/*
* Copyright (c) 2010, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen.types;
import static jdk.internal.org.objectweb.asm.Opcodes.DALOAD;
import static jdk.internal.org.objectweb.asm.Opcodes.DASTORE;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP2;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP2_X1;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP2_X2;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP_X1;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP_X2;
import static jdk.internal.org.objectweb.asm.Opcodes.IALOAD;
import static jdk.internal.org.objectweb.asm.Opcodes.IASTORE;
import static jdk.internal.org.objectweb.asm.Opcodes.INVOKESTATIC;
import static jdk.internal.org.objectweb.asm.Opcodes.LALOAD;
import static jdk.internal.org.objectweb.asm.Opcodes.LASTORE;
import static jdk.internal.org.objectweb.asm.Opcodes.NEWARRAY;
import static jdk.internal.org.objectweb.asm.Opcodes.POP;
import static jdk.internal.org.objectweb.asm.Opcodes.POP2;
import static jdk.internal.org.objectweb.asm.Opcodes.SWAP;
import static jdk.internal.org.objectweb.asm.Opcodes.T_DOUBLE;
import static jdk.internal.org.objectweb.asm.Opcodes.T_INT;
import static jdk.internal.org.objectweb.asm.Opcodes.T_LONG;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.io.Serializable;
import java.util.Collections;
import java.util.Map;
import java.util.TreeMap;
import java.util.WeakHashMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.nashorn.internal.codegen.CompilerConstants.Call;
import jdk.nashorn.internal.runtime.Context;
import jdk.nashorn.internal.runtime.ScriptObject;
import jdk.nashorn.internal.runtime.Undefined;
/**
* This is the representation of a JavaScript type, disassociated from java
* Classes, with the basis for conversion weight, mapping to ASM types
* and implementing the ByteCodeOps interface which tells this type
* how to generate code for various operations.
*
* Except for ClassEmitter, this is the only class that has to know
* about the underlying byte code generation system.
*
* The different types know how to generate bytecode for the different
* operations, inherited from BytecodeOps, that they support. This avoids
* if/else chains depending on type in several cases and allows for
* more readable and shorter code
*
* The Type class also contains logic used by the type inference and
* for comparing types against each other, as well as the concepts
* of narrower to wider types. The widest type is an object. Ideally we
* would like as narrow types as possible for code to be efficient, e.g
* INTs rather than OBJECTs
*/
public abstract class Type implements Comparable<Type>, BytecodeOps, Serializable {
private static final long serialVersionUID = 1L;
/** Human readable name for type */
private transient final String name;
/** Descriptor for type */
private transient final String descriptor;
/** The "weight" of the type. Used for picking widest/least specific common type */
private transient final int weight;
/** How many bytecode slots does this type occupy */
private transient final int slots;
/** The class for this type */
private final Class<?> clazz;
/**
* Cache for internal types - this is a query that requires complex stringbuilding inside
* ASM and it saves startup time to cache the type mappings
*/
private static final Map<Class<?>, jdk.internal.org.objectweb.asm.Type> INTERNAL_TYPE_CACHE =
Collections.synchronizedMap(new WeakHashMap<Class<?>, jdk.internal.org.objectweb.asm.Type>());
/** Internal ASM type for this Type - computed once at construction */
private transient final jdk.internal.org.objectweb.asm.Type internalType;
/** Weights are used to decide which types are "wider" than other types */
protected static final int MIN_WEIGHT = -1;
/** Set way below Integer.MAX_VALUE to prevent overflow when adding weights. Objects are still heaviest. */
protected static final int MAX_WEIGHT = 20;
/**
* Constructor
*
* @param clazz class for type
* @param weight weight - higher is more generic
* @param slots how many bytecode slots the type takes up
*/
Type(final String name, final Class<?> clazz, final int weight, final int slots) {
this.name = name;
this.clazz = clazz;
this.descriptor = jdk.internal.org.objectweb.asm.Type.getDescriptor(clazz);
this.weight = weight;
assert weight >= MIN_WEIGHT && weight <= MAX_WEIGHT : "illegal type weight: " + weight;
this.slots = slots;
this.internalType = getInternalType(clazz);
}
/**
* Get the weight of this type - use this e.g. for sorting method descriptors
* @return the weight
*/
public int getWeight() {
return weight;
}
/**
* Get the Class representing this type
* @return the class for this type
*/
public Class<?> getTypeClass() {
return clazz;
}
/**
* For specialization, return the next, slightly more difficulty, type
* to test.
