/*
* Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.tools.javac;
import sun.tools.java.*;
import sun.tools.tree.*;
import sun.tools.tree.CompoundStatement;
import sun.tools.asm.Assembler;
import sun.tools.asm.ConstantPool;
import java.util.Vector;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Iterator;
import java.io.IOException;
import java.io.OutputStream;
import java.io.DataOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.File;
/**
* This class represents an Java class as it is read from
* an Java source file.
*
* WARNING: The contents of this source file are not part of any
* supported API. Code that depends on them does so at its own risk:
* they are subject to change or removal without notice.
*/
@Deprecated
public
class SourceClass extends ClassDefinition {
/**
* The toplevel environment, shared with the parser
*/
Environment toplevelEnv;
/**
* The default constructor
*/
SourceMember defConstructor;
/**
* The constant pool
*/
ConstantPool tab = new ConstantPool();
/**
* The list of class dependencies
*/
Hashtable<ClassDeclaration, ClassDeclaration> deps = new Hashtable<>(11);
/**
* The field used to represent "this" in all of my code.
*/
LocalMember thisArg;
/**
* Last token of class, as reported by parser.
*/
long endPosition;
/**
* Access methods for constructors are distinguished from
* the constructors themselves by a dummy first argument.
* A unique type used for this purpose and shared by all
* constructor access methods within a package-member class is
* maintained here.
* <p>
* This field is null except in an outermost class containing
* one or more classes needing such an access method.
*/
private Type dummyArgumentType = null;
/**
* Constructor
*/
public SourceClass(Environment env, long where,
ClassDeclaration declaration, String documentation,
int modifiers, IdentifierToken superClass,
IdentifierToken interfaces[],
SourceClass outerClass, Identifier localName) {
super(env.getSource(), where,
declaration, modifiers, superClass, interfaces);
setOuterClass(outerClass);
this.toplevelEnv = env;
this.documentation = documentation;
if (ClassDefinition.containsDeprecated(documentation)) {
this.modifiers |= M_DEPRECATED;
}
// Check for a package level class which is declared static.
if (isStatic() && outerClass == null) {
env.error(where, "static.class", this);
this.modifiers &=~ M_STATIC;
}
// Inner classes cannot be static, nor can they be interfaces
// (which are implicitly static). Static classes and interfaces
// can only occur as top-level entities.
//
// Note that we do not have to check for local classes declared
// to be static (this is currently caught by the parser) but
// we check anyway in case the parser is modified to allow this.
if (isLocal() || (outerClass != null && !outerClass.isTopLevel())) {
if (isInterface()) {
env.error(where, "inner.interface");
} else if (isStatic()) {
env.error(where, "static.inner.class", this);
this.modifiers &=~ M_STATIC;
if (innerClassMember != null) {
innerClassMember.subModifiers(M_STATIC);
}
}
}
if (isPrivate() && outerClass == null) {
env.error(where, "private.class", this);
this.modifiers &=~ M_PRIVATE;
}
if (isProtected() && outerClass == null) {
env.error(where, "protected.class", this);
this.modifiers &=~ M_PROTECTED;
}
/*----*
if ((isPublic() || isProtected()) && isInsideLocal()) {
env.error(where, "warn.public.local.class", this);
}
*----*/
// maybe define an uplevel "A.this" current instance field
if (!isTopLevel() && !isLocal()) {
LocalMember outerArg = outerClass.getThisArgument();
UplevelReference r = getReference(outerArg);
setOuterMember(r.getLocalField(env));
}
// Set simple, unmangled local name for a local or anonymous class.
// NOTE: It would be OK to do this unconditionally, as null is the
// correct value for a member (non-local) class.
if (localName != null)
setLocalName(localName);
// Check for inner class with same simple name as one of
// its enclosing classes. Note that 'getLocalName' returns
// the simple, unmangled source-level name of any class.
// The previous version of this code was not careful to avoid
// mangled local class names. This version fixes 4047746.
Identifier thisName = getLocalName();
if (thisName != idNull) {
// Test above suppresses error for nested anonymous classes,
// which have an internal "name", but are not named in source code.
for (ClassDefinition scope = outerClass; scope != null;
scope = scope.getOuterClass()) {
Identifier outerName = scope.getLocalName();
if (thisName.equals(outerName))
env.error(where, "inner.redefined", thisName);
}
}
}
/**
* Return last position in this class.
