/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.lang.Thread.UncaughtExceptionHandler;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.AbstractExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.RunnableFuture;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.security.AccessControlContext;
import java.security.ProtectionDomain;
import java.security.Permissions;
/**
* An {@link ExecutorService} for running {@link ForkJoinTask}s.
* A {@code ForkJoinPool} provides the entry point for submissions
* from non-{@code ForkJoinTask} clients, as well as management and
* monitoring operations.
*
* <p>A {@code ForkJoinPool} differs from other kinds of {@link
* ExecutorService} mainly by virtue of employing
* <em>work-stealing</em>: all threads in the pool attempt to find and
* execute tasks submitted to the pool and/or created by other active
* tasks (eventually blocking waiting for work if none exist). This
* enables efficient processing when most tasks spawn other subtasks
* (as do most {@code ForkJoinTask}s), as well as when many small
* tasks are submitted to the pool from external clients. Especially
* when setting <em>asyncMode</em> to true in constructors, {@code
* ForkJoinPool}s may also be appropriate for use with event-style
* tasks that are never joined.
*
* <p>A static {@link #commonPool()} is available and appropriate for
* most applications. The common pool is used by any ForkJoinTask that
* is not explicitly submitted to a specified pool. Using the common
* pool normally reduces resource usage (its threads are slowly
* reclaimed during periods of non-use, and reinstated upon subsequent
* use).
*
* <p>For applications that require separate or custom pools, a {@code
* ForkJoinPool} may be constructed with a given target parallelism
* level; by default, equal to the number of available processors.
* The pool attempts to maintain enough active (or available) threads
* by dynamically adding, suspending, or resuming internal worker
* threads, even if some tasks are stalled waiting to join others.
* However, no such adjustments are guaranteed in the face of blocked
* I/O or other unmanaged synchronization. The nested {@link
* ManagedBlocker} interface enables extension of the kinds of
* synchronization accommodated.
*
* <p>In addition to execution and lifecycle control methods, this
* class provides status check methods (for example
* {@link #getStealCount}) that are intended to aid in developing,
* tuning, and monitoring fork/join applications. Also, method
* {@link #toString} returns indications of pool state in a
* convenient form for informal monitoring.
*
* <p>As is the case with other ExecutorServices, there are three
* main task execution methods summarized in the following table.
* These are designed to be used primarily by clients not already
* engaged in fork/join computations in the current pool. The main
* forms of these methods accept instances of {@code ForkJoinTask},
* but overloaded forms also allow mixed execution of plain {@code
* Runnable}- or {@code Callable}- based activities as well. However,
* tasks that are already executing in a pool should normally instead
* use the within-computation forms listed in the table unless using
* async event-style tasks that are not usually joined, in which case
* there is little difference among choice of methods.
*
* <table BORDER CELLPADDING=3 CELLSPACING=1>
* <caption>Summary of task execution methods</caption>
* <tr>
* <td></td>
* <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
* <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
* </tr>
* <tr>
* <td> <b>Arrange async execution</b></td>
* <td> {@link #execute(ForkJoinTask)}</td>
* <td> {@link ForkJoinTask#fork}</td>
* </tr>
* <tr>
* <td> <b>Await and obtain result</b></td>
* <td> {@link #invoke(ForkJoinTask)}</td>
* <td> {@link ForkJoinTask#invoke}</td>
* </tr>
* <tr>
* <td> <b>Arrange exec and obtain Future</b></td>
* <td> {@link #submit(ForkJoinTask)}</td>
* <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
* </tr>
* </table>
*
* <p>The common pool is by default constructed with default
* parameters, but these may be controlled by setting three
* {@linkplain System#getProperty system properties}:
* <ul>
* <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
* - the parallelism level, a non-negative integer
* <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
* - the class name of a {@link ForkJoinWorkerThreadFactory}
* <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
* - the class name of a {@link UncaughtExceptionHandler}
* </ul>
* If a {@link SecurityManager} is present and no factory is
* specified, then the default pool uses a factory supplying
* threads that have no {@link Permissions} enabled.
* The system class loader is used to load these classes.
* Upon any error in establishing these settings, default parameters
* are used. It is possible to disable or limit the use of threads in
* the common pool by setting the parallelism property to zero, and/or
* using a factory that may return {@code null}. However doing so may
* cause unjoined tasks to never be executed.
*
* <p><b>Implementation notes</b>: This implementation restricts the
* maximum number of running threads to 32767. Attempts to create
* pools with greater than the maximum number result in
* {@code IllegalArgumentException}.
*
* <p>This implementation rejects submitted tasks (that is, by throwing
* {@link RejectedExecutionException}) only when the pool is shut down
* or internal resources have been exhausted.
*
* @since 1.7
* @author Doug Lea
*/
@sun.misc.Contended
public class ForkJoinPool extends AbstractExecutorService {
/*
* Implementation Overview
*
* This class and its nested classes provide the main
* functionality and control for a set of worker threads:
* Submissions from non-FJ threads enter into submission queues.
* Workers take these tasks and typically split them into subtasks
* that may be stolen by other workers. Preference rules give
* first priority to processing tasks from their own queues (LIFO
* or FIFO, depending on mode), then to randomized FIFO steals of
* tasks in other queues. This framework began as vehicle for
* supporting tree-structured parallelism using work-stealing.
* Over time, its scalability advantages led to extensions and
* changes to better support more diverse usage contexts. Because
* most internal methods and nested classes are interrelated,
* their main rationale and descriptions are presented here;
* individual methods and nested classes contain only brief
* comments about details.
*
* WorkQueues
* ==========
*
* Most operations occur within work-stealing queues (in nested
* class WorkQueue). These are special forms of Deques that
* support only three of the four possible end-operations -- push,
* pop, and poll (aka steal), under the further constraints that
* push and pop are called only from the owning thread (or, as
* extended here, under a lock), while poll may be called from
* other threads. (If you are unfamiliar with them, you probably
* want to read Herlihy and Shavit's book "The Art of
* Multiprocessor programming", chapter 16 describing these in
* more detail before proceeding.) The main work-stealing queue
* design is roughly similar to those in the papers "Dynamic
* Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
* (http://research.sun.com/scalable/pubs/index.html) and
* "Idempotent work stealing" by Michael, Saraswat, and Vechev,
* PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
* The main differences ultimately stem from GC requirements that
* we null out taken slots as soon as we can, to maintain as small
* a footprint as possible even in programs generating huge
* numbers of tasks. To accomplish this, we shift the CAS
* arbitrating pop vs poll (steal) from being on the indices
* ("base" and "top") to the slots themselves.
*
* Adding tasks then takes the form of a classic array push(task):
* q.array[q.top] = task; ++q.top;
*
* (The actual code needs to null-check and size-check the array,
* properly fence the accesses, and possibly signal waiting
* workers to start scanning -- see below.) Both a successful pop
* and poll mainly entail a CAS of a slot from non-null to null.
*
* The pop operation (always performed by owner) is:
* if ((base != top) and
* (the task at top slot is not null) and
* (CAS slot to null))
* decrement top and return task;
*
* And the poll operation (usually by a stealer) is
* if ((base != top) and
* (the task at base slot is not null) and
* (base has not changed) and
* (CAS slot to null))
* increment base and return task;
*
* Because we rely on CASes of references, we do not need tag bits
* on base or top. They are simple ints as used in any circular
* array-based queue (see for example ArrayDeque). Updates to the
* indices guarantee that top == base means the queue is empty,
* but otherwise may err on the side of possibly making the queue
* appear nonempty when a push, pop, or poll have not fully
* committed. (Method isEmpty() checks the case of a partially
* completed removal of the last element.) Because of this, the
* poll operation, considered individually, is not wait-free. One
* thief cannot successfully continue until another in-progress
* one (or, if previously empty, a push) completes. However, in
* the aggregate, we ensure at least probabilistic
* non-blockingness. If an attempted steal fails, a thief always
* chooses a different random victim target to try next. So, in
* order for one thief to progress, it suffices for any
* in-progress poll or new push on any empty queue to
* complete. (This is why we normally use method pollAt and its
* variants that try once at the apparent base index, else
* consider alternative actions, rather than method poll, which
* retries.)
*
* This approach also enables support of a user mode in which
* local task processing is in FIFO, not LIFO order, simply by
* using poll rather than pop. This can be useful in
* message-passing frameworks in which tasks are never joined.
* However neither mode considers affinities, loads, cache
* localities, etc, so rarely provide the best possible
* performance on a given machine, but portably provide good
* throughput by averaging over these factors. Further, even if
* we did try to use such information, we do not usually have a
* basis for exploiting it. For example, some sets of tasks
* profit from cache affinities, but others are harmed by cache
* pollution effects. Additionally, even though it requires
* scanning, long-term throughput is often best using random
* selection rather than directed selection policies, so cheap
* randomization of sufficient quality is used whenever
* applicable. Various Marsaglia XorShifts (some with different
* shift constants) are inlined at use points.
*
* WorkQueues are also used in a similar way for tasks submitted
* to the pool. We cannot mix these tasks in the same queues used
* by workers. Instead, we randomly associate submission queues
* with submitting threads, using a form of hashing. The
* ThreadLocalRandom probe value serves as a hash code for
* choosing existing queues, and may be randomly repositioned upon
* contention with other submitters. In essence, submitters act
* like workers except that they are restricted to executing local
* tasks that they submitted (or in the case of CountedCompleters,
* others with the same root task). Insertion of tasks in shared
* mode requires a lock (mainly to protect in the case of
* resizing) but we use only a simple spinlock (using field
* qlock), because submitters encountering a busy queue move on to
* try or create other queues -- they block only when creating and
* registering new queues. Additionally, "qlock" saturates to an
* unlockable value (-1) at shutdown. Unlocking still can be and
* is performed by cheaper ordered writes of "qlock" in successful
* cases, but uses CAS in unsuccessful cases.
*
* Management
* ==========
*
* The main throughput advantages of work-stealing stem from
* decentralized control -- workers mostly take tasks from
* themselves or each other, at rates that can exceed a billion
* per second. The pool itself creates, activates (enables
* scanning for and running tasks), deactivates, blocks, and
* terminates threads, all with minimal central information.
* There are only a few properties that we can globally track or
* maintain, so we pack them into a small number of variables,
* often maintaining atomicity without blocking or locking.
* Nearly all essentially atomic control state is held in two
* volatile variables that are by far most often read (not
* written) as status and consistency checks. (Also, field
* "config" holds unchanging configuration state.)
*
* Field "ctl" contains 64 bits holding information needed to
* atomically decide to add, inactivate, enqueue (on an event
* queue), dequeue, and/or re-activate workers. To enable this
* packing, we restrict maximum parallelism to (1<<15)-1 (which is
* far in excess of normal operating range) to allow ids, counts,
* and their negations (used for thresholding) to fit into 16bit
* subfields.
*
* Field "runState" holds lockable state bits (STARTED, STOP, etc)
* also protecting updates to the workQueues array. When used as
* a lock, it is normally held only for a few instructions (the
* only exceptions are one-time array initialization and uncommon
* resizing), so is nearly always available after at most a brief
* spin. But to be extra-cautious, after spinning, method
* awaitRunStateLock (called only if an initial CAS fails), uses a
* wait/notify mechanics on a builtin monitor to block when
* (rarely) needed. This would be a terrible idea for a highly
* contended lock, but most pools run without the lock ever
* contending after the spin limit, so this works fine as a more
* conservative alternative. Because we don't otherwise have an
* internal Object to use as a monitor, the "stealCounter" (an
* AtomicLong) is used when available (it too must be lazily
* initialized; see externalSubmit).