*
* @return the next Type
*/
public Type nextWider() {
return null;
}
/**
* Get the boxed type for this class
* @return the boxed version of this type or null if N/A
*/
public Class<?> getBoxedType() {
assert !getTypeClass().isPrimitive();
return null;
}
/**
* Returns the character describing the bytecode type for this value on the stack or local variable, identical to
* what would be used as the prefix for a bytecode {@code LOAD} or {@code STORE} instruction, therefore it must be
* one of {@code A, F, D, I, L}. Also, the special value {@code U} is used for local variable slots that haven't
* been initialized yet (it can't appear for a value pushed to the operand stack, those always have known values).
* Note that while we allow all JVM internal types, Nashorn doesn't necessarily use them all - currently we don't
* have floats, only doubles, but that might change in the future.
* @return the character describing the bytecode type for this value on the stack.
*/
public abstract char getBytecodeStackType();
/**
* Generate a method descriptor given a return type and a param array
*
* @param returnType return type
* @param types parameters
*
* @return a descriptor string
*/
public static String getMethodDescriptor(final Type returnType, final Type... types) {
final jdk.internal.org.objectweb.asm.Type[] itypes = new jdk.internal.org.objectweb.asm.Type[types.length];
for (int i = 0; i < types.length; i++) {
itypes[i] = types[i].getInternalType();
}
return jdk.internal.org.objectweb.asm.Type.getMethodDescriptor(returnType.getInternalType(), itypes);
}
/**
* Generate a method descriptor given a return type and a param array
*
* @param returnType return type
* @param types parameters
*
* @return a descriptor string
*/
public static String getMethodDescriptor(final Class<?> returnType, final Class<?>... types) {
final jdk.internal.org.objectweb.asm.Type[] itypes = new jdk.internal.org.objectweb.asm.Type[types.length];
for (int i = 0; i < types.length; i++) {
itypes[i] = getInternalType(types[i]);
}
return jdk.internal.org.objectweb.asm.Type.getMethodDescriptor(getInternalType(returnType), itypes);
}
/**
* Return a character representing {@code type} in a method signature.
*
* @param type parameter type
* @return descriptor character
*/
public static char getShortSignatureDescriptor(final Type type) {
// Use 'Z' for boolean parameters as we need to distinguish from int
if (type instanceof BooleanType) {
return 'Z';
}
return type.getBytecodeStackType();
}
/**
* Return the type for an internal type, package private - do not use
* outside code gen
*
* @param itype internal type
* @return Nashorn type
*/
@SuppressWarnings("fallthrough")
private static Type typeFor(final jdk.internal.org.objectweb.asm.Type itype) {
switch (itype.getSort()) {
case jdk.internal.org.objectweb.asm.Type.BOOLEAN:
return BOOLEAN;
case jdk.internal.org.objectweb.asm.Type.INT:
return INT;
case jdk.internal.org.objectweb.asm.Type.LONG:
return LONG;
case jdk.internal.org.objectweb.asm.Type.DOUBLE:
return NUMBER;
case jdk.internal.org.objectweb.asm.Type.OBJECT:
if (Context.isStructureClass(itype.getClassName())) {
return SCRIPT_OBJECT;
}
return cacheByName.computeIfAbsent(itype.getClassName(), (name) -> {
try {
return Type.typeFor(Class.forName(name));
} catch(final ClassNotFoundException e) {
throw new AssertionError(e);
}
});
case jdk.internal.org.objectweb.asm.Type.VOID:
return null;
case jdk.internal.org.objectweb.asm.Type.ARRAY:
switch (itype.getElementType().getSort()) {
case jdk.internal.org.objectweb.asm.Type.DOUBLE:
return NUMBER_ARRAY;
case jdk.internal.org.objectweb.asm.Type.INT:
return INT_ARRAY;
case jdk.internal.org.objectweb.asm.Type.LONG:
return LONG_ARRAY;
default:
assert false;
case jdk.internal.org.objectweb.asm.Type.OBJECT:
return OBJECT_ARRAY;
}
default:
assert false : "Unknown itype : " + itype + " sort " + itype.getSort();
break;
}
return null;
}
/**
* Get the return type for a method
*
* @param methodDescriptor method descriptor
* @return return type
*/
public static Type getMethodReturnType(final String methodDescriptor) {
return Type.typeFor(jdk.internal.org.objectweb.asm.Type.getReturnType(methodDescriptor));
}
/**
* Get type array representing arguments of a method in order
*
* @param methodDescriptor method descriptor
* @return parameter type array
*/
public static Type[] getMethodArguments(final String methodDescriptor) {
final jdk.internal.org.objectweb.asm.Type itypes[] = jdk.internal.org.objectweb.asm.Type.getArgumentTypes(methodDescriptor);
final Type types[] = new Type[itypes.length];
for (int i = 0; i < itypes.length; i++) {
types[i] = Type.typeFor(itypes[i]);
}
return types;
}
/**
* Write a map of {@code int} to {@code Type} to an output stream. This is used to store deoptimization state.
