/*
* Copyright (c) 1998, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* ********************************************************************
**********************************************************************
**********************************************************************
*** COPYRIGHT (c) Eastman Kodak Company, 1997 ***
*** As an unpublished work pursuant to Title 17 of the United ***
*** States Code. All rights reserved. ***
**********************************************************************
**********************************************************************
**********************************************************************/
package java.awt.image.renderable;
import java.util.*;
import java.awt.geom.*;
import java.awt.*;
import java.awt.image.*;
/**
* A RenderContext encapsulates the information needed to produce a
* specific rendering from a RenderableImage. It contains the area to
* be rendered specified in rendering-independent terms, the
* resolution at which the rendering is to be performed, and hints
* used to control the rendering process.
*
* <p> Users create RenderContexts and pass them to the
* RenderableImage via the createRendering method. Most of the methods of
* RenderContexts are not meant to be used directly by applications,
* but by the RenderableImage and operator classes to which it is
* passed.
*
* <p> The AffineTransform parameter passed into and out of this class
* are cloned. The RenderingHints and Shape parameters are not
* necessarily cloneable and are therefore only reference copied.
* Altering RenderingHints or Shape instances that are in use by
* instances of RenderContext may have undesired side effects.
*/
public class RenderContext implements Cloneable {
/** Table of hints. May be null. */
RenderingHints hints;
/** Transform to convert user coordinates to device coordinates. */
AffineTransform usr2dev;
/** The area of interest. May be null. */
Shape aoi;
// Various constructors that allow different levels of
// specificity. If the Shape is missing the whole renderable area
// is assumed. If hints is missing no hints are assumed.
/**
* Constructs a RenderContext with a given transform.
* The area of interest is supplied as a Shape,
* and the rendering hints are supplied as a RenderingHints object.
*
* @param usr2dev an AffineTransform.
* @param aoi a Shape representing the area of interest.
* @param hints a RenderingHints object containing rendering hints.
*/
public RenderContext(AffineTransform usr2dev,
Shape aoi,
RenderingHints hints) {
this.hints = hints;
this.aoi = aoi;
this.usr2dev = (AffineTransform)usr2dev.clone();
}
/**
* Constructs a RenderContext with a given transform.
* The area of interest is taken to be the entire renderable area.
* No rendering hints are used.
*
* @param usr2dev an AffineTransform.
*/
public RenderContext(AffineTransform usr2dev) {
this(usr2dev, null, null);
}
/**
* Constructs a RenderContext with a given transform and rendering hints.
* The area of interest is taken to be the entire renderable area.
*
* @param usr2dev an AffineTransform.
* @param hints a RenderingHints object containing rendering hints.
*/
public RenderContext(AffineTransform usr2dev, RenderingHints hints) {
this(usr2dev, null, hints);
}
/**
* Constructs a RenderContext with a given transform and area of interest.
* The area of interest is supplied as a Shape.
* No rendering hints are used.
*
* @param usr2dev an AffineTransform.
* @param aoi a Shape representing the area of interest.
*/
public RenderContext(AffineTransform usr2dev, Shape aoi) {
this(usr2dev, aoi, null);
}
/**
* Gets the rendering hints of this <code>RenderContext</code>.
* @return a <code>RenderingHints</code> object that represents
* the rendering hints of this <code>RenderContext</code>.
* @see #setRenderingHints(RenderingHints)
*/
public RenderingHints getRenderingHints() {
return hints;
}
/**
* Sets the rendering hints of this <code>RenderContext</code>.
* @param hints a <code>RenderingHints</code> object that represents
* the rendering hints to assign to this <code>RenderContext</code>.
* @see #getRenderingHints
*/
public void setRenderingHints(RenderingHints hints) {
this.hints = hints;
}
/**
* Sets the current user-to-device AffineTransform contained
* in the RenderContext to a given transform.
*
* @param newTransform the new AffineTransform.
* @see #getTransform
*/
public void setTransform(AffineTransform newTransform) {
usr2dev = (AffineTransform)newTransform.clone();
}
/**
* Modifies the current user-to-device transform by prepending another
* transform. In matrix notation the operation is:
* <pre>
* [this] = [modTransform] x [this]
* </pre>
*
* @param modTransform the AffineTransform to prepend to the
* current usr2dev transform.
* @since 1.3
*/
public void preConcatenateTransform(AffineTransform modTransform) {
this.preConcetenateTransform(modTransform);
}
/**
* Modifies the current user-to-device transform by prepending another
* transform. In matrix notation the operation is:
* <pre>
* [this] = [modTransform] x [this]
* </pre>
* This method does the same thing as the preConcatenateTransform
* method. It is here for backward compatibility with previous releases
* which misspelled the method name.
*
* @param modTransform the AffineTransform to prepend to the
* current usr2dev transform.
* @deprecated replaced by
* <code>preConcatenateTransform(AffineTransform)</code>.
*/
@Deprecated
public void preConcetenateTransform(AffineTransform modTransform) {
usr2dev.preConcatenate(modTransform);
}
/**
* Modifies the current user-to-device transform by appending another
* transform. In matrix notation the operation is:
* <pre>
* [this] = [this] x [modTransform]
* </pre>
*
* @param modTransform the AffineTransform to append to the
* current usr2dev transform.
* @since 1.3
*/
public void concatenateTransform(AffineTransform modTransform) {
this.concetenateTransform(modTransform);
}
/**
* Modifies the current user-to-device transform by appending another
* transform. In matrix notation the operation is:
* <pre>
* [this] = [this] x [modTransform]
* </pre>
* This method does the same thing as the concatenateTransform
* method. It is here for backward compatibility with previous releases
* which misspelled the method name.
*
* @param modTransform the AffineTransform to append to the
* current usr2dev transform.
* @deprecated replaced by
* <code>concatenateTransform(AffineTransform)</code>.
*/
@Deprecated
public void concetenateTransform(AffineTransform modTransform) {
usr2dev.concatenate(modTransform);
}
/**
* Gets the current user-to-device AffineTransform.
*
* @return a reference to the current AffineTransform.
* @see #setTransform(AffineTransform)
*/
public AffineTransform getTransform() {
return (AffineTransform)usr2dev.clone();
}
/**
/**代码未完, 请加载全部代码(NowJava.com).**/