*
* Usages of "runState" vs "ctl" interact in only one case:
* deciding to add a worker thread (see tryAddWorker), in which
* case the ctl CAS is performed while the lock is held.
*
* Recording WorkQueues. WorkQueues are recorded in the
* "workQueues" array. The array is created upon first use (see
* externalSubmit) and expanded if necessary. Updates to the
* array while recording new workers and unrecording terminated
* ones are protected from each other by the runState lock, but
* the array is otherwise concurrently readable, and accessed
* directly. We also ensure that reads of the array reference
* itself never become too stale. To simplify index-based
* operations, the array size is always a power of two, and all
* readers must tolerate null slots. Worker queues are at odd
* indices. Shared (submission) queues are at even indices, up to
* a maximum of 64 slots, to limit growth even if array needs to
* expand to add more workers. Grouping them together in this way
* simplifies and speeds up task scanning.
*
* All worker thread creation is on-demand, triggered by task
* submissions, replacement of terminated workers, and/or
* compensation for blocked workers. However, all other support
* code is set up to work with other policies. To ensure that we
* do not hold on to worker references that would prevent GC, All
* accesses to workQueues are via indices into the workQueues
* array (which is one source of some of the messy code
* constructions here). In essence, the workQueues array serves as
* a weak reference mechanism. Thus for example the stack top
* subfield of ctl stores indices, not references.
*
* Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
* cannot let workers spin indefinitely scanning for tasks when
* none can be found immediately, and we cannot start/resume
* workers unless there appear to be tasks available. On the
* other hand, we must quickly prod them into action when new
* tasks are submitted or generated. In many usages, ramp-up time
* to activate workers is the main limiting factor in overall
* performance, which is compounded at program start-up by JIT
* compilation and allocation. So we streamline this as much as
* possible.
*
* The "ctl" field atomically maintains active and total worker
* counts as well as a queue to place waiting threads so they can
* be located for signalling. Active counts also play the role of
* quiescence indicators, so are decremented when workers believe
* that there are no more tasks to execute. The "queue" is
* actually a form of Treiber stack. A stack is ideal for
* activating threads in most-recently used order. This improves
* performance and locality, outweighing the disadvantages of
* being prone to contention and inability to release a worker
* unless it is topmost on stack. We park/unpark workers after
* pushing on the idle worker stack (represented by the lower
* 32bit subfield of ctl) when they cannot find work. The top
* stack state holds the value of the "scanState" field of the
* worker: its index and status, plus a version counter that, in
* addition to the count subfields (also serving as version
* stamps) provide protection against Treiber stack ABA effects.
*
* Field scanState is used by both workers and the pool to manage
* and track whether a worker is INACTIVE (possibly blocked
* waiting for a signal), or SCANNING for tasks (when neither hold
* it is busy running tasks). When a worker is inactivated, its
* scanState field is set, and is prevented from executing tasks,
* even though it must scan once for them to avoid queuing
* races. Note that scanState updates lag queue CAS releases so
* usage requires care. When queued, the lower 16 bits of
* scanState must hold its pool index. So we place the index there
* upon initialization (see registerWorker) and otherwise keep it
* there or restore it when necessary.
*
* Memory ordering. See "Correct and Efficient Work-Stealing for
* Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
* (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
* analysis of memory ordering requirements in work-stealing
* algorithms similar to the one used here. We usually need
* stronger than minimal ordering because we must sometimes signal
* workers, requiring Dekker-like full-fences to avoid lost
* signals. Arranging for enough ordering without expensive
* over-fencing requires tradeoffs among the supported means of
* expressing access constraints. The most central operations,
* taking from queues and updating ctl state, require full-fence
* CAS. Array slots are read using the emulation of volatiles
* provided by Unsafe. Access from other threads to WorkQueue
* base, top, and array requires a volatile load of the first of
* any of these read. We use the convention of declaring the
* "base" index volatile, and always read it before other fields.
* The owner thread must ensure ordered updates, so writes use
* ordered intrinsics unless they can piggyback on those for other
* writes. Similar conventions and rationales hold for other
* WorkQueue fields (such as "currentSteal") that are only written
* by owners but observed by others.
*
* Creating workers. To create a worker, we pre-increment total
* count (serving as a reservation), and attempt to construct a
* ForkJoinWorkerThread via its factory. Upon construction, the
* new thread invokes registerWorker, where it constructs a
* WorkQueue and is assigned an index in the workQueues array
* (expanding the array if necessary). The thread is then
* started. Upon any exception across these steps, or null return
* from factory, deregisterWorker adjusts counts and records
* accordingly. If a null return, the pool continues running with
* fewer than the target number workers. If exceptional, the
* exception is propagated, generally to some external caller.
* Worker index assignment avoids the bias in scanning that would
* occur if entries were sequentially packed starting at the front
* of the workQueues array. We treat the array as a simple
* power-of-two hash table, expanding as needed. The seedIndex
* increment ensures no collisions until a resize is needed or a
* worker is deregistered and replaced, and thereafter keeps
* probability of collision low. We cannot use
* ThreadLocalRandom.getProbe() for similar purposes here because
* the thread has not started yet, but do so for creating
* submission queues for existing external threads.
*
* Deactivation and waiting. Queuing encounters several intrinsic
* races; most notably that a task-producing thread can miss
* seeing (and signalling) another thread that gave up looking for
* work but has not yet entered the wait queue. When a worker
* cannot find a task to steal, it deactivates and enqueues. Very
* often, the lack of tasks is transient due to GC or OS
* scheduling. To reduce false-alarm deactivation, scanners
* compute checksums of queue states during sweeps. (The
* stability checks used here and elsewhere are probabilistic
* variants of snapshot techniques -- see Herlihy & Shavit.)
* Workers give up and try to deactivate only after the sum is
* stable across scans. Further, to avoid missed signals, they
* repeat this scanning process after successful enqueuing until
* again stable. In this state, the worker cannot take/run a task
* it sees until it is released from the queue, so the worker
* itself eventually tries to release itself or any successor (see
* tryRelease). Otherwise, upon an empty scan, a deactivated
* worker uses an adaptive local spin construction (see awaitWork)
* before blocking (via park). Note the unusual conventions about
* Thread.interrupts surrounding parking and other blocking:
* Because interrupts are used solely to alert threads to check
* termination, which is checked anyway upon blocking, we clear
* status (using Thread.interrupted) before any call to park, so
* that park does not immediately return due to status being set
* via some other unrelated call to interrupt in user code.
*
* Signalling and activation. Workers are created or activated
* only when there appears to be at least one task they might be
* able to find and execute. Upon push (either by a worker or an
* external submission) to a previously (possibly) empty queue,
* workers are signalled if idle, or created if fewer exist than
* the given parallelism level. These primary signals are
* buttressed by others whenever other threads remove a task from
* a queue and notice that there are other tasks there as well.
* On most platforms, signalling (unpark) overhead time is
* noticeably long, and the time between signalling a thread and
* it actually making progress can be very noticeably long, so it
* is worth offloading these delays from critical paths as much as
* possible. Also, because inactive workers are often rescanning
* or spinning rather than blocking, we set and clear the "parker"
* field of WorkQueues to reduce unnecessary calls to unpark.
* (This requires a secondary recheck to avoid missed signals.)
*
* Trimming workers. To release resources after periods of lack of
* use, a worker starting to wait when the pool is quiescent will
* time out and terminate (see awaitWork) if the pool has remained
* quiescent for period IDLE_TIMEOUT, increasing the period as the
* number of threads decreases, eventually removing all workers.
* Also, when more than two spare threads exist, excess threads
* are immediately terminated at the next quiescent point.
* (Padding by two avoids hysteresis.)
*
* Shutdown and Termination. A call to shutdownNow invokes
* tryTerminate to atomically set a runState bit. The calling
* thread, as well as every other worker thereafter terminating,
* helps terminate others by setting their (qlock) status,
* cancelling their unprocessed tasks, and waking them up, doing
* so repeatedly until stable (but with a loop bounded by the
* number of workers). Calls to non-abrupt shutdown() preface
* this by checking whether termination should commence. This
* relies primarily on the active count bits of "ctl" maintaining
* consensus -- tryTerminate is called from awaitWork whenever
* quiescent. However, external submitters do not take part in
* this consensus. So, tryTerminate sweeps through queues (until
* stable) to ensure lack of in-flight submissions and workers
* about to process them before triggering the "STOP" phase of
* termination. (Note: there is an intrinsic conflict if
* helpQuiescePool is called when shutdown is enabled. Both wait
* for quiescence, but tryTerminate is biased to not trigger until
* helpQuiescePool completes.)
*
*
* Joining Tasks
* =============
*
* Any of several actions may be taken when one worker is waiting
* to join a task stolen (or always held) by another. Because we
* are multiplexing many tasks on to a pool of workers, we can't
* just let them block (as in Thread.join). We also cannot just
* reassign the joiner's run-time stack with another and replace
* it later, which would be a form of "continuation", that even if
* possible is not necessarily a good idea since we may need both
* an unblocked task and its continuation to progress. Instead we
* combine two tactics:
*
* Helping: Arranging for the joiner to execute some task that it
* would be running if the steal had not occurred.
*
* Compensating: Unless there are already enough live threads,
* method tryCompensate() may create or re-activate a spare
* thread to compensate for blocked joiners until they unblock.
*
* A third form (implemented in tryRemoveAndExec) amounts to
* helping a hypothetical compensator: If we can readily tell that
* a possible action of a compensator is to steal and execute the
* task being joined, the joining thread can do so directly,
* without the need for a compensation thread (although at the
* expense of larger run-time stacks, but the tradeoff is
* typically worthwhile).
*
* The ManagedBlocker extension API can't use helping so relies
* only on compensation in method awaitBlocker.
*
* The algorithm in helpStealer entails a form of "linear
* helping". Each worker records (in field currentSteal) the most
* recent task it stole from some other worker (or a submission).
* It also records (in field currentJoin) the task it is currently
* actively joining. Method helpStealer uses these markers to try
* to find a worker to help (i.e., steal back a task from and
* execute it) that could hasten completion of the actively joined
* task. Thus, the joiner executes a task that would be on its
* own local deque had the to-be-joined task not been stolen. This
* is a conservative variant of the approach described in Wagner &
* Calder "Leapfrogging: a portable technique for implementing
* efficient futures" SIGPLAN Notices, 1993
* (http://portal.acm.org/citation.cfm?id=155354). It differs in
* that: (1) We only maintain dependency links across workers upon
* steals, rather than use per-task bookkeeping. This sometimes
* requires a linear scan of workQueues array to locate stealers,
* but often doesn't because stealers leave hints (that may become
* stale/wrong) of where to locate them. It is only a hint
* because a worker might have had multiple steals and the hint
* records only one of them (usually the most current). Hinting
* isolates cost to when it is needed, rather than adding to
* per-task overhead. (2) It is "shallow", ignoring nesting and
* potentially cyclic mutual steals. (3) It is intentionally
* racy: field currentJoin is updated only while actively joining,
* which means that we miss links in the chain during long-lived
* tasks, GC stalls etc (which is OK since blocking in such cases
* is usually a good idea). (4) We bound the number of attempts
* to find work using checksums and fall back to suspending the
* worker and if necessary replacing it with another.