*
* @param typeMap the type map
* @param output data output
* @throws IOException if write cannot be completed
*/
public static void writeTypeMap(final Map<Integer, Type> typeMap, final DataOutput output) throws IOException {
if (typeMap == null) {
output.writeInt(0);
} else {
output.writeInt(typeMap.size());
for(final Map.Entry<Integer, Type> e: typeMap.entrySet()) {
output.writeInt(e.getKey());
final byte typeChar;
final Type type = e.getValue();
if(type == Type.OBJECT) {
typeChar = 'L';
} else if (type == Type.NUMBER) {
typeChar = 'D';
} else if (type == Type.LONG) {
typeChar = 'J';
} else {
throw new AssertionError();
}
output.writeByte(typeChar);
}
}
}
/**
* Read a map of {@code int} to {@code Type} from an input stream. This is used to store deoptimization state.
*
* @param input data input
* @return type map
* @throws IOException if read cannot be completed
*/
public static Map<Integer, Type> readTypeMap(final DataInput input) throws IOException {
final int size = input.readInt();
if (size <= 0) {
return null;
}
final Map<Integer, Type> map = new TreeMap<>();
for(int i = 0; i < size; ++i) {
final int pp = input.readInt();
final int typeChar = input.readByte();
final Type type;
switch (typeChar) {
case 'L': type = Type.OBJECT; break;
case 'D': type = Type.NUMBER; break;
case 'J': type = Type.LONG; break;
default: continue;
}
map.put(pp, type);
}
return map;
}
static jdk.internal.org.objectweb.asm.Type getInternalType(final String className) {
return jdk.internal.org.objectweb.asm.Type.getType(className);
}
private jdk.internal.org.objectweb.asm.Type getInternalType() {
return internalType;
}
private static jdk.internal.org.objectweb.asm.Type lookupInternalType(final Class<?> type) {
final Map<Class<?>, jdk.internal.org.objectweb.asm.Type> c = INTERNAL_TYPE_CACHE;
jdk.internal.org.objectweb.asm.Type itype = c.get(type);
if (itype != null) {
return itype;
}
itype = jdk.internal.org.objectweb.asm.Type.getType(type);
c.put(type, itype);
return itype;
}
private static jdk.internal.org.objectweb.asm.Type getInternalType(final Class<?> type) {
return lookupInternalType(type);
}
static void invokestatic(final MethodVisitor method, final Call call) {
method.visitMethodInsn(INVOKESTATIC, call.className(), call.name(), call.descriptor(), false);
}
/**
* Get the internal JVM name of a type
* @return the internal name
*/
public String getInternalName() {
return jdk.internal.org.objectweb.asm.Type.getInternalName(getTypeClass());
}
/**
* Get the internal JVM name of type type represented by a given Java class
* @param clazz the class
* @return the internal name
*/
public static String getInternalName(final Class<?> clazz) {
return jdk.internal.org.objectweb.asm.Type.getInternalName(clazz);
}
/**
* Determines whether a type is the UNKNOWN type, i.e. not set yet
* Used for type inference.
*
* @return true if UNKNOWN, false otherwise
*/
public boolean isUnknown() {
return this.equals(Type.UNKNOWN);
}
/**
* Determines whether this type represents an primitive type according to the ECMAScript specification,
* which includes Boolean, Number, and String.
*
* @return true if a JavaScript primitive type, false otherwise.
*/
public boolean isJSPrimitive() {
return !isObject() || isString();
}
/**
* Determines whether a type is the BOOLEAN type
* @return true if BOOLEAN, false otherwise
*/
public boolean isBoolean() {
return this.equals(Type.BOOLEAN);
}
/**
* Determines whether a type is the INT type
* @return true if INTEGER, false otherwise
*/
public boolean isInteger() {
return this.equals(Type.INT);
}
/**
* Determines whether a type is the LONG type
* @return true if LONG, false otherwise
*/
public boolean isLong() {
return this.equals(Type.LONG);
}
/**
* Determines whether a type is the NUMBER type
* @return true if NUMBER, false otherwise
*/
public boolean isNumber() {
return this.equals(Type.NUMBER);
}
/**
* Determines whether a type is numeric, i.e. NUMBER,
* INT, LONG.