* @see #getWhere
*/
public long getEndPosition() {
return endPosition;
}
public void setEndPosition(long endPosition) {
this.endPosition = endPosition;
}
// JCOV
/**
* Return absolute name of source file
*/
public String getAbsoluteName() {
String AbsName = ((ClassFile)getSource()).getAbsoluteName();
return AbsName;
}
//end JCOV
/**
* Return imports
*/
public Imports getImports() {
return toplevelEnv.getImports();
}
/**
* Find or create my "this" argument, which is used for all methods.
*/
public LocalMember getThisArgument() {
if (thisArg == null) {
thisArg = new LocalMember(where, this, 0, getType(), idThis);
}
return thisArg;
}
/**
* Add a dependency
*/
public void addDependency(ClassDeclaration c) {
if (tab != null) {
tab.put(c);
}
// If doing -xdepend option, save away list of class dependencies
// making sure to NOT include duplicates or the class we are in
// (Hashtable's put() makes sure we don't have duplicates)
if ( toplevelEnv.print_dependencies() && c != getClassDeclaration() ) {
deps.put(c,c);
}
}
/**
* Add a field (check it first)
*/
public void addMember(Environment env, MemberDefinition f) {
// Make sure the access permissions are self-consistent:
switch (f.getModifiers() & (M_PUBLIC | M_PRIVATE | M_PROTECTED)) {
case M_PUBLIC:
case M_PRIVATE:
case M_PROTECTED:
case 0:
break;
default:
env.error(f.getWhere(), "inconsistent.modifier", f);
// Cut out the more restrictive modifier(s):
if (f.isPublic()) {
f.subModifiers(M_PRIVATE | M_PROTECTED);
} else {
f.subModifiers(M_PRIVATE);
}
break;
}
// Note exemption for synthetic members below.
if (f.isStatic() && !isTopLevel() && !f.isSynthetic()) {
if (f.isMethod()) {
env.error(f.getWhere(), "static.inner.method", f, this);
f.subModifiers(M_STATIC);
} else if (f.isVariable()) {
if (!f.isFinal() || f.isBlankFinal()) {
env.error(f.getWhere(), "static.inner.field", f.getName(), this);
f.subModifiers(M_STATIC);
}
// Even if a static passes this test, there is still another
// check in 'SourceMember.check'. The check is delayed so
// that the initializer may be inspected more closely, using
// 'isConstant()'. Part of fix for 4095568.
} else {
// Static inner classes are diagnosed in 'SourceClass.<init>'.
f.subModifiers(M_STATIC);
}
}
if (f.isMethod()) {
if (f.isConstructor()) {
if (f.getClassDefinition().isInterface()) {
env.error(f.getWhere(), "intf.constructor");
return;
}
if (f.isNative() || f.isAbstract() ||
f.isStatic() || f.isSynchronized() || f.isFinal()) {
env.error(f.getWhere(), "constr.modifier", f);
f.subModifiers(M_NATIVE | M_ABSTRACT |
M_STATIC | M_SYNCHRONIZED | M_FINAL);
}
} else if (f.isInitializer()) {
if (f.getClassDefinition().isInterface()) {
env.error(f.getWhere(), "intf.initializer");
return;
}
}
// f is not allowed to return an array of void
if ((f.getType().getReturnType()).isVoidArray()) {
env.error(f.getWhere(), "void.array");
}
if (f.getClassDefinition().isInterface() &&
(f.isStatic() || f.isSynchronized() || f.isNative()
|| f.isFinal() || f.isPrivate() || f.isProtected())) {
env.error(f.getWhere(), "intf.modifier.method", f);
f.subModifiers(M_STATIC | M_SYNCHRONIZED | M_NATIVE |
M_FINAL | M_PRIVATE);
}
if (f.isTransient()) {
env.error(f.getWhere(), "transient.meth", f);
f.subModifiers(M_TRANSIENT);
}
if (f.isVolatile()) {
env.error(f.getWhere(), "volatile.meth", f);
f.subModifiers(M_VOLATILE);
}
if (f.isAbstract()) {
if (f.isPrivate()) {
env.error(f.getWhere(), "abstract.private.modifier", f);
f.subModifiers(M_PRIVATE);
}
if (f.isStatic()) {