*
* Helping actions for CountedCompleters do not require tracking
* currentJoins: Method helpComplete takes and executes any task
* with the same root as the task being waited on (preferring
* local pops to non-local polls). However, this still entails
* some traversal of completer chains, so is less efficient than
* using CountedCompleters without explicit joins.
*
* Compensation does not aim to keep exactly the target
* parallelism number of unblocked threads running at any given
* time. Some previous versions of this class employed immediate
* compensations for any blocked join. However, in practice, the
* vast majority of blockages are transient byproducts of GC and
* other JVM or OS activities that are made worse by replacement.
* Currently, compensation is attempted only after validating that
* all purportedly active threads are processing tasks by checking
* field WorkQueue.scanState, which eliminates most false
* positives. Also, compensation is bypassed (tolerating fewer
* threads) in the most common case in which it is rarely
* beneficial: when a worker with an empty queue (thus no
* continuation tasks) blocks on a join and there still remain
* enough threads to ensure liveness.
*
* The compensation mechanism may be bounded. Bounds for the
* commonPool (see commonMaxSpares) better enable JVMs to cope
* with programming errors and abuse before running out of
* resources to do so. In other cases, users may supply factories
* that limit thread construction. The effects of bounding in this
* pool (like all others) is imprecise. Total worker counts are
* decremented when threads deregister, not when they exit and
* resources are reclaimed by the JVM and OS. So the number of
* simultaneously live threads may transiently exceed bounds.
*
* Common Pool
* ===========
*
* The static common pool always exists after static
* initialization. Since it (or any other created pool) need
* never be used, we minimize initial construction overhead and
* footprint to the setup of about a dozen fields, with no nested
* allocation. Most bootstrapping occurs within method
* externalSubmit during the first submission to the pool.
*
* When external threads submit to the common pool, they can
* perform subtask processing (see externalHelpComplete and
* related methods) upon joins. This caller-helps policy makes it
* sensible to set common pool parallelism level to one (or more)
* less than the total number of available cores, or even zero for
* pure caller-runs. We do not need to record whether external
* submissions are to the common pool -- if not, external help
* methods return quickly. These submitters would otherwise be
* blocked waiting for completion, so the extra effort (with
* liberally sprinkled task status checks) in inapplicable cases
* amounts to an odd form of limited spin-wait before blocking in
* ForkJoinTask.join.
*
* As a more appropriate default in managed environments, unless
* overridden by system properties, we use workers of subclass
* InnocuousForkJoinWorkerThread when there is a SecurityManager
* present. These workers have no permissions set, do not belong
* to any user-defined ThreadGroup, and erase all ThreadLocals
* after executing any top-level task (see WorkQueue.runTask).
* The associated mechanics (mainly in ForkJoinWorkerThread) may
* be JVM-dependent and must access particular Thread class fields
* to achieve this effect.
*
* Style notes
* ===========
*
* Memory ordering relies mainly on Unsafe intrinsics that carry
* the further responsibility of explicitly performing null- and
* bounds- checks otherwise carried out implicitly by JVMs. This
* can be awkward and ugly, but also reflects the need to control
* outcomes across the unusual cases that arise in very racy code
* with very few invariants. So these explicit checks would exist
* in some form anyway. All fields are read into locals before
* use, and null-checked if they are references. This is usually
* done in a "C"-like style of listing declarations at the heads
* of methods or blocks, and using inline assignments on first
* encounter. Array bounds-checks are usually performed by
* masking with array.length-1, which relies on the invariant that
* these arrays are created with positive lengths, which is itself
* paranoically checked. Nearly all explicit checks lead to
* bypass/return, not exception throws, because they may
* legitimately arise due to cancellation/revocation during
* shutdown.
*
* There is a lot of representation-level coupling among classes
* ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
* fields of WorkQueue maintain data structures managed by
* ForkJoinPool, so are directly accessed. There is little point
* trying to reduce this, since any associated future changes in
* representations will need to be accompanied by algorithmic
* changes anyway. Several methods intrinsically sprawl because
* they must accumulate sets of consistent reads of fields held in
* local variables. There are also other coding oddities
* (including several unnecessary-looking hoisted null checks)
* that help some methods perform reasonably even when interpreted
* (not compiled).
*
* The order of declarations in this file is (with a few exceptions):
* (1) Static utility functions
* (2) Nested (static) classes
* (3) Static fields
* (4) Fields, along with constants used when unpacking some of them
* (5) Internal control methods
* (6) Callbacks and other support for ForkJoinTask methods
* (7) Exported methods
* (8) Static block initializing statics in minimally dependent order
*/
// Static utilities
/**
* If there is a security manager, makes sure caller has
* permission to modify threads.
*/
private static void checkPermission() {
SecurityManager security = System.getSecurityManager();
if (security != null)
security.checkPermission(modifyThreadPermission);
}
// Nested classes
/**
* Factory for creating new {@link ForkJoinWorkerThread}s.
* A {@code ForkJoinWorkerThreadFactory} must be defined and used
* for {@code ForkJoinWorkerThread} subclasses that extend base
* functionality or initialize threads with different contexts.
*/
public static interface ForkJoinWorkerThreadFactory {
/**
* Returns a new worker thread operating in the given pool.
*
* @param pool the pool this thread works in
* @return the new worker thread
* @throws NullPointerException if the pool is null
*/
public ForkJoinWorkerThread newThread(ForkJoinPool pool);
}
/**
* Default ForkJoinWorkerThreadFactory implementation; creates a
* new ForkJoinWorkerThread.
*/
static final class DefaultForkJoinWorkerThreadFactory
implements ForkJoinWorkerThreadFactory {
public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
return new ForkJoinWorkerThread(pool);
}
}
/**
* Class for artificial tasks that are used to replace the target
* of local joins if they are removed from an interior queue slot
* in WorkQueue.tryRemoveAndExec. We don't need the proxy to
* actually do anything beyond having a unique identity.
*/
static final class EmptyTask extends ForkJoinTask<Void> {
private static final long serialVersionUID = -7721805057305804111L;
EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
public final Void getRawResult() { return null; }
public final void setRawResult(Void x) {}
public final boolean exec() { return true; }
}
// Constants shared across ForkJoinPool and WorkQueue
// Bounds
static final int SMASK = 0xffff; // short bits == max index
static final int MAX_CAP = 0x7fff; // max #workers - 1
static final int EVENMASK = 0xfffe; // even short bits
static final int SQMASK = 0x007e; // max 64 (even) slots
// Masks and units for WorkQueue.scanState and ctl sp subfield
static final int SCANNING = 1; // false when running tasks
static final int INACTIVE = 1 << 31; // must be negative
static final int SS_SEQ = 1 << 16; // version count
// Mode bits for ForkJoinPool.config and WorkQueue.config
static final int MODE_MASK = 0xffff << 16; // top half of int
static final int LIFO_QUEUE = 0;
static final int FIFO_QUEUE = 1 << 16;
static final int SHARED_QUEUE = 1 << 31; // must be negative
/**
* Queues supporting work-stealing as well as external task
* submission. See above for descriptions and algorithms.
* Performance on most platforms is very sensitive to placement of
* instances of both WorkQueues and their arrays -- we absolutely
* do not want multiple WorkQueue instances or multiple queue
* arrays sharing cache lines. The @Contended annotation alerts
* JVMs to try to keep instances apart.
*/
@sun.misc.Contended
static final class WorkQueue {
/**
* Capacity of work-stealing queue array upon initialization.
* Must be a power of two; at least 4, but should be larger to
* reduce or eliminate cacheline sharing among queues.
* Currently, it is much larger, as a partial workaround for
* the fact that JVMs often place arrays in locations that
* share GC bookkeeping (especially cardmarks) such that
* per-write accesses encounter serious memory contention.
*/
static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
/**
* Maximum size for queue arrays. Must be a power of two less
* than or equal to 1 << (31 - width of array entry) to ensure
* lack of wraparound of index calculations, but defined to a
* value a bit less than this to help users trap runaway
* programs before saturating systems.
*/
static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
// Instance fields
volatile int scanState; // versioned, <0: inactive; odd:scanning
int stackPred; // pool stack (ctl) predecessor
int nsteals; // number of steals
int hint; // randomization and stealer index hint
int config; // pool index and mode
volatile int qlock; // 1: locked, < 0: terminate; else 0
volatile int base; // index of next slot for poll
int top; // index of next slot for push
ForkJoinTask<?>[] array; // the elements (initially unallocated)
final ForkJoinPool pool; // the containing pool (may be null)
final ForkJoinWorkerThread owner; // owning thread or null if shared
volatile Thread parker; // == owner during call to park; else null
volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
this.pool = pool;
this.owner = owner;
// Place indices in the center of array (that is not yet allocated)
base = top = INITIAL_QUEUE_CAPACITY >>> 1;
}
/**
* Returns an exportable index (used by ForkJoinWorkerThread).
*/
final int getPoolIndex() {
return (config & 0xffff) >>> 1; // ignore odd/even tag bit
}
/**
* Returns the approximate number of tasks in the queue.
*/
final int queueSize() {
int n = base - top; // non-owner callers must read base first
return (n >= 0) ? 0 : -n; // ignore transient negative
}
/**
* Provides a more accurate estimate of whether this queue has
* any tasks than does queueSize, by checking whether a
* near-empty queue has at least one unclaimed task.
*/
final boolean isEmpty() {
ForkJoinTask<?>[] a; int n, m, s;
return ((n = base - (s = top)) >= 0 ||
(n == -1 && // possibly one task
((a = array) == null || (m = a.length - 1) < 0 ||
U.getObject
(a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
}
/**
* Pushes a task. Call only by owner in unshared queues. (The
* shared-queue version is embedded in method externalPush.)
*
* @param task the task. Caller must ensure non-null.
* @throws RejectedExecutionException if array cannot be resized
*/
final void push(ForkJoinTask<?> task) {
ForkJoinTask<?>[] a; ForkJoinPool p;
int b = base, s = top, n;
if ((a = array) != null) { // ignore if queue removed
int m = a.length - 1; // fenced write for task visibility
U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
U.putOrderedInt(this, QTOP, s + 1);
if ((n = s - b) <= 1) {
if ((p = pool) != null)
p.signalWork(p.workQueues, this);
}
else if (n >= m)
growArray();
}
}
/**
* Initializes or doubles the capacity of array. Call either
* by owner or with lock held -- it is OK for base, but not
* top, to move while resizings are in progress.
*/
final ForkJoinTask<?>[] growArray() {
ForkJoinTask<?>[] oldA = array;
int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
if (size > MAXIMUM_QUEUE_CAPACITY)
throw new RejectedExecutionException("Queue capacity exceeded");
int oldMask, t, b;
ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
(t = top) - (b = base) > 0) {
int mask = size - 1;
do { // emulate poll from old array, push to new array
ForkJoinTask<?> x;
int oldj = ((b & oldMask) << ASHIFT) + ABASE;
int j = ((b & mask) << ASHIFT) + ABASE;
x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
if (x != null &&
U.compareAndSwapObject(oldA, oldj, x, null))
U.putObjectVolatile(a, j, x);
} while (++b != t);
}
return a;
}
/**
* Takes next task, if one exists, in LIFO order. Call only
* by owner in unshared queues.
*/
final ForkJoinTask<?> pop() {
ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
if ((a = array) != null && (m = a.length - 1) >= 0) {
for (int s; (s = top - 1) - base >= 0;) {
long j = ((m & s) << ASHIFT) + ABASE;
if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
break;
if (U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QTOP, s);
return t;
}
}
}
return null;
}
/**
* Takes a task in FIFO order if b is base of queue and a task
* can be claimed without contention. Specialized versions
* appear in ForkJoinPool methods scan and helpStealer.