*
* @return true if numeric, false otherwise
*/
public boolean isNumeric() {
return this instanceof NumericType;
}
/**
* Determines whether a type is an array type, i.e.
* OBJECT_ARRAY or NUMBER_ARRAY (for now)
*
* @return true if an array type, false otherwise
*/
public boolean isArray() {
return this instanceof ArrayType;
}
/**
* Determines if a type takes up two bytecode slots or not
*
* @return true if type takes up two bytecode slots rather than one
*/
public boolean isCategory2() {
return getSlots() == 2;
}
/**
* Determines whether a type is an OBJECT type, e.g. OBJECT, STRING,
* NUMBER_ARRAY etc.
*
* @return true if object type, false otherwise
*/
public boolean isObject() {
return this instanceof ObjectType;
}
/**
* Is this a primitive type (e.g int, long, double, boolean)
* @return true if primitive
*/
public boolean isPrimitive() {
return !isObject();
}
/**
* Determines whether a type is a STRING type
*
* @return true if object type, false otherwise
*/
public boolean isString() {
return this.equals(Type.STRING);
}
/**
* Determines whether a type is a CHARSEQUENCE type used internally strings
*
* @return true if CharSequence (internal string) type, false otherwise
*/
public boolean isCharSequence() {
return this.equals(Type.CHARSEQUENCE);
}
/**
* Determine if two types are equivalent, i.e. need no conversion
*
* @param type the second type to check
*
* @return true if types are equivalent, false otherwise
*/
public boolean isEquivalentTo(final Type type) {
return this.weight() == type.weight() || isObject() && type.isObject();
}
/**
* Determine if a type can be assigned to from another
*
* @param type0 the first type to check
* @param type1 the second type to check
*
* @return true if type1 can be written to type2, false otherwise
*/
public static boolean isAssignableFrom(final Type type0, final Type type1) {
if (type0.isObject() && type1.isObject()) {
return type0.weight() >= type1.weight();
}
return type0.weight() == type1.weight();
}
/**
* Determine if this type is assignable from another type
* @param type the type to check against
*
* @return true if "type" can be written to this type, false otherwise
*/
public boolean isAssignableFrom(final Type type) {
return Type.isAssignableFrom(this, type);
}
/**
* Determines is this type is equivalent to another, i.e. needs no conversion
* to be assigned to it.
*
* @param type0 the first type to check
* @param type1 the second type to check
*
* @return true if this type is equivalent to type, false otherwise
*/
public static boolean areEquivalent(final Type type0, final Type type1) {
return type0.isEquivalentTo(type1);
}
/**
* Determine the number of bytecode slots a type takes up
*
* @return the number of slots for this type, 1 or 2.
*/
public int getSlots() {
return slots;
}
/**
* Returns the widest or most common of two types
*
* @param type0 type one
* @param type1 type two
*
* @return the widest type
*/
public static Type widest(final Type type0, final Type type1) {
if (type0.isArray() && type1.isArray()) {
return ((ArrayType)type0).getElementType() == ((ArrayType)type1).getElementType() ? type0 : Type.OBJECT;
} else if (type0.isArray() != type1.isArray()) {
//array and non array is always object, widest(Object[], int) NEVER returns Object[], which has most weight. that does not make sense
return Type.OBJECT;
} else if (type0.isObject() && type1.isObject() && type0.getTypeClass() != type1.getTypeClass()) {
// Object<type=String> and Object<type=ScriptFunction> will produce Object
// TODO: maybe find most specific common superclass?
return Type.OBJECT;
}
return type0.weight() > type1.weight() ? type0 : type1;
}
/**
* Returns the widest or most common of two types, given as classes
*
* @param type0 type one
* @param type1 type two
*
* @return the widest type
*/
public static Class<?> widest(final Class<?> type0, final Class<?> type1) {
return widest(Type.typeFor(type0), Type.typeFor(type1)).getTypeClass();
}
/**
* When doing widening for return types of a function or a ternary operator, it is not valid to widen a boolean to
* anything other than object. Note that this wouldn't be necessary if {@code Type.widest} did not allow
* boolean-to-number widening. Eventually, we should address it there, but it affects too many other parts of the
* system and is sometimes legitimate (e.g. whenever a boolean value would undergo ToNumber conversion anyway).