env.error(f.getWhere(), "abstract.static.modifier", f);
f.subModifiers(M_STATIC);
}
if (f.isFinal()) {
env.error(f.getWhere(), "abstract.final.modifier", f);
f.subModifiers(M_FINAL);
}
if (f.isNative()) {
env.error(f.getWhere(), "abstract.native.modifier", f);
f.subModifiers(M_NATIVE);
}
if (f.isSynchronized()) {
env.error(f.getWhere(),"abstract.synchronized.modifier",f);
f.subModifiers(M_SYNCHRONIZED);
}
}
if (f.isAbstract() || f.isNative()) {
if (f.getValue() != null) {
env.error(f.getWhere(), "invalid.meth.body", f);
f.setValue(null);
}
} else {
if (f.getValue() == null) {
if (f.isConstructor()) {
env.error(f.getWhere(), "no.constructor.body", f);
} else {
env.error(f.getWhere(), "no.meth.body", f);
}
f.addModifiers(M_ABSTRACT);
}
}
Vector<MemberDefinition> arguments = f.getArguments();
if (arguments != null) {
// arguments can be null if this is an implicit abstract method
int argumentLength = arguments.size();
Type argTypes[] = f.getType().getArgumentTypes();
for (int i = 0; i < argTypes.length; i++) {
Object arg = arguments.elementAt(i);
long where = f.getWhere();
if (arg instanceof MemberDefinition) {
where = ((MemberDefinition)arg).getWhere();
arg = ((MemberDefinition)arg).getName();
}
// (arg should be an Identifier now)
if (argTypes[i].isType(TC_VOID)
|| argTypes[i].isVoidArray()) {
env.error(where, "void.argument", arg);
}
}
}
} else if (f.isInnerClass()) {
if (f.isVolatile() ||
f.isTransient() || f.isNative() || f.isSynchronized()) {
env.error(f.getWhere(), "inner.modifier", f);
f.subModifiers(M_VOLATILE | M_TRANSIENT |
M_NATIVE | M_SYNCHRONIZED);
}
// same check as for fields, below:
if (f.getClassDefinition().isInterface() &&
(f.isPrivate() || f.isProtected())) {
env.error(f.getWhere(), "intf.modifier.field", f);
f.subModifiers(M_PRIVATE | M_PROTECTED);
f.addModifiers(M_PUBLIC);
// Fix up the class itself to agree with
// the inner-class member.
ClassDefinition c = f.getInnerClass();
c.subModifiers(M_PRIVATE | M_PROTECTED);
c.addModifiers(M_PUBLIC);
}
} else {
if (f.getType().isType(TC_VOID) || f.getType().isVoidArray()) {
env.error(f.getWhere(), "void.inst.var", f.getName());
// REMIND: set type to error
return;
}
if (f.isSynchronized() || f.isAbstract() || f.isNative()) {
env.error(f.getWhere(), "var.modifier", f);
f.subModifiers(M_SYNCHRONIZED | M_ABSTRACT | M_NATIVE);
}
if (f.isStrict()) {
env.error(f.getWhere(), "var.floatmodifier", f);
f.subModifiers(M_STRICTFP);
}
if (f.isTransient() && isInterface()) {
env.error(f.getWhere(), "transient.modifier", f);
f.subModifiers(M_TRANSIENT);
}
if (f.isVolatile() && (isInterface() || f.isFinal())) {
env.error(f.getWhere(), "volatile.modifier", f);
f.subModifiers(M_VOLATILE);
}
if (f.isFinal() && (f.getValue() == null) && isInterface()) {
env.error(f.getWhere(), "initializer.needed", f);
f.subModifiers(M_FINAL);
}
if (f.getClassDefinition().isInterface() &&
(f.isPrivate() || f.isProtected())) {
env.error(f.getWhere(), "intf.modifier.field", f);
f.subModifiers(M_PRIVATE | M_PROTECTED);
f.addModifiers(M_PUBLIC);
}
}
// Do not check for repeated methods here: Types are not yet resolved.
if (!f.isInitializer()) {
for (MemberDefinition f2 = getFirstMatch(f.getName());
f2 != null; f2 = f2.getNextMatch()) {
if (f.isVariable() && f2.isVariable()) {
env.error(f.getWhere(), "var.multidef", f, f2);
return;
} else if (f.isInnerClass() && f2.isInnerClass() &&
!f.getInnerClass().isLocal() &&
!f2.getInnerClass().isLocal()) {
// Found a duplicate inner-class member.
