/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Copyright (c) 2012, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package java.time.temporal;
import java.time.DateTimeException;
/**
* Strategy for querying a temporal object.
* <p>
* Queries are a key tool for extracting information from temporal objects.
* They exist to externalize the process of querying, permitting different
* approaches, as per the strategy design pattern.
* Examples might be a query that checks if the date is the day before February 29th
* in a leap year, or calculates the number of days to your next birthday.
* <p>
* The {@link TemporalField} interface provides another mechanism for querying
* temporal objects. That interface is limited to returning a {@code long}.
* By contrast, queries can return any type.
* <p>
* There are two equivalent ways of using a {@code TemporalQuery}.
* The first is to invoke the method on this interface directly.
* The second is to use {@link TemporalAccessor#query(TemporalQuery)}:
* <pre>
* // these two lines are equivalent, but the second approach is recommended
* temporal = thisQuery.queryFrom(temporal);
* temporal = temporal.query(thisQuery);
* </pre>
* It is recommended to use the second approach, {@code query(TemporalQuery)},
* as it is a lot clearer to read in code.
* <p>
* The most common implementations are method references, such as
* {@code LocalDate::from} and {@code ZoneId::from}.
* Additional common queries are provided as static methods in {@link TemporalQueries}.
*
* @implSpec
* This interface places no restrictions on the mutability of implementations,
* however immutability is strongly recommended.
*
* @param <R> the type returned from the query
*
* @since 1.8
*/
@FunctionalInterface
public interface TemporalQuery<R> {
/**
* Queries the specified temporal object.
* <p>
* This queries the specified temporal object to return an object using the logic
* encapsulated in the implementing class.
* Examples might be a query that checks if the date is the day before February 29th
* in a leap year, or calculates the number of days to your next birthday.
* <p>
* There are two equivalent ways of using this method.
* The first is to invoke this method directly.
* The second is to use {@link TemporalAccessor#query(TemporalQuery)}:
* <pre>
* // these two lines are equivalent, but the second approach is recommended
* temporal = thisQuery.queryFrom(temporal);
* temporal = temporal.query(thisQuery);
* </pre>
* It is recommended to use the second approach, {@code query(TemporalQuery)},
* as it is a lot clearer to read in code.
*
* @implSpec
* The implementation must take the input object and query it.
* The implementation defines the logic of the query and is responsible for
* documenting that logic.
* It may use any method on {@code TemporalAccessor} to determine the result.
* The input object must not be altered.
* <p>
/**代码未完, 请加载全部代码(NowJava.com).**/