* @param t1 type 1
* @param t2 type 2
* @return wider of t1 and t2, except if one is boolean and the other is neither boolean nor unknown, in which case
* {@code Type.OBJECT} is returned.
*/
public static Type widestReturnType(final Type t1, final Type t2) {
if (t1.isUnknown()) {
return t2;
} else if (t2.isUnknown()) {
return t1;
} else if(t1.isBoolean() != t2.isBoolean() || t1.isNumeric() != t2.isNumeric()) {
return Type.OBJECT;
}
return Type.widest(t1, t2);
}
/**
* Returns a generic version of the type. Basically, if the type {@link #isObject()}, returns {@link #OBJECT},
* otherwise returns the type unchanged.
* @param type the type to generify
* @return the generified type
*/
public static Type generic(final Type type) {
return type.isObject() ? Type.OBJECT : type;
}
/**
* Returns the narrowest or least common of two types
*
* @param type0 type one
* @param type1 type two
*
* @return the widest type
*/
public static Type narrowest(final Type type0, final Type type1) {
return type0.narrowerThan(type1) ? type0 : type1;
}
/**
* Check whether this type is strictly narrower than another one
* @param type type to check against
* @return true if this type is strictly narrower
*/
public boolean narrowerThan(final Type type) {
return weight() < type.weight();
}
/**
* Check whether this type is strictly wider than another one
* @param type type to check against
* @return true if this type is strictly wider
*/
public boolean widerThan(final Type type) {
return weight() > type.weight();
}
/**
* Returns the widest or most common of two types, but no wider than "limit"
*
* @param type0 type one
* @param type1 type two
* @param limit limiting type
*
* @return the widest type, but no wider than limit
*/
public static Type widest(final Type type0, final Type type1, final Type limit) {
final Type type = Type.widest(type0, type1);
if (type.weight() > limit.weight()) {
return limit;
}
return type;
}
/**
* Returns the widest or most common of two types, but no narrower than "limit"
*
* @param type0 type one
* @param type1 type two
* @param limit limiting type
*
* @return the widest type, but no wider than limit
*/
public static Type narrowest(final Type type0, final Type type1, final Type limit) {
final Type type = type0.weight() < type1.weight() ? type0 : type1;
if (type.weight() < limit.weight()) {
return limit;
}
return type;
}
/**
* Returns the narrowest of this type and another
*
* @param other type to compare against
*
* @return the widest type
*/
public Type narrowest(final Type other) {
return Type.narrowest(this, other);
}
/**
* Returns the widest of this type and another
*
* @param other type to compare against
*
* @return the widest type
*/
public Type widest(final Type other) {
return Type.widest(this, other);
}
/**
* Returns the weight of a type, used for type comparison
* between wider and narrower types
*
* @return the weight
*/
int weight() {
return weight;
}
/**
* Return the descriptor of a type, used for e.g. signature
* generation
*
* @return the descriptor
*/
public String getDescriptor() {
return descriptor;
}
/**
* Return the descriptor of a type, short version
* Used mainly for debugging purposes
*
* @return the short descriptor
*/
public String getShortDescriptor() {
return descriptor;
}
@Override
public String toString() {
return name;
}
/**
* Return the (possibly cached) Type object for this class
*
* @param clazz the class to check
*
* @return the Type representing this class
*/
public static Type typeFor(final Class<?> clazz) {
return cache.computeIfAbsent(clazz, (keyClass) -> {
assert !keyClass.isPrimitive() || keyClass == void.class;
return keyClass.isArray() ? new ArrayType(keyClass) : new ObjectType(keyClass);
});
}
@Override
public int compareTo(final Type o) {
return o.weight() - weight();
}
/**
* Common logic for implementing dup for all types
*
* @param method method visitor
* @param depth dup depth
*
* @return the type at the top of the stack afterwards
*/
@Override
public Type dup(final MethodVisitor method, final int depth) {
return Type.dup(method, this, depth);
}
/**
* Common logic for implementing swap for all types
*
* @param method method visitor
* @param other the type to swap with
*
* @return the type at the top of the stack afterwards, i.e. other
*/
@Override
public Type swap(final MethodVisitor method, final Type other) {
Type.swap(method, this, other);
return other;
}
/**
* Common logic for implementing pop for all types
