/*
* Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.ir;
import java.io.File;
import java.util.Iterator;
import java.util.NoSuchElementException;
import jdk.nashorn.internal.runtime.Debug;
import jdk.nashorn.internal.runtime.Source;
/**
* A class that tracks the current lexical context of node visitation as a stack
* of {@link Block} nodes. Has special methods to retrieve useful subsets of the
* context.
*
* This is implemented with a primitive array and a stack pointer, because it
* really makes a difference performance-wise. None of the collection classes
* were optimal.
*/
public class LexicalContext {
private LexicalContextNode[] stack;
private int[] flags;
private int sp;
/**
* Creates a new empty lexical context.
*/
public LexicalContext() {
stack = new LexicalContextNode[16];
flags = new int[16];
}
/**
* Set the flags for a lexical context node on the stack. Does not
* replace the flags, but rather adds to them.
*
* @param node node
* @param flag new flag to set
*/
public void setFlag(final LexicalContextNode node, final int flag) {
if (flag != 0) {
// Use setBlockNeedsScope() instead
assert !(flag == Block.NEEDS_SCOPE && node instanceof Block);
for (int i = sp - 1; i >= 0; i--) {
if (stack[i] == node) {
flags[i] |= flag;
return;
}
}
}
assert false;
}
/**
* Marks the block as one that creates a scope. Note that this method must
* be used instead of {@link #setFlag(LexicalContextNode, int)} with
* {@link Block#NEEDS_SCOPE} because it atomically also sets the
* {@link FunctionNode#HAS_SCOPE_BLOCK} flag on the block's containing
* function.
*
* @param block the block that needs to be marked as creating a scope.
*/
public void setBlockNeedsScope(final Block block) {
for (int i = sp - 1; i >= 0; i--) {
if (stack[i] == block) {
flags[i] |= Block.NEEDS_SCOPE;
for(int j = i - 1; j >=0; j --) {
if(stack[j] instanceof FunctionNode) {
flags[j] |= FunctionNode.HAS_SCOPE_BLOCK;
return;
}
}
}
}
assert false;
}
/**
* Get the flags for a lexical context node on the stack.
*
* @param node node
*
* @return the flags for the node
*/
public int getFlags(final LexicalContextNode node) {
for (int i = sp - 1; i >= 0; i--) {
if (stack[i] == node) {
return flags[i];
}
}
throw new AssertionError("flag node not on context stack");
}
/**
* Get the function body of a function node on the lexical context
* stack. This will trigger an assertion if node isn't present.
*
* @param functionNode function node
*
* @return body of function node
*/
public Block getFunctionBody(final FunctionNode functionNode) {
for (int i = sp - 1; i >= 0 ; i--) {
if (stack[i] == functionNode) {
return (Block)stack[i + 1];
}
}
throw new AssertionError(functionNode.getName() + " not on context stack");
}
/**
* @return all nodes in the LexicalContext.
*/
public Iterator<LexicalContextNode> getAllNodes() {
return new NodeIterator<>(LexicalContextNode.class);
}
/**
* Returns the outermost function in this context. It is either the program,
* or a lazily compiled function.
*
* @return the outermost function in this context.
*/
public FunctionNode getOutermostFunction() {
return (FunctionNode)stack[0];
}
/**
* Pushes a new block on top of the context, making it the innermost open
* block.
*
* @param <T> the type of the new node
* @param node the new node
*
* @return the node that was pushed
*/
public <T extends LexicalContextNode> T push(final T node) {
assert !contains(node);
if (sp == stack.length) {
final LexicalContextNode[] newStack = new LexicalContextNode[sp * 2];
System.arraycopy(stack, 0, newStack, 0, sp);
stack = newStack;
final int[] newFlags = new int[sp * 2];
System.arraycopy(flags, 0, newFlags, 0, sp);
flags = newFlags;
}
stack[sp] = node;
flags[sp] = 0;
sp++;
return node;
}
/**
* Is the context empty?
*
* @return {@code true} if empty
*/
public boolean isEmpty() {
return sp == 0;
}
/**
* @return the depth of the lexical context.
*/
public int size() {
return sp;
}
/**
* Pops the innermost block off the context and all nodes that has been
* contributed since it was put there.