// Duplicate local classes are detected in
// 'VarDeclarationStatement.checkDeclaration'.
env.error(f.getWhere(), "inner.class.multidef", f);
return;
}
}
}
super.addMember(env, f);
}
/**
* Create an environment suitable for checking this class.
* Make sure the source and imports are set right.
* Make sure the environment contains no context information.
* (Actually, throw away env altogether and use toplevelEnv instead.)
*/
public Environment setupEnv(Environment env) {
// In some cases, we go to some trouble to create the 'env' argument
// that is discarded. We should remove the 'env' argument entirely
// as well as the vestigial code that supports it. See comments on
// 'newEnvironment' in 'checkInternal' below.
return new Environment(toplevelEnv, this);
}
/**
* A source class never reports deprecation, since the compiler
* allows access to deprecated features that are being compiled
* in the same job.
*/
public boolean reportDeprecated(Environment env) {
return false;
}
/**
* See if the source file of this class is right.
* @see ClassDefinition#noteUsedBy
*/
public void noteUsedBy(ClassDefinition ref, long where, Environment env) {
// If this class is not public, watch for cross-file references.
super.noteUsedBy(ref, where, env);
ClassDefinition def = this;
while (def.isInnerClass()) {
def = def.getOuterClass();
}
if (def.isPublic()) {
return; // already checked
}
while (ref.isInnerClass()) {
ref = ref.getOuterClass();
}
if (def.getSource().equals(ref.getSource())) {
return; // intra-file reference
}
((SourceClass)def).checkSourceFile(env, where);
}
/**
* Check this class and all its fields.
*/
public void check(Environment env) throws ClassNotFound {
if (tracing) env.dtEnter("SourceClass.check: " + getName());
if (isInsideLocal()) {
// An inaccessible class gets checked when the surrounding
// block is checked.
// QUERY: Should this case ever occur?
// What would invoke checking of a local class aside from
// checking the surrounding method body?
if (tracing) env.dtEvent("SourceClass.check: INSIDE LOCAL " +
getOuterClass().getName());
getOuterClass().check(env);
} else {
if (isInnerClass()) {
if (tracing) env.dtEvent("SourceClass.check: INNER CLASS " +
getOuterClass().getName());
// Make sure the outer is checked first.
((SourceClass)getOuterClass()).maybeCheck(env);
}
Vset vset = new Vset();
Context ctx = null;
if (tracing)
env.dtEvent("SourceClass.check: CHECK INTERNAL " + getName());
vset = checkInternal(setupEnv(env), ctx, vset);
// drop vset here
}
if (tracing) env.dtExit("SourceClass.check: " + getName());
}
private void maybeCheck(Environment env) throws ClassNotFound {
if (tracing) env.dtEvent("SourceClass.maybeCheck: " + getName());
// Check this class now, if it has not yet been checked.
// Cf. Main.compile(). Perhaps this code belongs there somehow.
ClassDeclaration c = getClassDeclaration();
if (c.getStatus() == CS_PARSED) {
// Set it first to avoid vicious circularity:
c.setDefinition(this, CS_CHECKED);
check(env);
}
}
private Vset checkInternal(Environment env, Context ctx, Vset vset)
throws ClassNotFound {
Identifier nm = getClassDeclaration().getName();
if (env.verbose()) {
env.output("[checking class " + nm + "]");
}
// Save context enclosing class for later access
// by 'ClassDefinition.resolveName.'
classContext = ctx;
// At present, the call to 'newEnvironment' is not needed.
// The incoming environment to 'basicCheck' is always passed to
// 'setupEnv', which discards it completely. This is also the
// only call to 'newEnvironment', which is now apparently dead code.
basicCheck(Context.newEnvironment(env, ctx));
// Validate access for all inner-class components
// of a qualified name, not just the last one, which
// is checked below. Yes, this is a dirty hack...
// Much of this code was cribbed from 'checkSupers'.
// Part of fix for 4094658.