*/
final ForkJoinTask<?> pollAt(int b) {
ForkJoinTask<?> t; ForkJoinTask<?>[] a;
if ((a = array) != null) {
int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
base == b && U.compareAndSwapObject(a, j, t, null)) {
base = b + 1;
return t;
}
}
return null;
}
/**
* Takes next task, if one exists, in FIFO order.
*/
final ForkJoinTask<?> poll() {
ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
while ((b = base) - top < 0 && (a = array) != null) {
int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
if (base == b) {
if (t != null) {
if (U.compareAndSwapObject(a, j, t, null)) {
base = b + 1;
return t;
}
}
else if (b + 1 == top) // now empty
break;
}
}
return null;
}
/**
* Takes next task, if one exists, in order specified by mode.
*/
final ForkJoinTask<?> nextLocalTask() {
return (config & FIFO_QUEUE) == 0 ? pop() : poll();
}
/**
* Returns next task, if one exists, in order specified by mode.
*/
final ForkJoinTask<?> peek() {
ForkJoinTask<?>[] a = array; int m;
if (a == null || (m = a.length - 1) < 0)
return null;
int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
int j = ((i & m) << ASHIFT) + ABASE;
return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
}
/**
* Pops the given task only if it is at the current top.
* (A shared version is available only via FJP.tryExternalUnpush)
*/
final boolean tryUnpush(ForkJoinTask<?> t) {
ForkJoinTask<?>[] a; int s;
if ((a = array) != null && (s = top) != base &&
U.compareAndSwapObject
(a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
U.putOrderedInt(this, QTOP, s);
return true;
}
return false;
}
/**
* Removes and cancels all known tasks, ignoring any exceptions.
*/
final void cancelAll() {
ForkJoinTask<?> t;
if ((t = currentJoin) != null) {
currentJoin = null;
ForkJoinTask.cancelIgnoringExceptions(t);
}
if ((t = currentSteal) != null) {
currentSteal = null;
ForkJoinTask.cancelIgnoringExceptions(t);
}
while ((t = poll()) != null)
ForkJoinTask.cancelIgnoringExceptions(t);
}
// Specialized execution methods
/**
* Polls and runs tasks until empty.
*/
final void pollAndExecAll() {
for (ForkJoinTask<?> t; (t = poll()) != null;)
t.doExec();
}
/**
* Removes and executes all local tasks. If LIFO, invokes
* pollAndExecAll. Otherwise implements a specialized pop loop
* to exec until empty.
*/
final void execLocalTasks() {
int b = base, m, s;
ForkJoinTask<?>[] a = array;
if (b - (s = top - 1) <= 0 && a != null &&
(m = a.length - 1) >= 0) {
if ((config & FIFO_QUEUE) == 0) {
for (ForkJoinTask<?> t;;) {
if ((t = (ForkJoinTask<?>)U.getAndSetObject
(a, ((m & s) << ASHIFT) + ABASE, null)) == null)
break;
U.putOrderedInt(this, QTOP, s);
t.doExec();
if (base - (s = top - 1) > 0)
break;
}
}
else
pollAndExecAll();
}
}
/**
* Executes the given task and any remaining local tasks.
*/
final void runTask(ForkJoinTask<?> task) {
if (task != null) {
scanState &= ~SCANNING; // mark as busy
(currentSteal = task).doExec();
U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
execLocalTasks();
ForkJoinWorkerThread thread = owner;
if (++nsteals < 0) // collect on overflow
transferStealCount(pool);
scanState |= SCANNING;
if (thread != null)
thread.afterTopLevelExec();
}
}
/**
* Adds steal count to pool stealCounter if it exists, and resets.
*/
final void transferStealCount(ForkJoinPool p) {
AtomicLong sc;
if (p != null && (sc = p.stealCounter) != null) {
int s = nsteals;
nsteals = 0; // if negative, correct for overflow
sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
}
}
/**
* If present, removes from queue and executes the given task,
* or any other cancelled task. Used only by awaitJoin.
*
* @return true if queue empty and task not known to be done
*/
final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
ForkJoinTask<?>[] a; int m, s, b, n;
if ((a = array) != null && (m = a.length - 1) >= 0 &&
task != null) {
while ((n = (s = top) - (b = base)) > 0) {
for (ForkJoinTask<?> t;;) { // traverse from s to b
long j = ((--s & m) << ASHIFT) + ABASE;
if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
return s + 1 == top; // shorter than expected
else if (t == task) {
boolean removed = false;
if (s + 1 == top) { // pop
if (U.compareAndSwapObject(a, j, task, null)) {
U.putOrderedInt(this, QTOP, s);
removed = true;
}
}
else if (base == b) // replace with proxy
removed = U.compareAndSwapObject(
a, j, task, new EmptyTask());
if (removed)
task.doExec();
break;
}
else if (t.status < 0 && s + 1 == top) {
if (U.compareAndSwapObject(a, j, t, null))
U.putOrderedInt(this, QTOP, s);
break; // was cancelled
}
if (--n == 0)
return false;
}
if (task.status < 0)
return false;
}
}
return true;
}
/**
* Pops task if in the same CC computation as the given task,
* in either shared or owned mode. Used only by helpComplete.
*/
final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
int s; ForkJoinTask<?>[] a; Object o;
if (base - (s = top) < 0 && (a = array) != null) {
long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
if ((o = U.getObjectVolatile(a, j)) != null &&
(o instanceof CountedCompleter)) {
CountedCompleter<?> t = (CountedCompleter<?>)o;
for (CountedCompleter<?> r = t;;) {
if (r == task) {
if (mode < 0) { // must lock
if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
if (top == s && array == a &&
U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QTOP, s - 1);
U.putOrderedInt(this, QLOCK, 0);
return t;
}
U.compareAndSwapInt(this, QLOCK, 1, 0);
}
}
else if (U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QTOP, s - 1);
return t;
}
break;
}
else if ((r = r.completer) == null) // try parent
break;
}
}
}
return null;
}
/**
* Steals and runs a task in the same CC computation as the
* given task if one exists and can be taken without
* contention. Otherwise returns a checksum/control value for
* use by method helpComplete.
*
* @return 1 if successful, 2 if retryable (lost to another
* stealer), -1 if non-empty but no matching task found, else
* the base index, forced negative.
*/
final int pollAndExecCC(CountedCompleter<?> task) {
int b, h; ForkJoinTask<?>[] a; Object o;
if ((b = base) - top >= 0 || (a = array) == null)
h = b | Integer.MIN_VALUE; // to sense movement on re-poll
else {
long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((o = U.getObjectVolatile(a, j)) == null)
h = 2; // retryable
else if (!(o instanceof CountedCompleter))
h = -1; // unmatchable
else {
CountedCompleter<?> t = (CountedCompleter<?>)o;
for (CountedCompleter<?> r = t;;) {
if (r == task) {
if (base == b &&
U.compareAndSwapObject(a, j, t, null)) {
base = b + 1;
t.doExec();
h = 1; // success
}
else
h = 2; // lost CAS
break;
}
else if ((r = r.completer) == null) {
h = -1; // unmatched
break;
}
}
}
}
return h;
}
/**
* Returns true if owned and not known to be blocked.
*/
final boolean isApparentlyUnblocked() {
Thread wt; Thread.State s;
return (scanState >= 0 &&
(wt = owner) != null &&
(s = wt.getState()) != Thread.State.BLOCKED &&
s != Thread.State.WAITING &&
s != Thread.State.TIMED_WAITING);
}
// Unsafe mechanics. Note that some are (and must be) the same as in FJP
private static final sun.misc.Unsafe U;
private static final int ABASE;
private static final int ASHIFT;
private static final long QTOP;
private static final long QLOCK;
private static final long QCURRENTSTEAL;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> wk = WorkQueue.class;
Class<?> ak = ForkJoinTask[].class;
QTOP = U.objectFieldOffset
(wk.getDeclaredField("top"));
QLOCK = U.objectFieldOffset
(wk.getDeclaredField("qlock"));
QCURRENTSTEAL = U.objectFieldOffset
(wk.getDeclaredField("currentSteal"));
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}
}
// static fields (initialized in static initializer below)
/**
* Creates a new ForkJoinWorkerThread. This factory is used unless
* overridden in ForkJoinPool constructors.
*/
public static final ForkJoinWorkerThreadFactory
defaultForkJoinWorkerThreadFactory;
/**
* Permission required for callers of methods that may start or
* kill threads.
*/
private static final RuntimePermission modifyThreadPermission;
/**
* Common (static) pool. Non-null for public use unless a static
* construction exception, but internal usages null-check on use
* to paranoically avoid potential initialization circularities
* as well as to simplify generated code.
*/
static final ForkJoinPool common;
/**
* Common pool parallelism. To allow simpler use and management
* when common pool threads are disabled, we allow the underlying
* common.parallelism field to be zero, but in that case still report
* parallelism as 1 to reflect resulting caller-runs mechanics.
*/
static final int commonParallelism;
/**
* Limit on spare thread construction in tryCompensate.
*/
private static int commonMaxSpares;
/**
* Sequence number for creating workerNamePrefix.
*/
private static int poolNumberSequence;
/**
* Returns the next sequence number. We don't expect this to
* ever contend, so use simple builtin sync.
*/
private static final synchronized int nextPoolId() {
return ++poolNumberSequence;
}
// static configuration constants
/**
* Initial timeout value (in nanoseconds) for the thread
* triggering quiescence to park waiting for new work. On timeout,
* the thread will instead try to shrink the number of
* workers. The value should be large enough to avoid overly
* aggressive shrinkage during most transient stalls (long GCs
* etc).
*/
private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
/**
* Tolerance for idle timeouts, to cope with timer undershoots
*/
private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
/**
* The initial value for commonMaxSpares during static
* initialization. The value is far in excess of normal
* requirements, but also far short of MAX_CAP and typical
* OS thread limits, so allows JVMs to catch misuse/abuse
* before running out of resources needed to do so.
*/
private static final int DEFAULT_COMMON_MAX_SPARES = 256;
/**
* Number of times to spin-wait before blocking. The spins (in
* awaitRunStateLock and awaitWork) currently use randomized
* spins. If/when MWAIT-like intrinsics becomes available, they
* may allow quieter spinning. The value of SPINS must be a power
* of two, at least 4. The current value causes spinning for a
* small fraction of typical context-switch times, well worthwhile
* given the typical likelihoods that blocking is not necessary.
*/
private static final int SPINS = 1 << 11;
/**
* Increment for seed generators. See class ThreadLocal for
* explanation.
*/
private static final int SEED_INCREMENT = 0x9e3779b9;
/*
* Bits and masks for field ctl, packed with 4 16 bit subfields:
* AC: Number of active running workers minus target parallelism
* TC: Number of total workers minus target parallelism
* SS: version count and status of top waiting thread
* ID: poolIndex of top of Treiber stack of waiters
*
* When convenient, we can extract the lower 32 stack top bits
* (including version bits) as sp=(int)ctl. The offsets of counts
* by the target parallelism and the positionings of fields makes
* it possible to perform the most common checks via sign tests of
* fields: When ac is negative, there are not enough active
* workers, when tc is negative, there are not enough total
* workers. When sp is non-zero, there are waiting workers. To
* deal with possibly negative fields, we use casts in and out of
* "short" and/or signed shifts to maintain signedness.