*
* @param method method visitor
*
* @return the type that was popped
*/
@Override
public Type pop(final MethodVisitor method) {
Type.pop(method, this);
return this;
}
@Override
public Type loadEmpty(final MethodVisitor method) {
assert false : "unsupported operation";
return null;
}
/**
* Superclass logic for pop for all types
*
* @param method method emitter
* @param type type to pop
*/
protected static void pop(final MethodVisitor method, final Type type) {
method.visitInsn(type.isCategory2() ? POP2 : POP);
}
private static Type dup(final MethodVisitor method, final Type type, final int depth) {
final boolean cat2 = type.isCategory2();
switch (depth) {
case 0:
method.visitInsn(cat2 ? DUP2 : DUP);
break;
case 1:
method.visitInsn(cat2 ? DUP2_X1 : DUP_X1);
break;
case 2:
method.visitInsn(cat2 ? DUP2_X2 : DUP_X2);
break;
default:
return null; //invalid depth
}
return type;
}
private static void swap(final MethodVisitor method, final Type above, final Type below) {
if (below.isCategory2()) {
if (above.isCategory2()) {
method.visitInsn(DUP2_X2);
method.visitInsn(POP2);
} else {
method.visitInsn(DUP_X2);
method.visitInsn(POP);
}
} else {
if (above.isCategory2()) {
method.visitInsn(DUP2_X1);
method.visitInsn(POP2);
} else {
method.visitInsn(SWAP);
}
}
}
/** Mappings between java classes and their Type singletons */
private static final ConcurrentMap<Class<?>, Type> cache = new ConcurrentHashMap<>();
private static final ConcurrentMap<String, Type> cacheByName = new ConcurrentHashMap<>();
/**
* This is the boolean singleton, used for all boolean types
*/
public static final Type BOOLEAN = putInCache(new BooleanType());
/**
* This is an integer type, i.e INT, INT32.
*/
public static final BitwiseType INT = putInCache(new IntType());
/**
* This is the number singleton, used for all number types
*/
public static final NumericType NUMBER = putInCache(new NumberType());
/**
* This is the long singleton, used for all long types
*/
public static final Type LONG = putInCache(new LongType());
/**
* A string singleton
*/
public static final Type STRING = putInCache(new ObjectType(String.class));
/**
* This is the CharSequence singleton used to represent JS strings internally
* (either a {@code java.lang.String} or {@code jdk.nashorn.internal.runtime.ConsString}.
*/
public static final Type CHARSEQUENCE = putInCache(new ObjectType(CharSequence.class));
/**
* This is the object singleton, used for all object types
*/
public static final Type OBJECT = putInCache(new ObjectType());
/**
* A undefined singleton
*/
public static final Type UNDEFINED = putInCache(new ObjectType(Undefined.class));
/**
* This is the singleton for ScriptObjects
*/
public static final Type SCRIPT_OBJECT = putInCache(new ObjectType(ScriptObject.class));
/**
* This is the singleton for integer arrays
*/
public static final ArrayType INT_ARRAY = putInCache(new ArrayType(int[].class) {
private static final long serialVersionUID = 1L;
@Override
public void astore(final MethodVisitor method) {
method.visitInsn(IASTORE);
}
@Override
public Type aload(final MethodVisitor method) {
method.visitInsn(IALOAD);
return INT;
}
@Override
public Type newarray(final MethodVisitor method) {
method.visitIntInsn(NEWARRAY, T_INT);
return this;
}
@Override
public Type getElementType() {
return INT;
}
});
/**
* This is the singleton for long arrays
*/
public static final ArrayType LONG_ARRAY = putInCache(new ArrayType(long[].class) {
private static final long serialVersionUID = 1L;
@Override
public void astore(final MethodVisitor method) {
method.visitInsn(LASTORE);
}
@Override
public Type aload(final MethodVisitor method) {
method.visitInsn(LALOAD);
return LONG;
}
@Override
public Type newarray(final MethodVisitor method) {
method.visitIntInsn(NEWARRAY, T_LONG);
return this;
}
@Override
public Type getElementType() {
return LONG;
}
});
/**
* This is the singleton for numeric arrays
*/
public static final ArrayType NUMBER_ARRAY = putInCache(new ArrayType(double[].class) {
private static final long serialVersionUID = 1L;
@Override
public void astore(final MethodVisitor method) {
method.visitInsn(DASTORE);
}
@Override
public Type aload(final MethodVisitor method) {
method.visitInsn(DALOAD);
return NUMBER;
}
@Override
public Type newarray(final MethodVisitor method) {
method.visitIntInsn(NEWARRAY, T_DOUBLE);
return this;
}
@Override
public Type getElementType() {
return NUMBER;
/**代码未完, 请加载全部代码(NowJava.com).**/