*
* @param <T> the type of the node to be popped
* @param node the node expected to be popped, used to detect unbalanced
* pushes/pops
*
* @return the node that was popped
*/
@SuppressWarnings("unchecked")
public <T extends Node> T pop(final T node) {
--sp;
final LexicalContextNode popped = stack[sp];
stack[sp] = null;
if (popped instanceof Flags) {
return (T)((Flags<?>)popped).setFlag(this, flags[sp]);
}
return (T)popped;
}
/**
* Explicitly apply flags to the topmost element on the stack. This is only
* valid to use from a {@code NodeVisitor.leaveXxx()} method and only on the
* node being exited at the time. It is not mandatory to use, as
* {@link #pop(Node)} will apply the flags automatically, but this method
* can be used to apply them during the {@code leaveXxx()} method in case
* its logic depends on the value of the flags.
*
* @param <T> the type of the node to apply the flags to.
* @param node the node to apply the flags to. Must be the topmost node on
* the stack.
*
* @return the passed in node, or a modified node (if any flags were modified)
*/
public <T extends LexicalContextNode & Flags<T>> T applyTopFlags(final T node) {
assert node == peek();
return node.setFlag(this, flags[sp - 1]);
}
/**
* Return the top element in the context.
*
* @return the node that was pushed last
*/
public LexicalContextNode peek() {
return stack[sp - 1];
}
/**
* Check if a node is in the lexical context.
*
* @param node node to check for
*
* @return {@code true} if in the context
*/
public boolean contains(final LexicalContextNode node) {
for (int i = 0; i < sp; i++) {
if (stack[i] == node) {
return true;
}
}
return false;
}
/**
* Replace a node on the lexical context with a new one. Normally
* you should try to engineer IR traversals so this isn't needed
*
* @param oldNode old node
* @param newNode new node
*
* @return the new node
*/
public LexicalContextNode replace(final LexicalContextNode oldNode, final LexicalContextNode newNode) {
for (int i = sp - 1; i >= 0; i--) {
if (stack[i] == oldNode) {
assert i == sp - 1 : "violation of contract - we always expect to find the replacement node on top of the lexical context stack: " + newNode + " has " + stack[i + 1].getClass() + " above it";
stack[i] = newNode;
break;
}
}
return newNode;
}
/**
* Returns an iterator over all blocks in the context, with the top block
* (innermost lexical context) first.
*
* @return an iterator over all blocks in the context.
*/
public Iterator<Block> getBlocks() {
return new NodeIterator<>(Block.class);
}
/**
* Returns an iterator over all functions in the context, with the top
* (innermost open) function first.
*
* @return an iterator over all functions in the context.
*/
public Iterator<FunctionNode> getFunctions() {
return new NodeIterator<>(FunctionNode.class);
}
/**
* Get the parent block for the current lexical context block
*
* @return parent block
*/
public Block getParentBlock() {
final Iterator<Block> iter = new NodeIterator<>(Block.class, getCurrentFunction());
iter.next();
return iter.hasNext() ? iter.next() : null;
}
/**
* Gets the label node of the current block.
*
* @return the label node of the current block, if it is labeled. Otherwise
* returns {@code null}.
*/
public LabelNode getCurrentBlockLabelNode() {
assert stack[sp - 1] instanceof Block;
if(sp < 2) {
return null;
}
final LexicalContextNode parent = stack[sp - 2];
return parent instanceof LabelNode ? (LabelNode)parent : null;
}
/**
* Returns an iterator over all ancestors block of the given block, with its
* parent block first.
*
* @param block the block whose ancestors are returned
*
* @return an iterator over all ancestors block of the given block.
*/
public Iterator<Block> getAncestorBlocks(final Block block) {
final Iterator<Block> iter = getBlocks();
while (iter.hasNext()) {
final Block b = iter.next();
if (block == b) {
return iter;
}
}
throw new AssertionError("Block is not on the current lexical context stack");
}
/**
* Returns an iterator over a block and all its ancestors blocks, with the
* block first.
*
* @param block the block that is the starting point of the iteration.
*
* @return an iterator over a block and all its ancestors.
*/
public Iterator<Block> getBlocks(final Block block) {
final Iterator<Block> iter = getAncestorBlocks(block);
return new Iterator<Block>() {
boolean blockReturned = false;
@Override
public boolean hasNext() {
return iter.hasNext() || !blockReturned;
}
@Override
public Block next() {
if (blockReturned) {
return iter.next();
}
blockReturned = true;
return block;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
/**
* Get the function for this block.