ClassDeclaration sup = getSuperClass();
if (sup != null) {
long where = getWhere();
where = IdentifierToken.getWhere(superClassId, where);
env.resolveExtendsByName(where, this, sup.getName());
}
for (int i = 0 ; i < interfaces.length ; i++) {
ClassDeclaration intf = interfaces[i];
long where = getWhere();
// Error localization fails here if interfaces were
// elided during error recovery from an invalid one.
if (interfaceIds != null
&& interfaceIds.length == interfaces.length) {
where = IdentifierToken.getWhere(interfaceIds[i], where);
}
env.resolveExtendsByName(where, this, intf.getName());
}
// Does the name already exist in an imported package?
// See JLS 8.1 for the precise rules.
if (!isInnerClass() && !isInsideLocal()) {
// Discard package qualification for the import checks.
Identifier simpleName = nm.getName();
try {
// We want this to throw a ClassNotFound exception
Imports imports = toplevelEnv.getImports();
Identifier ID = imports.resolve(env, simpleName);
if (ID != getName())
env.error(where, "class.multidef.import", simpleName, ID);
} catch (AmbiguousClass e) {
// At least one of e.name1 and e.name2 must be different
Identifier ID = (e.name1 != getName()) ? e.name1 : e.name2;
env.error(where, "class.multidef.import", simpleName, ID);
} catch (ClassNotFound e) {
// we want this to happen
}
// Make sure that no package with the same fully qualified
// name exists. This is required by JLS 7.1. We only need
// to perform this check for top level classes -- it isn't
// necessary for inner classes. (bug 4101529)
//
// This change has been backed out because, on WIN32, it
// failed to distinguish between java.awt.event and
// java.awt.Event when looking for a directory. We will
// add this back in later.
//
// try {
// if (env.getPackage(nm).exists()) {
// env.error(where, "class.package.conflict", nm);
// }
// } catch (java.io.IOException ee) {
// env.error(where, "io.exception.package", nm);
// }
// Make sure it was defined in the right file
if (isPublic()) {
checkSourceFile(env, getWhere());
}
}
vset = checkMembers(env, ctx, vset);
return vset;
}
private boolean sourceFileChecked = false;
/**
* See if the source file of this class is of the right name.
*/
public void checkSourceFile(Environment env, long where) {
// one error per offending class is sufficient
if (sourceFileChecked) return;
sourceFileChecked = true;
String fname = getName().getName() + ".java";
String src = ((ClassFile)getSource()).getName();
if (!src.equals(fname)) {
if (isPublic()) {
env.error(where, "public.class.file", this, fname);
} else {
env.error(where, "warn.package.class.file", this, src, fname);
}
}
}
// Set true if superclass (but not necessarily superinterfaces) have
// been checked. If the superclass is still unresolved, then an error
// message should have been issued, and we assume that no further
// resolution is possible.
private boolean supersChecked = false;
/**
* Overrides 'ClassDefinition.getSuperClass'.
*/
public ClassDeclaration getSuperClass(Environment env) {
if (tracing) env.dtEnter("SourceClass.getSuperClass: " + this);
// Superclass may fail to be set because of error recovery,
// so resolve types here only if 'checkSupers' has not yet
// completed its checks on the superclass.
// QUERY: Can we eliminate the need to resolve superclasses on demand?
// See comments in 'checkSupers' and in 'ClassDefinition.getInnerClass'.
if (superClass == null && superClassId != null && !supersChecked) {
resolveTypeStructure(env);
// We used to report an error here if the superclass was not
// resolved. Having moved the call to 'checkSupers' from 'basicCheck'
// into 'resolveTypeStructure', the errors reported here should have
// already been reported. Furthermore, error recovery can null out
// the superclass, which would cause a spurious error from the test here.
}
if (tracing) env.dtExit("SourceClass.getSuperClass: " + this);
return superClass;
}
/**
* Check that all superclasses and superinterfaces are defined and
* well formed. Among other checks, verify that the inheritance
* graph is acyclic. Called from 'resolveTypeStructure'.
*/
private void checkSupers(Environment env) throws ClassNotFound {
// *** DEBUG ***
supersCheckStarted = true;
if (tracing) env.dtEnter("SourceClass.checkSupers: " + this);
if (isInterface()) {
if (isFinal()) {
Identifier nm = getClassDeclaration().getName();
env.error(getWhere(), "final.intf", nm);
// Interfaces have no superclass. Superinterfaces
// are checked below, in code shared with the class case.
}
} else {
// Check superclass.