*
* Because it occupies uppermost bits, we can add one active count
* using getAndAddLong of AC_UNIT, rather than CAS, when returning
* from a blocked join. Other updates entail multiple subfields
* and masking, requiring CAS.
*/
// Lower and upper word masks
private static final long SP_MASK = 0xffffffffL;
private static final long UC_MASK = ~SP_MASK;
// Active counts
private static final int AC_SHIFT = 48;
private static final long AC_UNIT = 0x0001L << AC_SHIFT;
private static final long AC_MASK = 0xffffL << AC_SHIFT;
// Total counts
private static final int TC_SHIFT = 32;
private static final long TC_UNIT = 0x0001L << TC_SHIFT;
private static final long TC_MASK = 0xffffL << TC_SHIFT;
private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
// runState bits: SHUTDOWN must be negative, others arbitrary powers of two
private static final int RSLOCK = 1;
private static final int RSIGNAL = 1 << 1;
private static final int STARTED = 1 << 2;
private static final int STOP = 1 << 29;
private static final int TERMINATED = 1 << 30;
private static final int SHUTDOWN = 1 << 31;
// Instance fields
volatile long ctl; // main pool control
volatile int runState; // lockable status
final int config; // parallelism, mode
int indexSeed; // to generate worker index
volatile WorkQueue[] workQueues; // main registry
final ForkJoinWorkerThreadFactory factory;
final UncaughtExceptionHandler ueh; // per-worker UEH
final String workerNamePrefix; // to create worker name string
volatile AtomicLong stealCounter; // also used as sync monitor
/**
* Acquires the runState lock; returns current (locked) runState.
*/
private int lockRunState() {
int rs;
return ((((rs = runState) & RSLOCK) != 0 ||
!U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
awaitRunStateLock() : rs);
}
/**
* Spins and/or blocks until runstate lock is available. See
* above for explanation.
*/
private int awaitRunStateLock() {
Object lock;
boolean wasInterrupted = false;
for (int spins = SPINS, r = 0, rs, ns;;) {
if (((rs = runState) & RSLOCK) == 0) {
if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
if (wasInterrupted) {
try {
Thread.currentThread().interrupt();
} catch (SecurityException ignore) {
}
}
return ns;
}
}
else if (r == 0)
r = ThreadLocalRandom.nextSecondarySeed();
else if (spins > 0) {
r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
if (r >= 0)
--spins;
}
else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
Thread.yield(); // initialization race
else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
synchronized (lock) {
if ((runState & RSIGNAL) != 0) {
try {
lock.wait();
} catch (InterruptedException ie) {
if (!(Thread.currentThread() instanceof
ForkJoinWorkerThread))
wasInterrupted = true;
}
}
else
lock.notifyAll();
}
}
}
}
/**
* Unlocks and sets runState to newRunState.
*
* @param oldRunState a value returned from lockRunState
* @param newRunState the next value (must have lock bit clear).
*/
private void unlockRunState(int oldRunState, int newRunState) {
if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
Object lock = stealCounter;
runState = newRunState; // clears RSIGNAL bit
if (lock != null)
synchronized (lock) { lock.notifyAll(); }
}
}
// Creating, registering and deregistering workers
/**
* Tries to construct and start one worker. Assumes that total
* count has already been incremented as a reservation. Invokes
* deregisterWorker on any failure.
*
* @return true if successful
*/
private boolean createWorker() {
ForkJoinWorkerThreadFactory fac = factory;
Throwable ex = null;
ForkJoinWorkerThread wt = null;
try {
if (fac != null && (wt = fac.newThread(this)) != null) {
wt.start();
return true;
}
} catch (Throwable rex) {
ex = rex;
}
deregisterWorker(wt, ex);
return false;
}
/**
* Tries to add one worker, incrementing ctl counts before doing
* so, relying on createWorker to back out on failure.
*
* @param c incoming ctl value, with total count negative and no
* idle workers. On CAS failure, c is refreshed and retried if
* this holds (otherwise, a new worker is not needed).
*/
private void tryAddWorker(long c) {
boolean add = false;
do {
long nc = ((AC_MASK & (c + AC_UNIT)) |
(TC_MASK & (c + TC_UNIT)));
if (ctl == c) {
int rs, stop; // check if terminating
if ((stop = (rs = lockRunState()) & STOP) == 0)
add = U.compareAndSwapLong(this, CTL, c, nc);
unlockRunState(rs, rs & ~RSLOCK);
if (stop != 0)
break;
if (add) {
createWorker();
break;
}
}
} while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
}
/**
* Callback from ForkJoinWorkerThread constructor to establish and
* record its WorkQueue.
*
* @param wt the worker thread
* @return the worker's queue
*/
final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
UncaughtExceptionHandler handler;
wt.setDaemon(true); // configure thread
if ((handler = ueh) != null)
wt.setUncaughtExceptionHandler(handler);
WorkQueue w = new WorkQueue(this, wt);
int i = 0; // assign a pool index
int mode = config & MODE_MASK;
int rs = lockRunState();
try {
WorkQueue[] ws; int n; // skip if no array
if ((ws = workQueues) != null && (n = ws.length) > 0) {
int s = indexSeed += SEED_INCREMENT; // unlikely to collide
int m = n - 1;
i = ((s << 1) | 1) & m; // odd-numbered indices
if (ws[i] != null) { // collision
int probes = 0; // step by approx half n
int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
while (ws[i = (i + step) & m] != null) {
if (++probes >= n) {
workQueues = ws = Arrays.copyOf(ws, n <<= 1);
m = n - 1;
probes = 0;
}
}
}
w.hint = s; // use as random seed
w.config = i | mode;
w.scanState = i; // publication fence
ws[i] = w;
}
} finally {
unlockRunState(rs, rs & ~RSLOCK);
}
wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
return w;
}
/**
* Final callback from terminating worker, as well as upon failure
* to construct or start a worker. Removes record of worker from
* array, and adjusts counts. If pool is shutting down, tries to
* complete termination.
*
* @param wt the worker thread, or null if construction failed
* @param ex the exception causing failure, or null if none
*/
final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
WorkQueue w = null;
if (wt != null && (w = wt.workQueue) != null) {
WorkQueue[] ws; // remove index from array
int idx = w.config & SMASK;
int rs = lockRunState();
if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
ws[idx] = null;
unlockRunState(rs, rs & ~RSLOCK);
}
long c; // decrement counts
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
(TC_MASK & (c - TC_UNIT)) |
(SP_MASK & c))));
if (w != null) {
w.qlock = -1; // ensure set
w.transferStealCount(this);
w.cancelAll(); // cancel remaining tasks
}
for (;;) { // possibly replace
WorkQueue[] ws; int m, sp;
if (tryTerminate(false, false) || w == null || w.array == null ||
(runState & STOP) != 0 || (ws = workQueues) == null ||
(m = ws.length - 1) < 0) // already terminating
break;
if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
if (tryRelease(c, ws[sp & m], AC_UNIT))
break;
}
else if (ex != null && (c & ADD_WORKER) != 0L) {
tryAddWorker(c); // create replacement
break;
}
else // don't need replacement
break;
}
if (ex == null) // help clean on way out
ForkJoinTask.helpExpungeStaleExceptions();
else // rethrow
ForkJoinTask.rethrow(ex);
}
// Signalling
/**
* Tries to create or activate a worker if too few are active.
*
* @param ws the worker array to use to find signallees
* @param q a WorkQueue --if non-null, don't retry if now empty
*/
final void signalWork(WorkQueue[] ws, WorkQueue q) {
long c; int sp, i; WorkQueue v; Thread p;
while ((c = ctl) < 0L) { // too few active
if ((sp = (int)c) == 0) { // no idle workers
if ((c & ADD_WORKER) != 0L) // too few workers
tryAddWorker(c);
break;
}
if (ws == null) // unstarted/terminated
break;
if (ws.length <= (i = sp & SMASK)) // terminated
break;
if ((v = ws[i]) == null) // terminating
break;
int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
int d = sp - v.scanState; // screen CAS
long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
v.scanState = vs; // activate v
if ((p = v.parker) != null)
U.unpark(p);
break;
}
if (q != null && q.base == q.top) // no more work
break;
}
}
/**
* Signals and releases worker v if it is top of idle worker
* stack. This performs a one-shot version of signalWork only if
* there is (apparently) at least one idle worker.
*
* @param c incoming ctl value
* @param v if non-null, a worker
* @param inc the increment to active count (zero when compensating)
* @return true if successful
*/
private boolean tryRelease(long c, WorkQueue v, long inc) {
int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
if (v != null && v.scanState == sp) { // v is at top of stack
long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
if (U.compareAndSwapLong(this, CTL, c, nc)) {
v.scanState = vs;
if ((p = v.parker) != null)
U.unpark(p);
return true;
}
}
return false;
}
// Scanning for tasks
/**
* Top-level runloop for workers, called by ForkJoinWorkerThread.run.
*/
final void runWorker(WorkQueue w) {
w.growArray(); // allocate queue
int seed = w.hint; // initially holds randomization hint
int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
for (ForkJoinTask<?> t;;) {
if ((t = scan(w, r)) != null)
w.runTask(t);
else if (!awaitWork(w, r))
break;
r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
}
}
/**
* Scans for and tries to steal a top-level task. Scans start at a
* random location, randomly moving on apparent contention,
* otherwise continuing linearly until reaching two consecutive
* empty passes over all queues with the same checksum (summing
* each base index of each queue, that moves on each steal), at
* which point the worker tries to inactivate and then re-scans,
* attempting to re-activate (itself or some other worker) if
* finding a task; otherwise returning null to await work. Scans
* otherwise touch as little memory as possible, to reduce
* disruption on other scanning threads.
*
* @param w the worker (via its WorkQueue)
* @param r a random seed
* @return a task, or null if none found
*/
private ForkJoinTask<?> scan(WorkQueue w, int r) {
WorkQueue[] ws; int m;
if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
int ss = w.scanState; // initially non-negative
for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
int b, n; long c;
if ((q = ws[k]) != null) {
if ((n = (b = q.base) - q.top) < 0 &&
(a = q.array) != null) { // non-empty
long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((t = ((ForkJoinTask<?>)
U.getObjectVolatile(a, i))) != null &&
q.base == b) {
if (ss >= 0) {
if (U.compareAndSwapObject(a, i, t, null)) {
q.base = b + 1;
if (n < -1) // signal others
signalWork(ws, q);
return t;
}
}
else if (oldSum == 0 && // try to activate
w.scanState < 0)
tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
}
if (ss < 0) // refresh
ss = w.scanState;
r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
origin = k = r & m; // move and rescan
oldSum = checkSum = 0;
continue;
}
checkSum += b;
}
if ((k = (k + 1) & m) == origin) { // continue until stable
if ((ss >= 0 || (ss == (ss = w.scanState))) &&
oldSum == (oldSum = checkSum)) {
if (ss < 0 || w.qlock < 0) // already inactive
break;
int ns = ss | INACTIVE; // try to inactivate
long nc = ((SP_MASK & ns) |
(UC_MASK & ((c = ctl) - AC_UNIT)));
w.stackPred = (int)c; // hold prev stack top
U.putInt(w, QSCANSTATE, ns);
if (U.compareAndSwapLong(this, CTL, c, nc))
ss = ns;
else
w.scanState = ss; // back out
}
checkSum = 0;
}
}
}
return null;
}
/**
* Possibly blocks worker w waiting for a task to steal, or
* returns false if the worker should terminate. If inactivating
* w has caused the pool to become quiescent, checks for pool
* termination, and, so long as this is not the only worker, waits
* for up to a given duration. On timeout, if ctl has not
* changed, terminates the worker, which will in turn wake up
* another worker to possibly repeat this process.