*
* @param block block for which to get function
*
* @return function for block
*/
public FunctionNode getFunction(final Block block) {
final Iterator<LexicalContextNode> iter = new NodeIterator<>(LexicalContextNode.class);
while (iter.hasNext()) {
final LexicalContextNode next = iter.next();
if (next == block) {
while (iter.hasNext()) {
final LexicalContextNode next2 = iter.next();
if (next2 instanceof FunctionNode) {
return (FunctionNode)next2;
}
}
}
}
assert false;
return null;
}
/**
* @return the innermost block in the context.
*/
public Block getCurrentBlock() {
return getBlocks().next();
}
/**
* @return the innermost function in the context.
*/
public FunctionNode getCurrentFunction() {
for (int i = sp - 1; i >= 0; i--) {
if (stack[i] instanceof FunctionNode) {
return (FunctionNode) stack[i];
}
}
return null;
}
/**
* Get the block in which a symbol is defined.
*
* @param symbol symbol
*
* @return block in which the symbol is defined, assert if no such block in
* context.
*/
public Block getDefiningBlock(final Symbol symbol) {
final String name = symbol.getName();
for (final Iterator<Block> it = getBlocks(); it.hasNext();) {
final Block next = it.next();
if (next.getExistingSymbol(name) == symbol) {
return next;
}
}
throw new AssertionError("Couldn't find symbol " + name + " in the context");
}
/**
* Get the function in which a symbol is defined.
*
* @param symbol symbol
*
* @return function node in which this symbol is defined, assert if no such
* symbol exists in context.
*/
public FunctionNode getDefiningFunction(final Symbol symbol) {
final String name = symbol.getName();
for (final Iterator<LexicalContextNode> iter = new NodeIterator<>(LexicalContextNode.class); iter.hasNext();) {
final LexicalContextNode next = iter.next();
if (next instanceof Block && ((Block)next).getExistingSymbol(name) == symbol) {
while (iter.hasNext()) {
final LexicalContextNode next2 = iter.next();
if (next2 instanceof FunctionNode) {
return (FunctionNode)next2;
}
}
throw new AssertionError("Defining block for symbol " + name + " has no function in the context");
}
}
throw new AssertionError("Couldn't find symbol " + name + " in the context");
}
/**
* Is the topmost lexical context element a function body?
*
* @return {@code true} if function body.
*/
public boolean isFunctionBody() {
return getParentBlock() == null;
}
/**
* Is the topmost lexical context element body of a SplitNode?
*
* @return {@code true} if it's the body of a split node.
*/
public boolean isSplitBody() {
return sp >= 2 && stack[sp - 1] instanceof Block && stack[sp - 2] instanceof SplitNode;
}
/**
* Get the parent function for a function in the lexical context.
*
* @param functionNode function for which to get parent
*
* @return parent function of functionNode or {@code null} if none (e.g., if
* functionNode is the program).
*/
public FunctionNode getParentFunction(final FunctionNode functionNode) {
final Iterator<FunctionNode> iter = new NodeIterator<>(FunctionNode.class);
while (iter.hasNext()) {
final FunctionNode next = iter.next();
if (next == functionNode) {
return iter.hasNext() ? iter.next() : null;
}
}
assert false;
return null;
}
/**
* Count the number of scopes until a given node. Note that this method is
* solely used to figure out the number of scopes that need to be explicitly
* popped in order to perform a break or continue jump within the current
* bytecode method. For this reason, the method returns 0 if it encounters a
* {@code SplitNode} between the current location and the break/continue
* target.
*
* @param until node to stop counting at. Must be within the current function.
*
* @return number of with scopes encountered in the context.
*/
public int getScopeNestingLevelTo(final LexicalContextNode until) {
assert until != null;
//count the number of with nodes until "until" is hit
int n = 0;
for (final Iterator<LexicalContextNode> iter = getAllNodes(); iter.hasNext();) {
final LexicalContextNode node = iter.next();
if (node == until) {
break;
}
assert !(node instanceof FunctionNode); // Can't go outside current function
if (node instanceof WithNode || node instanceof Block && ((Block)node).needsScope()) {
n++;
}
}
return n;
}
private BreakableNode getBreakable() {
for (final NodeIterator<BreakableNode> iter = new NodeIterator<>(BreakableNode.class, getCurrentFunction()); iter.hasNext(); ) {
final BreakableNode next = iter.next();
if (next.isBreakableWithoutLabel()) {
return next;
}
}
return null;
}
/**
* Check whether the lexical context is currently inside a loop.