// Call to 'getSuperClass(env)' (note argument) attempts
// 'resolveTypeStructure' if superclass has not successfully
// been resolved. Since we have just now called 'resolveSupers'
// (see our call in 'resolveTypeStructure'), it is not clear
// that this can do any good. Why not 'getSuperClass()' here?
if (getSuperClass(env) != null) {
long where = getWhere();
where = IdentifierToken.getWhere(superClassId, where);
try {
ClassDefinition def =
getSuperClass().getClassDefinition(env);
// Resolve superclass and its ancestors.
def.resolveTypeStructure(env);
// Access to the superclass should be checked relative
// to the surrounding context, not as if the reference
// appeared within the class body. Changed 'canAccess'
// to 'extendsCanAccess' to fix 4087314.
if (!extendsCanAccess(env, getSuperClass())) {
env.error(where, "cant.access.class", getSuperClass());
// Might it be a better recovery to let the access go through?
superClass = null;
} else if (def.isFinal()) {
env.error(where, "super.is.final", getSuperClass());
// Might it be a better recovery to let the access go through?
superClass = null;
} else if (def.isInterface()) {
env.error(where, "super.is.intf", getSuperClass());
superClass = null;
} else if (superClassOf(env, getSuperClass())) {
env.error(where, "cyclic.super");
superClass = null;
} else {
def.noteUsedBy(this, where, env);
}
if (superClass == null) {
def = null;
} else {
// If we have a valid superclass, check its
// supers as well, and so on up to root class.
// Call to 'enclosingClassOf' will raise
// 'NullPointerException' if 'def' is null,
// so omit this check as error recovery.
ClassDefinition sup = def;
for (;;) {
if (enclosingClassOf(sup)) {
// Do we need a similar test for
// interfaces? See bugid 4038529.
env.error(where, "super.is.inner");
superClass = null;
break;
}
// Since we resolved the superclass and its
// ancestors above, we should not discover
// any unresolved classes on the superclass
// chain. It should thus be sufficient to
// call 'getSuperClass()' (no argument) here.
ClassDeclaration s = sup.getSuperClass(env);
if (s == null) {
// Superclass not resolved due to error.
break;
}
sup = s.getClassDefinition(env);
}
}
} catch (ClassNotFound e) {
// Error is detected in call to 'getClassDefinition'.
// The class may actually exist but be ambiguous.
// Call env.resolve(e.name) to see if it is.
// env.resolve(name) will definitely tell us if the
// class is ambiguous, but may not necessarily tell
// us if the class is not found.
// (part of solution for 4059855)
reportError: {
try {
env.resolve(e.name);
} catch (AmbiguousClass ee) {
env.error(where,
"ambig.class", ee.name1, ee.name2);
superClass = null;
break reportError;
} catch (ClassNotFound ee) {
// fall through
}
env.error(where, "super.not.found", e.name, this);
superClass = null;
} // The break exits this block
}
} else {
// Superclass was null on entry, after call to
// 'resolveSupers'. This should normally not happen,
// as 'resolveSupers' sets 'superClass' to a non-null
// value for all named classes, except for one special
// case: 'java.lang.Object', which has no superclass.
if (isAnonymous()) {
// checker should have filled it in first
throw new CompilerError("anonymous super");
} else if (!getName().equals(idJavaLangObject)) {
throw new CompilerError("unresolved super");
}
}
}
// At this point, if 'superClass' is null due to an error
// in the user program, a message should have been issued.
supersChecked = true;
// Check interfaces
for (int i = 0 ; i < interfaces.length ; i++) {
ClassDeclaration intf = interfaces[i];
long where = getWhere();
if (interfaceIds != null
&& interfaceIds.length == interfaces.length) {
where = IdentifierToken.getWhere(interfaceIds[i], where);
}
try {
ClassDefinition def = intf.getClassDefinition(env);
// Resolve superinterface and its ancestors.
def.resolveTypeStructure(env);
// Check superinterface access in the correct context.
// Changed 'canAccess' to 'extendsCanAccess' to fix 4087314.
if (!extendsCanAccess(env, intf)) {
env.error(where, "cant.access.class", intf);
} else if (!intf.getClassDefinition(env).isInterface()) {
env.error(where, "not.intf", intf);
} else if (isInterface() && implementedBy(env, intf)) {
env.error(where, "cyclic.intf", intf);
} else {
def.noteUsedBy(this, where, env);
// Interface is OK, leave it in the interface list.
continue;
}
} catch (ClassNotFound e) {
// The interface may actually exist but be ambiguous.
