/*
* Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.jgss.krb5;
import org.ietf.jgss.*;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.security.MessageDigest;
import java.util.Arrays;
/**
* This class is a base class for new GSS token definitions, as defined
* in RFC 4121, that pertain to per-message GSS-API calls. Conceptually
* GSS-API has two types of per-message tokens: WrapToken and MicToken.
* They differ in the respect that a WrapToken carries additional plaintext
* or ciphertext application data besides just the sequence number and
* checksum. This class encapsulates the commonality in the structure of
* the WrapToken and the MicToken. This structure can be represented as:
* <p>
* <pre>
* Wrap Tokens
*
* Octet no Name Description
* ---------------------------------------------------------------
* 0..1 TOK_ID Identification field. Tokens emitted by
* GSS_Wrap() contain the hex value 05 04
* expressed in big-endian order in this field.
* 2 Flags Attributes field, as described in section
* 4.2.2.
* 3 Filler Contains the hex value FF.
* 4..5 EC Contains the "extra count" field, in big-
* endian order as described in section 4.2.3.
* 6..7 RRC Contains the "right rotation count" in big
* endian order, as described in section 4.2.5.
* 8..15 SND_SEQ Sequence number field in clear text,
* expressed in big-endian order.
* 16..last Data Encrypted data for Wrap tokens with
* confidentiality, or plaintext data followed
* by the checksum for Wrap tokens without
* confidentiality, as described in section
* 4.2.4.
* MIC Tokens
*
* Octet no Name Description
* -----------------------------------------------------------------
* 0..1 TOK_ID Identification field. Tokens emitted by
* GSS_GetMIC() contain the hex value 04 04
* expressed in big-endian order in this field.
* 2 Flags Attributes field, as described in section
* 4.2.2.
* 3..7 Filler Contains five octets of hex value FF.
* 8..15 SND_SEQ Sequence number field in clear text,
* expressed in big-endian order.
* 16..last SGN_CKSUM Checksum of the "to-be-signed" data and
* octet 0..15, as described in section 4.2.4.
*
* </pre>
* <p>
* This class is the super class of WrapToken_v2 and MicToken_v2. The token's
* header (bytes[0..15]) and data (byte[16..]) are saved in tokenHeader and
* tokenData fields. Since there is no easy way to find out the exact length
* of a WrapToken_v2 token from any header info, in the case of reading from
* stream, we read all available() bytes into the token.
* <p>
* All read actions are performed in this super class. On the write part, the
* super class only write the tokenHeader, and the content writing is inside
* child classes.
*
* @author Seema Malkani
*/
abstract class MessageToken_v2 extends Krb5Token {
protected static final int TOKEN_HEADER_SIZE = 16;
private static final int TOKEN_ID_POS = 0;
private static final int TOKEN_FLAG_POS = 2;
private static final int TOKEN_EC_POS = 4;
private static final int TOKEN_RRC_POS = 6;
/**
* The size of the random confounder used in a WrapToken.
*/
protected static final int CONFOUNDER_SIZE = 16;
// RFC 4121, key usage values
static final int KG_USAGE_ACCEPTOR_SEAL = 22;
static final int KG_USAGE_ACCEPTOR_SIGN = 23;
static final int KG_USAGE_INITIATOR_SEAL = 24;
static final int KG_USAGE_INITIATOR_SIGN = 25;
// RFC 4121, Flags Field
private static final int FLAG_SENDER_IS_ACCEPTOR = 1;
private static final int FLAG_WRAP_CONFIDENTIAL = 2;
private static final int FLAG_ACCEPTOR_SUBKEY = 4;
private static final int FILLER = 0xff;
private MessageTokenHeader tokenHeader = null;
// Common field
private int tokenId = 0;
private int seqNumber;
protected byte[] tokenData; // content of token, without the header
protected int tokenDataLen;
// Key usage number for crypto action
private int key_usage = 0;
// EC and RRC fields, WrapToken only
private int ec = 0;
private int rrc = 0;
// Checksum. Always in MicToken, might be in WrapToken
byte[] checksum = null;
// Context properties
private boolean confState = true;
private boolean initiator = true;
private boolean have_acceptor_subkey = false;
/* cipher instance used by the corresponding GSSContext */
CipherHelper cipherHelper = null;
/**
* Constructs a MessageToken from a byte array.
*
* @param tokenId the token id that should be contained in this token as
* it is read.
