JDK8/Java8源码在线阅读

JDK8/Java8源码在线阅读 / java / io / Serializable.java
/*
 * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.io;

/**
 * Serializability of a class is enabled by the class implementing the
 * java.io.Serializable interface. Classes that do not implement this
 * interface will not have any of their state serialized or
 * deserialized.  All subtypes of a serializable class are themselves
 * serializable.  The serialization interface has no methods or fields
 * and serves only to identify the semantics of being serializable. <p>
 *
 * To allow subtypes of non-serializable classes to be serialized, the
 * subtype may assume responsibility for saving and restoring the
 * state of the supertype's public, protected, and (if accessible)
 * package fields.  The subtype may assume this responsibility only if
 * the class it extends has an accessible no-arg constructor to
 * initialize the class's state.  It is an error to declare a class
 * Serializable if this is not the case.  The error will be detected at
 * runtime. <p>
 *
 * During deserialization, the fields of non-serializable classes will
 * be initialized using the public or protected no-arg constructor of
 * the class.  A no-arg constructor must be accessible to the subclass
 * that is serializable.  The fields of serializable subclasses will
 * be restored from the stream. <p>
 *
 * When traversing a graph, an object may be encountered that does not
 * support the Serializable interface. In this case the
 * NotSerializableException will be thrown and will identify the class
 * of the non-serializable object. <p>
 *
 * Classes that require special handling during the serialization and
 * deserialization process must implement special methods with these exact
 * signatures:
 *
 * <PRE>
 * private void writeObject(java.io.ObjectOutputStream out)
 *     throws IOException
 * private void readObject(java.io.ObjectInputStream in)
 *     throws IOException, ClassNotFoundException;
 * private void readObjectNoData()
 *     throws ObjectStreamException;
 * </PRE>
 *
 * <p>The writeObject method is responsible for writing the state of the
 * object for its particular class so that the corresponding
 * readObject method can restore it.  The default mechanism for saving
 * the Object's fields can be invoked by calling
 * out.defaultWriteObject. The method does not need to concern
 * itself with the state belonging to its superclasses or subclasses.
 * State is saved by writing the individual fields to the
 * ObjectOutputStream using the writeObject method or by using the
 * methods for primitive data types supported by DataOutput.
 *
 * <p>The readObject method is responsible for reading from the stream and
 * restoring the classes fields. It may call in.defaultReadObject to invoke
 * the default mechanism for restoring the object's non-static and
 * non-transient fields.  The defaultReadObject method uses information in
 * the stream to assign the fields of the object saved in the stream with the
 * correspondingly named fields in the current object.  This handles the case
 * when the class has evolved to add new fields. The method does not need to
 * concern itself with the state belonging to its superclasses or subclasses.
 * State is saved by writing the individual fields to the
 * ObjectOutputStream using the writeObject method or by using the
 * methods for primitive data types supported by DataOutput.
 *
 * <p>The readObjectNoData method is responsible for initializing the state of
 * the object for its particular class in the event that the serialization
 * stream does not list the given class as a superclass of the object being
 * deserialized.  This may occur in cases where the receiving party uses a
 * different version of the deserialized instance's class than the sending
 * party, and the receiver's version extends classes that are not extended by
 * the sender's version.  This may also occur if the serialization stream has
 * been tampered; hence, readObjectNoData is useful for initializing
 * deserialized objects properly despite a "hostile" or incomplete source
 * stream.
 *
 * <p>Serializable classes that need to designate an alternative object to be
 * used when writing an object to the stream should implement this
 * special method with the exact signature:
 *
 * <PRE>
 * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException;
 * </PRE><p>
 *
 * This writeReplace method is invoked by serialization if the method
 * exists and it would be accessible from a method defined within the
 * class of the object being serialized. Thus, the method can have private,
 * protected and package-private access. Subclass access to this method
 * follows java accessibility rules. <p>
 *
 * Classes that need to designate a replacement when an instance of it
 * is read from the stream should implement this special method with the
 * exact signature.
 *
 * <PRE>
 * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException;
 * </PRE><p>
 *
 * This readResolve method follows the same invocation rules and
 * accessibility rules as writeReplace.<p>
 *
 * The serialization runtime associates with each serializable class a version
 * number, called a serialVersionUID, which is used during deserialization to
 * verify that the sender and receiver of a serialized object have loaded
 * classes for that object that are compatible with respect to serialization.
 * If the receiver has loaded a class for the object that has a different
 * serialVersionUID than that of the corresponding sender's class, then
 * deserialization will result in an {@link InvalidClassException}.  A
 * serializable class can declare its own serialVersionUID explicitly by
 * declaring a field named <code>"serialVersionUID"</code> that must be static,
 * final, and of type <code>long</code>:
 *
 * <PRE>
 * ANY-ACCESS-MODIFIER static final long serialVersionUID = 42L;
 * </PRE>
 *
 * If a serializable class does not explicitly declare a serialVersionUID, then
 * the serialization runtime will calculate a default serialVersionUID value
 * for that class based on various aspects of the class, as described in the
 * Java(TM) Object Serialization Specification.  However, it is <em>strongly
 * recommended</em> that all serializable classes explicitly declare
 * serialVersionUID values, since the default serialVersionUID computation is
 * highly sensitive to class details that may vary depending on compiler
 * implementations, and can thus result in unexpected
 * <code>InvalidClassException</code>s during deserialization.  Therefore, to

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java