*
* @return {@code true} if inside a loop
*/
public boolean inLoop() {
return getCurrentLoop() != null;
}
/**
* @return the loop header of the current loop, or {@code null} if not
* inside a loop.
*/
public LoopNode getCurrentLoop() {
final Iterator<LoopNode> iter = new NodeIterator<>(LoopNode.class, getCurrentFunction());
return iter.hasNext() ? iter.next() : null;
}
/**
* Find the breakable node corresponding to this label.
*
* @param labelName name of the label to search for. If {@code null}, the
* closest breakable node will be returned unconditionally, e.g., a
* while loop with no label.
*
* @return closest breakable node.
*/
public BreakableNode getBreakable(final String labelName) {
if (labelName != null) {
final LabelNode foundLabel = findLabel(labelName);
if (foundLabel != null) {
// iterate to the nearest breakable to the foundLabel
BreakableNode breakable = null;
for (final NodeIterator<BreakableNode> iter = new NodeIterator<>(BreakableNode.class, foundLabel); iter.hasNext(); ) {
breakable = iter.next();
}
return breakable;
}
return null;
}
return getBreakable();
}
private LoopNode getContinueTo() {
return getCurrentLoop();
}
/**
* Find the continue target node corresponding to this label.
*
* @param labelName label name to search for. If {@code null} the closest
* loop node will be returned unconditionally, e.g., a while loop
* with no label.
*
* @return closest continue target node.
*/
public LoopNode getContinueTo(final String labelName) {
if (labelName != null) {
final LabelNode foundLabel = findLabel(labelName);
if (foundLabel != null) {
// iterate to the nearest loop to the foundLabel
LoopNode loop = null;
for (final NodeIterator<LoopNode> iter = new NodeIterator<>(LoopNode.class, foundLabel); iter.hasNext(); ) {
loop = iter.next();
}
return loop;
}
return null;
}
return getContinueTo();
}
/**
* Find the inlined finally block node corresponding to this label.
*
* @param labelName label name to search for. Must not be {@code null}.
*
* @return closest inlined finally block with the given label.
*/
public Block getInlinedFinally(final String labelName) {
for (final NodeIterator<TryNode> iter = new NodeIterator<>(TryNode.class); iter.hasNext(); ) {
final Block inlinedFinally = iter.next().getInlinedFinally(labelName);
if (inlinedFinally != null) {
return inlinedFinally;
}
}
return null;
}
/**
* Find the try node for an inlined finally block corresponding to this label.
*
* @param labelName label name to search for. Must not be {@code null}.
*
* @return the try node to which the labelled inlined finally block belongs.
*/
public TryNode getTryNodeForInlinedFinally(final String labelName) {
for (final NodeIterator<TryNode> iter = new NodeIterator<>(TryNode.class); iter.hasNext(); ) {
final TryNode tryNode = iter.next();
if (tryNode.getInlinedFinally(labelName) != null) {
return tryNode;
}
}
return null;
}
/**
* Check the lexical context for a given label node by name.
*
* @param name name of the label.
*
* @return LabelNode if found, {@code null} otherwise.
*/
private LabelNode findLabel(final String name) {
for (final Iterator<LabelNode> iter = new NodeIterator<>(LabelNode.class, getCurrentFunction()); iter.hasNext(); ) {
final LabelNode next = iter.next();
if (next.getLabelName().equals(name)) {
return next;
}
}
return null;
}
/**
* Checks whether a given target is a jump destination that lies outside a
* given split node.
*
* @param splitNode the split node.
* @param target the target node.
*
* @return {@code true} if target resides outside the split node.
*/
public boolean isExternalTarget(final SplitNode splitNode, final BreakableNode target) {
for (int i = sp; i-- > 0;) {
final LexicalContextNode next = stack[i];
if (next == splitNode) {
return true;
} else if (next == target) {
return false;
} else if (next instanceof TryNode) {
for(final Block inlinedFinally: ((TryNode)next).getInlinedFinallies()) {
if (TryNode.getLabelledInlinedFinallyBlock(inlinedFinally) == target) {
return false;
}
}
}
}
throw new AssertionError(target + " was expected in lexical context " + LexicalContext.this + " but wasn't");
}
/**
* Checks whether the current context is inside a switch statement without
* explicit blocks (curly braces).
*
* @return {@code true} if in unprotected switch statement.
*/
public boolean inUnprotectedSwitchContext() {
/**代码未完, 请加载全部代码(NowJava.com).**/