* @param context the Kerberos context associated with this token
* @param tokenBytes the byte array containing the token
* @param tokenOffset the offset where the token begins
* @param tokenLen the length of the token
* @param prop the MessageProp structure in which the properties of the
* token should be stored.
* @throws GSSException if there is a problem parsing the token
*/
MessageToken_v2(int tokenId, Krb5Context context,
byte[] tokenBytes, int tokenOffset, int tokenLen,
MessageProp prop) throws GSSException {
this(tokenId, context,
new ByteArrayInputStream(tokenBytes, tokenOffset, tokenLen),
prop);
}
/**
* Constructs a MessageToken from an InputStream. Bytes will be read on
* demand and the thread might block if there are not enough bytes to
* complete the token. Please note there is no accurate way to find out
* the size of a token, but we try our best to make sure there is
* enough bytes to construct one.
*
* @param tokenId the token id that should be contained in this token as
* it is read.
* @param context the Kerberos context associated with this token
* @param is the InputStream from which to read
* @param prop the MessageProp structure in which the properties of the
* token should be stored.
* @throws GSSException if there is a problem reading from the
* InputStream or parsing the token
*/
MessageToken_v2(int tokenId, Krb5Context context, InputStream is,
MessageProp prop) throws GSSException {
init(tokenId, context);
try {
if (!confState) {
prop.setPrivacy(false);
}
tokenHeader = new MessageTokenHeader(is, prop, tokenId);
// set key_usage
if (tokenId == Krb5Token.WRAP_ID_v2) {
key_usage = (!initiator ? KG_USAGE_INITIATOR_SEAL
: KG_USAGE_ACCEPTOR_SEAL);
} else if (tokenId == Krb5Token.MIC_ID_v2) {
key_usage = (!initiator ? KG_USAGE_INITIATOR_SIGN
: KG_USAGE_ACCEPTOR_SIGN);
}
int minSize = 0; // minimal size for token data
if (tokenId == Krb5Token.WRAP_ID_v2 && prop.getPrivacy()) {
minSize = CONFOUNDER_SIZE +
TOKEN_HEADER_SIZE + cipherHelper.getChecksumLength();
} else {
minSize = cipherHelper.getChecksumLength();
}
// Read token data
if (tokenId == Krb5Token.MIC_ID_v2) {
// The only case we can precisely predict the token data length
tokenDataLen = minSize;
tokenData = new byte[minSize];
readFully(is, tokenData);
} else {
tokenDataLen = is.available();
if (tokenDataLen >= minSize) { // read in one shot
tokenData = new byte[tokenDataLen];
readFully(is, tokenData);
} else {
byte[] tmp = new byte[minSize];
readFully(is, tmp);
// Hope while blocked in the read above, more data would
// come and is.available() below contains the whole token.
int more = is.available();
tokenDataLen = minSize + more;
tokenData = Arrays.copyOf(tmp, tokenDataLen);
readFully(is, tokenData, minSize, more);
}
}
if (tokenId == Krb5Token.WRAP_ID_v2) {
rotate();
}
if (tokenId == Krb5Token.MIC_ID_v2 ||
(tokenId == Krb5Token.WRAP_ID_v2 && !prop.getPrivacy())) {
// Read checksum
int chkLen = cipherHelper.getChecksumLength();
checksum = new byte[chkLen];
System.arraycopy(tokenData, tokenDataLen-chkLen,
checksum, 0, chkLen);
// validate EC for Wrap tokens without confidentiality
if (tokenId == Krb5Token.WRAP_ID_v2 && !prop.getPrivacy()) {
if (chkLen != ec) {
throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1,
getTokenName(tokenId) + ":" + "EC incorrect!");
}
}
}
} catch (IOException e) {
throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1,
getTokenName(tokenId) + ":" + e.getMessage());
}
}
/**
* Used to obtain the token id that was contained in this token.
* @return the token id in the token
*/
public final int getTokenId() {
return tokenId;
}
/**
* Used to obtain the key_usage type for this token.
* @return the key_usage for the token
*/
public final int getKeyUsage() {
return key_usage;
}
/**
* Used to determine if this token contains any encrypted data.
* @return true if it contains any encrypted data, false if there is only
* plaintext data or if there is no data.
*/
public final boolean getConfState() {
return confState;
}
/**
* Generates the checksum field and the sequence number field.
*
* @param prop the MessageProp structure
* @param data the application data to checksum
* @param offset the offset where the data starts
* @param len the length of the data
*
* @throws GSSException if an error occurs in the checksum calculation or
* sequence number calculation.