*
* @param w the calling worker
* @param r a random seed (for spins)
* @return false if the worker should terminate
*/
private boolean awaitWork(WorkQueue w, int r) {
if (w == null || w.qlock < 0) // w is terminating
return false;
for (int pred = w.stackPred, spins = SPINS, ss;;) {
if ((ss = w.scanState) >= 0)
break;
else if (spins > 0) {
r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
if (r >= 0 && --spins == 0) { // randomize spins
WorkQueue v; WorkQueue[] ws; int s, j; AtomicLong sc;
if (pred != 0 && (ws = workQueues) != null &&
(j = pred & SMASK) < ws.length &&
(v = ws[j]) != null && // see if pred parking
(v.parker == null || v.scanState >= 0))
spins = SPINS; // continue spinning
}
}
else if (w.qlock < 0) // recheck after spins
return false;
else if (!Thread.interrupted()) {
long c, prevctl, parkTime, deadline;
int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
if ((ac <= 0 && tryTerminate(false, false)) ||
(runState & STOP) != 0) // pool terminating
return false;
if (ac <= 0 && ss == (int)c) { // is last waiter
prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
int t = (short)(c >>> TC_SHIFT); // shrink excess spares
if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
return false; // else use timed wait
parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
}
else
prevctl = parkTime = deadline = 0L;
Thread wt = Thread.currentThread();
U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
w.parker = wt;
if (w.scanState < 0 && ctl == c) // recheck before park
U.park(false, parkTime);
U.putOrderedObject(w, QPARKER, null);
U.putObject(wt, PARKBLOCKER, null);
if (w.scanState >= 0)
break;
if (parkTime != 0L && ctl == c &&
deadline - System.nanoTime() <= 0L &&
U.compareAndSwapLong(this, CTL, c, prevctl))
return false; // shrink pool
}
}
return true;
}
// Joining tasks
/**
* Tries to steal and run tasks within the target's computation.
* Uses a variant of the top-level algorithm, restricted to tasks
* with the given task as ancestor: It prefers taking and running
* eligible tasks popped from the worker's own queue (via
* popCC). Otherwise it scans others, randomly moving on
* contention or execution, deciding to give up based on a
* checksum (via return codes frob pollAndExecCC). The maxTasks
* argument supports external usages; internal calls use zero,
* allowing unbounded steps (external calls trap non-positive
* values).
*
* @param w caller
* @param maxTasks if non-zero, the maximum number of other tasks to run
* @return task status on exit
*/
final int helpComplete(WorkQueue w, CountedCompleter<?> task,
int maxTasks) {
WorkQueue[] ws; int s = 0, m;
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
task != null && w != null) {
int mode = w.config; // for popCC
int r = w.hint ^ w.top; // arbitrary seed for origin
int origin = r & m; // first queue to scan
int h = 1; // 1:ran, >1:contended, <0:hash
for (int k = origin, oldSum = 0, checkSum = 0;;) {
CountedCompleter<?> p; WorkQueue q;
if ((s = task.status) < 0)
break;
if (h == 1 && (p = w.popCC(task, mode)) != null) {
p.doExec(); // run local task
if (maxTasks != 0 && --maxTasks == 0)
break;
origin = k; // reset
oldSum = checkSum = 0;
}
else { // poll other queues
if ((q = ws[k]) == null)
h = 0;
else if ((h = q.pollAndExecCC(task)) < 0)
checkSum += h;
if (h > 0) {
if (h == 1 && maxTasks != 0 && --maxTasks == 0)
break;
r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
origin = k = r & m; // move and restart
oldSum = checkSum = 0;
}
else if ((k = (k + 1) & m) == origin) {
if (oldSum == (oldSum = checkSum))
break;
checkSum = 0;
}
}
}
}
return s;
}
/**
* Tries to locate and execute tasks for a stealer of the given
* task, or in turn one of its stealers, Traces currentSteal ->
* currentJoin links looking for a thread working on a descendant
* of the given task and with a non-empty queue to steal back and
* execute tasks from. The first call to this method upon a
* waiting join will often entail scanning/search, (which is OK
* because the joiner has nothing better to do), but this method
* leaves hints in workers to speed up subsequent calls.
*
* @param w caller
* @param task the task to join
*/
private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
WorkQueue[] ws = workQueues;
int oldSum = 0, checkSum, m;
if (ws != null && (m = ws.length - 1) >= 0 && w != null &&
task != null) {
do { // restart point
checkSum = 0; // for stability check
ForkJoinTask<?> subtask;
WorkQueue j = w, v; // v is subtask stealer
descent: for (subtask = task; subtask.status >= 0; ) {
for (int h = j.hint | 1, k = 0, i; ; k += 2) {
if (k > m) // can't find stealer
break descent;
if ((v = ws[i = (h + k) & m]) != null) {
if (v.currentSteal == subtask) {
j.hint = i;
break;
}
checkSum += v.base;
}
}
for (;;) { // help v or descend
ForkJoinTask<?>[] a; int b;
checkSum += (b = v.base);
ForkJoinTask<?> next = v.currentJoin;
if (subtask.status < 0 || j.currentJoin != subtask ||
v.currentSteal != subtask) // stale
break descent;
if (b - v.top >= 0 || (a = v.array) == null) {
if ((subtask = next) == null)
break descent;
j = v;
break;
}
int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
ForkJoinTask<?> t = ((ForkJoinTask<?>)
U.getObjectVolatile(a, i));
if (v.base == b) {
if (t == null) // stale
break descent;
if (U.compareAndSwapObject(a, i, t, null)) {
v.base = b + 1;
ForkJoinTask<?> ps = w.currentSteal;
int top = w.top;
do {
U.putOrderedObject(w, QCURRENTSTEAL, t);
t.doExec(); // clear local tasks too
} while (task.status >= 0 &&
w.top != top &&
(t = w.pop()) != null);
U.putOrderedObject(w, QCURRENTSTEAL, ps);
if (w.base != w.top)
return; // can't further help
}
}
}
}
} while (task.status >= 0 && oldSum != (oldSum = checkSum));
}
}
/**
* Tries to decrement active count (sometimes implicitly) and
* possibly release or create a compensating worker in preparation
* for blocking. Returns false (retryable by caller), on
* contention, detected staleness, instability, or termination.
*
* @param w caller
*/
private boolean tryCompensate(WorkQueue w) {
boolean canBlock;
WorkQueue[] ws; long c; int m, pc, sp;
if (w == null || w.qlock < 0 || // caller terminating
(ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
(pc = config & SMASK) == 0) // parallelism disabled
canBlock = false;
else if ((sp = (int)(c = ctl)) != 0) // release idle worker
canBlock = tryRelease(c, ws[sp & m], 0L);
else {
int ac = (int)(c >> AC_SHIFT) + pc;
int tc = (short)(c >> TC_SHIFT) + pc;
int nbusy = 0; // validate saturation
for (int i = 0; i <= m; ++i) { // two passes of odd indices
WorkQueue v;
if ((v = ws[((i << 1) | 1) & m]) != null) {
if ((v.scanState & SCANNING) != 0)
break;
++nbusy;
}
}
if (nbusy != (tc << 1) || ctl != c)
canBlock = false; // unstable or stale
else if (tc >= pc && ac > 1 && w.isEmpty()) {
long nc = ((AC_MASK & (c - AC_UNIT)) |
(~AC_MASK & c)); // uncompensated
canBlock = U.compareAndSwapLong(this, CTL, c, nc);
}
else if (tc >= MAX_CAP ||
(this == common && tc >= pc + commonMaxSpares))
throw new RejectedExecutionException(
"Thread limit exceeded replacing blocked worker");
else { // similar to tryAddWorker
boolean add = false; int rs; // CAS within lock
long nc = ((AC_MASK & c) |
(TC_MASK & (c + TC_UNIT)));
if (((rs = lockRunState()) & STOP) == 0)
add = U.compareAndSwapLong(this, CTL, c, nc);
unlockRunState(rs, rs & ~RSLOCK);
canBlock = add && createWorker(); // throws on exception
}
}
return canBlock;
}
/**
* Helps and/or blocks until the given task is done or timeout.
*
* @param w caller
* @param task the task
* @param deadline for timed waits, if nonzero
* @return task status on exit
*/
final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
int s = 0;
if (task != null && w != null) {
ForkJoinTask<?> prevJoin = w.currentJoin;
U.putOrderedObject(w, QCURRENTJOIN, task);
CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
(CountedCompleter<?>)task : null;
for (;;) {
if ((s = task.status) < 0)
break;
if (cc != null)
helpComplete(w, cc, 0);
else if (w.base == w.top || w.tryRemoveAndExec(task))
helpStealer(w, task);
if ((s = task.status) < 0)
break;
long ms, ns;
if (deadline == 0L)
ms = 0L;
else if ((ns = deadline - System.nanoTime()) <= 0L)
break;
else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
ms = 1L;
if (tryCompensate(w)) {
task.internalWait(ms);
U.getAndAddLong(this, CTL, AC_UNIT);
}
}
U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
}
return s;
}
// Specialized scanning
/**
* Returns a (probably) non-empty steal queue, if one is found
* during a scan, else null. This method must be retried by
* caller if, by the time it tries to use the queue, it is empty.
*/
private WorkQueue findNonEmptyStealQueue() {
WorkQueue[] ws; int m; // one-shot version of scan loop
int r = ThreadLocalRandom.nextSecondarySeed();
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
WorkQueue q; int b;
if ((q = ws[k]) != null) {
if ((b = q.base) - q.top < 0)
return q;
checkSum += b;
}
if ((k = (k + 1) & m) == origin) {
if (oldSum == (oldSum = checkSum))
break;
checkSum = 0;
}
}
}
return null;
}
/**
* Runs tasks until {@code isQuiescent()}. We piggyback on
* active count ctl maintenance, but rather than blocking
* when tasks cannot be found, we rescan until all others cannot
* find tasks either.
*/
final void helpQuiescePool(WorkQueue w) {
ForkJoinTask<?> ps = w.currentSteal; // save context
for (boolean active = true;;) {
long c; WorkQueue q; ForkJoinTask<?> t; int b;
w.execLocalTasks(); // run locals before each scan
if ((q = findNonEmptyStealQueue()) != null) {
if (!active) { // re-establish active count
active = true;
U.getAndAddLong(this, CTL, AC_UNIT);
}
if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
U.putOrderedObject(w, QCURRENTSTEAL, t);
t.doExec();
if (++w.nsteals < 0)
w.transferStealCount(this);
}
}
else if (active) { // decrement active count without queuing
long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
break; // bypass decrement-then-increment
if (U.compareAndSwapLong(this, CTL, c, nc))
active = false;
}
else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
break;
}
U.putOrderedObject(w, QCURRENTSTEAL, ps);
}
/**
* Gets and removes a local or stolen task for the given worker.
*
* @return a task, if available
*/
final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
for (ForkJoinTask<?> t;;) {
WorkQueue q; int b;
if ((t = w.nextLocalTask()) != null)
return t;
if ((q = findNonEmptyStealQueue()) == null)
return null;
if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
return t;
}
}
/**
* Returns a cheap heuristic guide for task partitioning when
* programmers, frameworks, tools, or languages have little or no
* idea about task granularity. In essence, by offering this
* method, we ask users only about tradeoffs in overhead vs
* expected throughput and its variance, rather than how finely to
* partition tasks.
