mod n
*
* Computing inverses mod n and random number generation is slow, so
* it is often not practical to generate a new random (u, v) pair for
* each new exponentiation. The calculation of parameters might even be
* subject to timing attacks. However, (u, v) pairs should not be
* reused since they themselves might be compromised by timing attacks,
* leaving the private exponent vulnerable. An efficient solution to
* this problem is update u and v before each modular exponentiation
* step by computing:
*
* u = u ^ 2
* v = v ^ 2
*
* The total performance cost is small.
*/
private final static class BlindingRandomPair {
final BigInteger u;
final BigInteger v;
BlindingRandomPair(BigInteger u, BigInteger v) {
this.u = u;
this.v = v;
}
}
/**
* Set of blinding parameters for a given RSA key.
*
* The RSA modulus is usually unique, so we index by modulus in
* {@code blindingCache}. However, to protect against the unlikely
* case of two keys sharing the same modulus, we also store the public
* or the private exponent. This means we cannot cache blinding
* parameters for multiple keys that share the same modulus, but
* since sharing moduli is fundamentally broken and insecure, this
* does not matter.
*/
private final static class BlindingParameters {
private final static BigInteger BIG_TWO = BigInteger.valueOf(2L);
// RSA public exponent
private final BigInteger e;
// hash code of RSA private exponent
private final BigInteger d;
// r ^ e mod n (CRT), or r mod n (Non-CRT)
private BigInteger u;
// r ^ (-1) mod n (CRT) , or ((r ^ (-1)) ^ d) mod n (Non-CRT)
private BigInteger v;
// e: the public exponent
// d: the private exponent
// n: the modulus
BlindingParameters(BigInteger e, BigInteger d, BigInteger n) {
this.u = null;
this.v = null;
this.e = e;
this.d = d;
int len = n.bitLength();
SecureRandom random = JCAUtil.getSecureRandom();
u = new BigInteger(len, random).mod(n);
// Although the possibility is very much limited that u is zero
// or is not relatively prime to n, we still want to be careful
// about the special value.
//
// Secure random generation is expensive, try to use BigInteger.ONE
// this time if this new generated random number is zero or is not
// relatively prime to n. Next time, new generated secure random
// number will be used instead.
if (u.equals(BigInteger.ZERO)) {
u = BigInteger.ONE; // use 1 this time
}
try {
// The call to BigInteger.modInverse() checks that u is
// relatively prime to n. Otherwise, ArithmeticException is
// thrown.
v = u.modInverse(n);
} catch (ArithmeticException ae) {
// if u is not relatively prime to n, use 1 this time
u = BigInteger.ONE;
v = BigInteger.ONE;
}
if (e != null) {
u = u.modPow(e, n); // e: the public exponent
// u: random ^ e
// v: random ^ (-1)
} else {
v = v.modPow(d, n); // d: the private exponent
// u: random
// v: random ^ (-d)
}
}
// return null if need to reset the parameters
BlindingRandomPair getBlindingRandomPair(
BigInteger e, BigInteger d, BigInteger n) {
if ((this.e != null && this.e.equals(e)) ||
(this.d != null && this.d.equals(d))) {
BlindingRandomPair brp = null;
synchronized (this) {
if (!u.equals(BigInteger.ZERO) &&
/**代码未完, 请加载全部代码(NowJava.com).**/