*/
public void genSignAndSeqNumber(MessageProp prop,
byte[] data, int offset, int len)
throws GSSException {
// debug("Inside MessageToken.genSignAndSeqNumber:\n");
int qop = prop.getQOP();
if (qop != 0) {
qop = 0;
prop.setQOP(qop);
}
if (!confState) {
prop.setPrivacy(false);
}
// Create a new gss token header as defined in RFC 4121
tokenHeader = new MessageTokenHeader(tokenId, prop.getPrivacy());
// debug("\n\t Message Header = " +
// getHexBytes(tokenHeader.getBytes(), tokenHeader.getBytes().length));
// set key_usage
if (tokenId == Krb5Token.WRAP_ID_v2) {
key_usage = (initiator ? KG_USAGE_INITIATOR_SEAL
: KG_USAGE_ACCEPTOR_SEAL);
} else if (tokenId == Krb5Token.MIC_ID_v2) {
key_usage = (initiator ? KG_USAGE_INITIATOR_SIGN
: KG_USAGE_ACCEPTOR_SIGN);
}
// Calculate SGN_CKSUM
if ((tokenId == MIC_ID_v2) ||
(!prop.getPrivacy() && (tokenId == WRAP_ID_v2))) {
checksum = getChecksum(data, offset, len);
// debug("\n\tCalc checksum=" +
// getHexBytes(checksum, checksum.length));
}
// In Wrap tokens without confidentiality, the EC field SHALL be used
// to encode the number of octets in the trailing checksum
if (!prop.getPrivacy() && (tokenId == WRAP_ID_v2)) {
byte[] tok_header = tokenHeader.getBytes();
tok_header[4] = (byte) (checksum.length >>> 8);
tok_header[5] = (byte) (checksum.length);
}
}
/**
* Verifies the validity of checksum field
*
* @param data the application data
* @param offset the offset where the data begins
* @param len the length of the application data
*
* @throws GSSException if an error occurs in the checksum calculation
*/
public final boolean verifySign(byte[] data, int offset, int len)
throws GSSException {
// debug("\t====In verifySign:====\n");
// debug("\t\t checksum: [" + getHexBytes(checksum) + "]\n");
// debug("\t\t data = [" + getHexBytes(data) + "]\n");
byte[] myChecksum = getChecksum(data, offset, len);
// debug("\t\t mychecksum: [" + getHexBytes(myChecksum) +"]\n");
if (MessageDigest.isEqual(checksum, myChecksum)) {
// debug("\t\t====Checksum PASS:====\n");
return true;
}
return false;
}
/**
* Rotate bytes as per the "RRC" (Right Rotation Count) received.
* Our implementation does not do any rotates when sending, only
* when receiving, we rotate left as per the RRC count, to revert it.
*/
private void rotate() {
if (rrc % tokenDataLen != 0) {
rrc = rrc % tokenDataLen;
byte[] newBytes = new byte[tokenDataLen];
System.arraycopy(tokenData, rrc, newBytes, 0, tokenDataLen-rrc);
System.arraycopy(tokenData, 0, newBytes, tokenDataLen-rrc, rrc);
tokenData = newBytes;
}
}
public final int getSequenceNumber() {
return seqNumber;
}
/**
* Computes the checksum based on the algorithm stored in the
* tokenHeader.
*
* @param data the application data
* @param offset the offset where the data begins
* @param len the length of the application data
*
* @throws GSSException if an error occurs in the checksum calculation.
*/
byte[] getChecksum(byte[] data, int offset, int len)
throws GSSException {
// debug("Will do getChecksum:\n");
/*
* For checksum calculation the token header bytes i.e., the first 16
* bytes following the GSSHeader, are logically prepended to the
* application data to bind the data to this particular token.
*
* Note: There is no such requirement wrt adding padding to the
* application data for checksumming, although the cryptographic
* algorithm used might itself apply some padding.
*/
byte[] tokenHeaderBytes = tokenHeader.getBytes();
// check confidentiality
int conf_flag = tokenHeaderBytes[TOKEN_FLAG_POS] &
FLAG_WRAP_CONFIDENTIAL;
// clear EC and RRC in token header for checksum calculation
if ((conf_flag == 0) && (tokenId == WRAP_ID_v2)) {
tokenHeaderBytes[4] = 0;
tokenHeaderBytes[5] = 0;
tokenHeaderBytes[6] = 0;
tokenHeaderBytes[7] = 0;
}
return cipherHelper.calculateChecksum(tokenHeaderBytes, data,
offset, len, key_usage);
}
/**
* Constructs an empty MessageToken for the local context to send to
* the peer. It also increments the local sequence number in the
* Krb5Context instance it uses after obtaining the object lock for
* it.