*
* In a steady state strict (tree-structured) computation, each
* thread makes available for stealing enough tasks for other
* threads to remain active. Inductively, if all threads play by
* the same rules, each thread should make available only a
* constant number of tasks.
*
* The minimum useful constant is just 1. But using a value of 1
* would require immediate replenishment upon each steal to
* maintain enough tasks, which is infeasible. Further,
* partitionings/granularities of offered tasks should minimize
* steal rates, which in general means that threads nearer the top
* of computation tree should generate more than those nearer the
* bottom. In perfect steady state, each thread is at
* approximately the same level of computation tree. However,
* producing extra tasks amortizes the uncertainty of progress and
* diffusion assumptions.
*
* So, users will want to use values larger (but not much larger)
* than 1 to both smooth over transient shortages and hedge
* against uneven progress; as traded off against the cost of
* extra task overhead. We leave the user to pick a threshold
* value to compare with the results of this call to guide
* decisions, but recommend values such as 3.
*
* When all threads are active, it is on average OK to estimate
* surplus strictly locally. In steady-state, if one thread is
* maintaining say 2 surplus tasks, then so are others. So we can
* just use estimated queue length. However, this strategy alone
* leads to serious mis-estimates in some non-steady-state
* conditions (ramp-up, ramp-down, other stalls). We can detect
* many of these by further considering the number of "idle"
* threads, that are known to have zero queued tasks, so
* compensate by a factor of (#idle/#active) threads.
*/
static int getSurplusQueuedTaskCount() {
Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
config & SMASK;
int n = (q = wt.workQueue).top - q.base;
int a = (int)(pool.ctl >> AC_SHIFT) + p;
return n - (a > (p >>>= 1) ? 0 :
a > (p >>>= 1) ? 1 :
a > (p >>>= 1) ? 2 :
a > (p >>>= 1) ? 4 :
8);
}
return 0;
}
// Termination
/**
* Possibly initiates and/or completes termination.
*
* @param now if true, unconditionally terminate, else only
* if no work and no active workers
* @param enable if true, enable shutdown when next possible
* @return true if now terminating or terminated
*/
private boolean tryTerminate(boolean now, boolean enable) {
int rs;
if (this == common) // cannot shut down
return false;
if ((rs = runState) >= 0) {
if (!enable)
return false;
rs = lockRunState(); // enter SHUTDOWN phase
unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
}
if ((rs & STOP) == 0) {
if (!now) { // check quiescence
for (long oldSum = 0L;;) { // repeat until stable
WorkQueue[] ws; WorkQueue w; int m, b; long c;
long checkSum = ctl;
if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
return false; // still active workers
if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
break; // check queues
for (int i = 0; i <= m; ++i) {
if ((w = ws[i]) != null) {
if ((b = w.base) != w.top || w.scanState >= 0 ||
w.currentSteal != null) {
tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
return false; // arrange for recheck
}
checkSum += b;
if ((i & 1) == 0)
w.qlock = -1; // try to disable external
}
}
if (oldSum == (oldSum = checkSum))
break;
}
}
if ((runState & STOP) == 0) {
rs = lockRunState(); // enter STOP phase
unlockRunState(rs, (rs & ~RSLOCK) | STOP);
}
}
int pass = 0; // 3 passes to help terminate
for (long oldSum = 0L;;) { // or until done or stable
WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
long checkSum = ctl;
if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
(ws = workQueues) == null || (m = ws.length - 1) <= 0) {
if ((runState & TERMINATED) == 0) {
rs = lockRunState(); // done
unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
synchronized (this) { notifyAll(); } // for awaitTermination
}
break;
}
for (int i = 0; i <= m; ++i) {
if ((w = ws[i]) != null) {
checkSum += w.base;
w.qlock = -1; // try to disable
if (pass > 0) {
w.cancelAll(); // clear queue
if (pass > 1 && (wt = w.owner) != null) {
if (!wt.isInterrupted()) {
try { // unblock join
wt.interrupt();
} catch (Throwable ignore) {
}
}
if (w.scanState < 0)
U.unpark(wt); // wake up
}
}
}
}
if (checkSum != oldSum) { // unstable
oldSum = checkSum;
pass = 0;
}
else if (pass > 3 && pass > m) // can't further help
break;
else if (++pass > 1) { // try to dequeue
long c; int j = 0, sp; // bound attempts
while (j++ <= m && (sp = (int)(c = ctl)) != 0)
tryRelease(c, ws[sp & m], AC_UNIT);
}
}
return true;
}
// External operations
/**
* Full version of externalPush, handling uncommon cases, as well
* as performing secondary initialization upon the first
* submission of the first task to the pool. It also detects
* first submission by an external thread and creates a new shared
* queue if the one at index if empty or contended.
*
* @param task the task. Caller must ensure non-null.
*/
private void externalSubmit(ForkJoinTask<?> task) {
int r; // initialize caller's probe
if ((r = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit();
r = ThreadLocalRandom.getProbe();
}
for (;;) {
WorkQueue[] ws; WorkQueue q; int rs, m, k;
boolean move = false;
if ((rs = runState) < 0) {
tryTerminate(false, false); // help terminate
throw new RejectedExecutionException();
}
else if ((rs & STARTED) == 0 || // initialize
((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
int ns = 0;
rs = lockRunState();
try {
if ((rs & STARTED) == 0) {
U.compareAndSwapObject(this, STEALCOUNTER, null,
new AtomicLong());
// create workQueues array with size a power of two
int p = config & SMASK; // ensure at least 2 slots
int n = (p > 1) ? p - 1 : 1;
n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
workQueues = new WorkQueue[n];
ns = STARTED;
}
} finally {
unlockRunState(rs, (rs & ~RSLOCK) | ns);
}
}
else if ((q = ws[k = r & m & SQMASK]) != null) {
if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a = q.array;
int s = q.top;
boolean submitted = false; // initial submission or resizing
try { // locked version of push
if ((a != null && a.length > s + 1 - q.base) ||
(a = q.growArray()) != null) {
int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
submitted = true;
}
} finally {
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
if (submitted) {
signalWork(ws, q);
return;
}
}
move = true; // move on failure
}
else if (((rs = runState) & RSLOCK) == 0) { // create new queue
q = new WorkQueue(this, null);
q.hint = r;
q.config = k | SHARED_QUEUE;
q.scanState = INACTIVE;
rs = lockRunState(); // publish index
if (rs > 0 && (ws = workQueues) != null &&
k < ws.length && ws[k] == null)
ws[k] = q; // else terminated
unlockRunState(rs, rs & ~RSLOCK);
}
else
move = true; // move if busy
if (move)
r = ThreadLocalRandom.advanceProbe(r);
}
}
/**
* Tries to add the given task to a submission queue at
* submitter's current queue. Only the (vastly) most common path
* is directly handled in this method, while screening for need
* for externalSubmit.
*
* @param task the task. Caller must ensure non-null.
*/
final void externalPush(ForkJoinTask<?> task) {
WorkQueue[] ws; WorkQueue q; int m;
int r = ThreadLocalRandom.getProbe();
int rs = runState;
if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
(q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a; int am, n, s;
if ((a = q.array) != null &&
(am = a.length - 1) > (n = (s = q.top) - q.base)) {
int j = ((am & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
U.putOrderedInt(q, QLOCK, 0);
if (n <= 1)
signalWork(ws, q);
return;
}
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
externalSubmit(task);
}
/**
* Returns common pool queue for an external thread.
*/
static WorkQueue commonSubmitterQueue() {
ForkJoinPool p = common;
int r = ThreadLocalRandom.getProbe();
WorkQueue[] ws; int m;
return (p != null && (ws = p.workQueues) != null &&
(m = ws.length - 1) >= 0) ?
ws[m & r & SQMASK] : null;
}
/**
* Performs tryUnpush for an external submitter: Finds queue,
* locks if apparently non-empty, validates upon locking, and
* adjusts top. Each check can fail but rarely does.
*/
final boolean tryExternalUnpush(ForkJoinTask<?> task) {
WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m, s;
int r = ThreadLocalRandom.getProbe();
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
(w = ws[m & r & SQMASK]) != null &&
(a = w.array) != null && (s = w.top) != w.base) {
long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
if (U.compareAndSwapInt(w, QLOCK, 0, 1)) {
if (w.top == s && w.array == a &&
U.getObject(a, j) == task &&
U.compareAndSwapObject(a, j, task, null)) {
U.putOrderedInt(w, QTOP, s - 1);
U.putOrderedInt(w, QLOCK, 0);
return true;
}
U.compareAndSwapInt(w, QLOCK, 1, 0);
}
}
return false;
}
/**
* Performs helpComplete for an external submitter.
*/
final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
WorkQueue[] ws; int n;
int r = ThreadLocalRandom.getProbe();
return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
}
// Exported methods
// Constructors
/**
* Creates a {@code ForkJoinPool} with parallelism equal to {@link
* java.lang.Runtime#availableProcessors}, using the {@linkplain
* #defaultForkJoinWorkerThreadFactory default thread factory},
* no UncaughtExceptionHandler, and non-async LIFO processing mode.
*
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false);
}
/**
* Creates a {@code ForkJoinPool} with the indicated parallelism
* level, the {@linkplain
* #defaultForkJoinWorkerThreadFactory default thread factory},
* no UncaughtExceptionHandler, and non-async LIFO processing mode.
*
* @param parallelism the parallelism level
* @throws IllegalArgumentException if parallelism less than or
* equal to zero, or greater than implementation limit
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool(int parallelism) {
this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
}
/**
* Creates a {@code ForkJoinPool} with the given parameters.
*
* @param parallelism the parallelism level. For default value,
* use {@link java.lang.Runtime#availableProcessors}.
* @param factory the factory for creating new threads. For default value,
* use {@link #defaultForkJoinWorkerThreadFactory}.
* @param handler the handler for internal worker threads that
* terminate due to unrecoverable errors encountered while executing
* tasks. For default value, use {@code null}.
* @param asyncMode if true,
* establishes local first-in-first-out scheduling mode for forked
* tasks that are never joined. This mode may be more appropriate
* than default locally stack-based mode in applications in which
* worker threads only process event-style asynchronous tasks.
* For default value, use {@code false}.
* @throws IllegalArgumentException if parallelism less than or
* equal to zero, or greater than implementation limit
* @throws NullPointerException if the factory is null
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode) {
this(checkParallelism(parallelism),
checkFactory(factory),
handler,
asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
"ForkJoinPool-" + nextPoolId() + "-worker-");
checkPermission();
}
private static int checkParallelism(int parallelism) {
if (parallelism <= 0 || parallelism > MAX_CAP)
throw new IllegalArgumentException();
return parallelism;
}
private static ForkJoinWorkerThreadFactory checkFactory
(ForkJoinWorkerThreadFactory factory) {
if (factory == null)
throw new NullPointerException();
return factory;
}
/**
* Creates a {@code ForkJoinPool} with the given parameters, without
* any security checks or parameter validation. Invoked directly by
* makeCommonPool.