*
* @param tokenId the token id that should be contained in this token
* @param context the Kerberos context associated with this token
*/
MessageToken_v2(int tokenId, Krb5Context context) throws GSSException {
/*
debug("\n============================");
debug("\nMySessionKey=" +
getHexBytes(context.getMySessionKey().getBytes()));
debug("\nPeerSessionKey=" +
getHexBytes(context.getPeerSessionKey().getBytes()));
debug("\n============================\n");
*/
init(tokenId, context);
this.seqNumber = context.incrementMySequenceNumber();
}
private void init(int tokenId, Krb5Context context) throws GSSException {
this.tokenId = tokenId;
// Just for consistency check in Wrap
this.confState = context.getConfState();
this.initiator = context.isInitiator();
this.have_acceptor_subkey = context.getKeySrc() == Krb5Context.ACCEPTOR_SUBKEY;
this.cipherHelper = context.getCipherHelper(null);
// debug("In MessageToken.Cons");
}
/**
* Encodes a MessageTokenHeader onto an OutputStream.
*
* @param os the OutputStream to which this should be written
* @throws IOException is an error occurs while writing to the OutputStream
*/
protected void encodeHeader(OutputStream os) throws IOException {
tokenHeader.encode(os);
}
/**
* Encodes a MessageToken_v2 onto an OutputStream.
*
* @param os the OutputStream to which this should be written
* @throws IOException is an error occurs while encoding the token
*/
public abstract void encode(OutputStream os) throws IOException;
protected final byte[] getTokenHeader() {
return (tokenHeader.getBytes());
}
// ******************************************* //
// I N N E R C L A S S E S F O L L O W
// ******************************************* //
/**
* This inner class represents the initial portion of the message token.
* It constitutes the first 16 bytes of the message token.
*/
class MessageTokenHeader {
private int tokenId;
private byte[] bytes = new byte[TOKEN_HEADER_SIZE];
// Writes a new token header
public MessageTokenHeader(int tokenId, boolean conf) throws GSSException {
this.tokenId = tokenId;
bytes[0] = (byte) (tokenId >>> 8);
bytes[1] = (byte) (tokenId);
// Flags (Note: MIT impl requires subkey)
int flags = 0;
flags = (initiator ? 0 : FLAG_SENDER_IS_ACCEPTOR) |
((conf && tokenId != MIC_ID_v2) ?
FLAG_WRAP_CONFIDENTIAL : 0) |
(have_acceptor_subkey ? FLAG_ACCEPTOR_SUBKEY : 0);
bytes[2] = (byte) flags;
// filler
bytes[3] = (byte) FILLER;
if (tokenId == WRAP_ID_v2) {
// EC field
bytes[4] = (byte) 0;
bytes[5] = (byte) 0;
// RRC field
bytes[6] = (byte) 0;
bytes[7] = (byte) 0;
} else if (tokenId == MIC_ID_v2) {
// more filler for MicToken
for (int i = 4; i < 8; i++) {
bytes[i] = (byte) FILLER;
}
}
// Calculate SND_SEQ, only write 4 bytes from the 12th position
writeBigEndian(seqNumber, bytes, 12);
}
/**
* Reads a MessageTokenHeader from an InputStream and sets the
* appropriate confidentiality and quality of protection
* values in a MessageProp structure.
*
* @param is the InputStream to read from
* @param prop the MessageProp to populate
* @throws IOException is an error occurs while reading from the
* InputStream
*/
public MessageTokenHeader(InputStream is, MessageProp prop, int tokId)
throws IOException, GSSException {
readFully(is, bytes, 0, TOKEN_HEADER_SIZE);
tokenId = readInt(bytes, TOKEN_ID_POS);
// validate Token ID
if (tokenId != tokId) {
throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1,
getTokenName(tokenId) + ":" + "Defective Token ID!");
}
/*
* Validate new GSS TokenHeader
*/
// valid acceptor_flag
// If I am initiator, the received token should have ACCEPTOR on
int acceptor_flag = (initiator ? FLAG_SENDER_IS_ACCEPTOR : 0);
int flag = bytes[TOKEN_FLAG_POS] & FLAG_SENDER_IS_ACCEPTOR;
/**代码未完, 请加载全部代码(NowJava.com).**/