*/
private ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
int mode,
String workerNamePrefix) {
this.workerNamePrefix = workerNamePrefix;
this.factory = factory;
this.ueh = handler;
this.config = (parallelism & SMASK) | mode;
long np = (long)(-parallelism); // offset ctl counts
this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
}
/**
* Returns the common pool instance. This pool is statically
* constructed; its run state is unaffected by attempts to {@link
* #shutdown} or {@link #shutdownNow}. However this pool and any
* ongoing processing are automatically terminated upon program
* {@link System#exit}. Any program that relies on asynchronous
* task processing to complete before program termination should
* invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
* before exit.
*
* @return the common pool instance
* @since 1.8
*/
public static ForkJoinPool commonPool() {
// assert common != null : "static init error";
return common;
}
// Execution methods
/**
* Performs the given task, returning its result upon completion.
* If the computation encounters an unchecked Exception or Error,
* it is rethrown as the outcome of this invocation. Rethrown
* exceptions behave in the same way as regular exceptions, but,
* when possible, contain stack traces (as displayed for example
* using {@code ex.printStackTrace()}) of both the current thread
* as well as the thread actually encountering the exception;
* minimally only the latter.
*
* @param task the task
* @param <T> the type of the task's result
* @return the task's result
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> T invoke(ForkJoinTask<T> task) {
if (task == null)
throw new NullPointerException();
externalPush(task);
return task.join();
}
/**
* Arranges for (asynchronous) execution of the given task.
*
* @param task the task
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public void execute(ForkJoinTask<?> task) {
if (task == null)
throw new NullPointerException();
externalPush(task);
}
// AbstractExecutorService methods
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public void execute(Runnable task) {
if (task == null)
throw new NullPointerException();
ForkJoinTask<?> job;
if (task instanceof ForkJoinTask<?>) // avoid re-wrap
job = (ForkJoinTask<?>) task;
else
job = new ForkJoinTask.RunnableExecuteAction(task);
externalPush(job);
}
/**
* Submits a ForkJoinTask for execution.
*
* @param task the task to submit
* @param <T> the type of the task's result
* @return the task
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
if (task == null)
throw new NullPointerException();
externalPush(task);
return task;
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(Callable<T> task) {
ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
externalPush(job);
return job;
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(Runnable task, T result) {
ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
externalPush(job);
return job;
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public ForkJoinTask<?> submit(Runnable task) {
if (task == null)
throw new NullPointerException();
ForkJoinTask<?> job;
if (task instanceof ForkJoinTask<?>) // avoid re-wrap
job = (ForkJoinTask<?>) task;
else
job = new ForkJoinTask.AdaptedRunnableAction(task);
externalPush(job);
return job;
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws RejectedExecutionException {@inheritDoc}
*/
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
// In previous versions of this class, this method constructed
// a task to run ForkJoinTask.invokeAll, but now external
// invocation of multiple tasks is at least as efficient.
ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
boolean done = false;
try {
for (Callable<T> t : tasks) {
ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
futures.add(f);
externalPush(f);
}
for (int i = 0, size = futures.size(); i < size; i++)
((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
done = true;
return futures;
} finally {
if (!done)
for (int i = 0, size = futures.size(); i < size; i++)
futures.get(i).cancel(false);
}
}
/**
* Returns the factory used for constructing new workers.
*
* @return the factory used for constructing new workers
*/
public ForkJoinWorkerThreadFactory getFactory() {
return factory;
}
/**
* Returns the handler for internal worker threads that terminate
* due to unrecoverable errors encountered while executing tasks.
*
* @return the handler, or {@code null} if none
*/
public UncaughtExceptionHandler getUncaughtExceptionHandler() {
return ueh;
}
/**
* Returns the targeted parallelism level of this pool.
*
* @return the targeted parallelism level of this pool
*/
public int getParallelism() {
int par;
return ((par = config & SMASK) > 0) ? par : 1;
}
/**
* Returns the targeted parallelism level of the common pool.
*
* @return the targeted parallelism level of the common pool
* @since 1.8
*/
public static int getCommonPoolParallelism() {
return commonParallelism;
}
/**
* Returns the number of worker threads that have started but not
* yet terminated. The result returned by this method may differ
* from {@link #getParallelism} when threads are created to
* maintain parallelism when others are cooperatively blocked.
*
* @return the number of worker threads
*/
public int getPoolSize() {
return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
}
/**
* Returns {@code true} if this pool uses local first-in-first-out
* scheduling mode for forked tasks that are never joined.
*
* @return {@code true} if this pool uses async mode
*/
public boolean getAsyncMode() {
return (config & FIFO_QUEUE) != 0;
}
/**
* Returns an estimate of the number of worker threads that are
* not blocked waiting to join tasks or for other managed
* synchronization. This method may overestimate the
* number of running threads.
*
* @return the number of worker threads
*/
public int getRunningThreadCount() {
int rc = 0;
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 1; i < ws.length; i += 2) {
if ((w = ws[i]) != null && w.isApparentlyUnblocked())
++rc;
}
}
return rc;
}
/**
* Returns an estimate of the number of threads that are currently
* stealing or executing tasks. This method may overestimate the
* number of active threads.
*
* @return the number of active threads
*/
public int getActiveThreadCount() {
int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
return (r <= 0) ? 0 : r; // suppress momentarily negative values
}
/**
* Returns {@code true} if all worker threads are currently idle.
* An idle worker is one that cannot obtain a task to execute
* because none are available to steal from other threads, and
* there are no pending submissions to the pool. This method is
* conservative; it might not return {@code true} immediately upon
* idleness of all threads, but will eventually become true if
* threads remain inactive.
*
* @return {@code true} if all threads are currently idle
*/
public boolean isQuiescent() {
return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
}
/**
* Returns an estimate of the total number of tasks stolen from
* one thread's work queue by another. The reported value
* underestimates the actual total number of steals when the pool
* is not quiescent. This value may be useful for monitoring and
* tuning fork/join programs: in general, steal counts should be
* high enough to keep threads busy, but low enough to avoid
* overhead and contention across threads.
*
* @return the number of steals
*/
public long getStealCount() {
AtomicLong sc = stealCounter;
long count = (sc == null) ? 0L : sc.get();
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 1; i < ws.length; i += 2) {
if ((w = ws[i]) != null)
count += w.nsteals;
}
}
return count;
}
/**
* Returns an estimate of the total number of tasks currently held
* in queues by worker threads (but not including tasks submitted
* to the pool that have not begun executing). This value is only
* an approximation, obtained by iterating across all threads in
* the pool. This method may be useful for tuning task
* granularities.
*
* @return the number of queued tasks
*/
public long getQueuedTaskCount() {
long count = 0;
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 1; i < ws.length; i += 2) {
if ((w = ws[i]) != null)
count += w.queueSize();
}
}
return count;
}
/**
* Returns an estimate of the number of tasks submitted to this
* pool that have not yet begun executing. This method may take
* time proportional to the number of submissions.
*
* @return the number of queued submissions
*/
public int getQueuedSubmissionCount() {
int count = 0;
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; i += 2) {
if ((w = ws[i]) != null)
count += w.queueSize();
}
}
return count;
}
/**
* Returns {@code true} if there are any tasks submitted to this
* pool that have not yet begun executing.
*
* @return {@code true} if there are any queued submissions
*/
public boolean hasQueuedSubmissions() {
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; i += 2) {
if ((w = ws[i]) != null && !w.isEmpty())
return true;
}
}
return false;
}
/**
* Removes and returns the next unexecuted submission if one is
* available. This method may be useful in extensions to this
* class that re-assign work in systems with multiple pools.
*
* @return the next submission, or {@code null} if none
*/
protected ForkJoinTask<?> pollSubmission() {
WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; i += 2) {
if ((w = ws[i]) != null && (t = w.poll()) != null)
return t;
}
}
return null;
}
/**
* Removes all available unexecuted submitted and forked tasks
* from scheduling queues and adds them to the given collection,
* without altering their execution status. These may include
* artificially generated or wrapped tasks. This method is
* designed to be invoked only when the pool is known to be
* quiescent. Invocations at other times may not remove all
* tasks. A failure encountered while attempting to add elements
* to collection {@code c} may result in elements being in
* neither, either or both collections when the associated
* exception is thrown. The behavior of this operation is
* undefined if the specified collection is modified while the
* operation is in progress.
*
* @param c the collection to transfer elements into
* @return the number of elements transferred
*/
protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
int count = 0;
WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; ++i) {
if ((w = ws[i]) != null) {
while ((t = w.poll()) != null) {
c.add(t);
++count;
}
}
}
}
return count;
}
/**
* Returns a string identifying this pool, as well as its state,
* including indications of run state, parallelism level, and
* worker and task counts.
*
* @return a string identifying this pool, as well as its state
*/
public String toString() {
// Use a single pass through workQueues to collect counts
long qt = 0L, qs = 0L; int rc = 0;
AtomicLong sc = stealCounter;
long st = (sc == null) ? 0L : sc.get();
long c = ctl;
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; ++i) {
if ((w = ws[i]) != null) {
int size = w.queueSize();
if ((i & 1) == 0)
qs += size;
else {
qt += size;
st += w.nsteals;
if (w.isApparentlyUnblocked())
++rc;
}
}
}
}
int pc = (config & SMASK);
int tc = pc + (short)(c >>> TC_SHIFT);
int ac = pc + (int)(c >> AC_SHIFT);
if (ac < 0) // ignore transient negative
ac = 0;
int rs = runState;
String level = ((rs & TERMINATED) != 0 ? "Terminated" :
(rs & STOP) != 0 ? "Terminating" :
(rs & SHUTDOWN) != 0 ? "Shutting down" :
"Running");
return super.toString() +
"[" + level +
", parallelism = " + pc +
", size = " + tc +
", active = " + ac +
", running = " + rc +
", steals = " + st +
", tasks = " + qt +
", submissions = " + qs +
"]";
}
/**
* Possibly initiates an orderly shutdown in which previously
* submitted tasks are executed, but no new tasks will be
* accepted. Invocation has no effect on execution state if this
* is the {@link #commonPool()}, and no additional effect if
* already shut down. Tasks that are in the process of being
* submitted concurrently during the course of this method may or
* may not be rejected.
*
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public void shutdown() {
checkPermission();
tryTerminate(false, true);
}
/**
* Possibly attempts to cancel and/or stop all tasks, and reject
* all subsequently submitted tasks. Invocation has no effect on
* execution state if this is the {@link #commonPool()}, and no
* additional effect if already shut down. Otherwise, tasks that
* are in the process of being submitted or executed concurrently
* during the course of this method may or may not be
* rejected. This method cancels both existing and unexecuted
* tasks, in order to permit termination in the presence of task
* dependencies. So the method always returns an empty list
* (unlike the case for some other Executors).
*
* @return an empty list
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public List<Runnable> shutdownNow() {
checkPermission();
tryTerminate(true, true);
return Collections.emptyList();
}
/**
* Returns {@code true} if all tasks have completed following shut down.
*
* @return {@code true} if all tasks have completed following shut down
*/
public boolean isTerminated() {
return (runState & TERMINATED) != 0;
}
/**
* Returns {@code true} if the process of termination has
* commenced but not yet completed. This method may be useful for
* debugging. A return of {@code true} reported a sufficient
* period after shutdown may indicate that submitted tasks have
* ignored or suppressed interruption, or are waiting for I/O,
* causing this executor not to properly terminate. (See the
* advisory notes for class {@link ForkJoinTask} stating that
* tasks should not normally entail blocking operations. But if
* they do, they must abort them on interrupt.)
*
* @return {@code true} if terminating but not yet terminated
*/
public boolean isTerminating() {
int rs = runState;
return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
}
/**
/**代码未完, 请加载全部代码(NowJava.com).**/