// Call env.resolve(e.name) to see if it is.
// env.resolve(name) will definitely tell us if the
// interface is ambiguous, but may not necessarily tell
// us if the interface is not found.
// (part of solution for 4059855)
reportError2: {
try {
env.resolve(e.name);
} catch (AmbiguousClass ee) {
env.error(where,
"ambig.class", ee.name1, ee.name2);
superClass = null;
break reportError2;
} catch (ClassNotFound ee) {
// fall through
}
env.error(where, "intf.not.found", e.name, this);
superClass = null;
} // The break exits this block
}
// Remove this interface from the list of interfaces
// as recovery from an error.
ClassDeclaration newInterfaces[] =
new ClassDeclaration[interfaces.length - 1];
System.arraycopy(interfaces, 0, newInterfaces, 0, i);
System.arraycopy(interfaces, i + 1, newInterfaces, i,
newInterfaces.length - i);
interfaces = newInterfaces;
--i;
}
if (tracing) env.dtExit("SourceClass.checkSupers: " + this);
}
/**
* Check all of the members of this class.
* <p>
* Inner classes are checked in the following way. Any class which
* is immediately contained in a block (anonymous and local classes)
* is checked along with its containing method; see the
* SourceMember.check() method for more information. Member classes
* of this class are checked immediately after this class, unless this
* class is insideLocal(), in which case, they are checked with the
* rest of the members.
*/
private Vset checkMembers(Environment env, Context ctx, Vset vset)
throws ClassNotFound {
// bail out if there were any errors
if (getError()) {
return vset;
}
// Make sure that all of our member classes have been
// basicCheck'ed before we check the rest of our members.
// If our member classes haven't been basicCheck'ed, then they
// may not have <init> methods. It is important that they
// have <init> methods so we can process NewInstanceExpressions
// correctly. This problem didn't occur before 1.2beta1.
// This is a fix for bug 4082816.
for (MemberDefinition f = getFirstMember();
f != null; f = f.getNextMember()) {
if (f.isInnerClass()) {
// System.out.println("Considering " + f + " in " + this);
SourceClass cdef = (SourceClass) f.getInnerClass();
if (cdef.isMember()) {
cdef.basicCheck(env);
}
}
}
if (isFinal() && isAbstract()) {
env.error(where, "final.abstract", this.getName().getName());
}
// This class should be abstract if there are any abstract methods
// in our parent classes and interfaces which we do not override.
// There are odd cases when, even though we cannot access some
// abstract method from our superclass, that abstract method can
// still force this class to be abstract. See the discussion in
// bug id 1240831.
if (!isInterface() && !isAbstract() && mustBeAbstract(env)) {
// Set the class abstract.
modifiers |= M_ABSTRACT;
// Tell the user which methods force this class to be abstract.
// First list all of the "unimplementable" abstract methods.
Iterator<MemberDefinition> iter = getPermanentlyAbstractMethods();
while (iter.hasNext()) {
MemberDefinition method = iter.next();
// We couldn't override this method even if we
// wanted to. Try to make the error message
// as non-confusing as possible.
env.error(where, "abstract.class.cannot.override",
getClassDeclaration(), method,
method.getDefiningClassDeclaration());
}
// Now list all of the traditional abstract methods.
iter = getMethods(env);
while (iter.hasNext()) {
// For each method, check if it is abstract. If it is,
// output an appropriate error message.
MemberDefinition method = iter.next();
if (method.isAbstract()) {
env.error(where, "abstract.class",
getClassDeclaration(), method,
method.getDefiningClassDeclaration());
}
}
}
// Check the instance variables in a pre-pass before any constructors.
// This lets constructors "in-line" any initializers directly.
// It also lets us do some definite assignment checks on variables.
Context ctxInit = new Context(ctx);
Vset vsInst = vset.copy();
Vset vsClass = vset.copy();
// Do definite assignment checking on blank finals.
// Other variables do not need such checks. The simple textual
// ordering constraints implemented by MemberDefinition.canReach()
// are necessary and sufficient for the other variables.
// Note that within non-static code, all statics are always
// definitely assigned, and vice-versa.
for (MemberDefinition f = getFirstMember();
f != null; f = f.getNextMember()) {
if (f.isVariable() && f.isBlankFinal()) {
// The following allocates a LocalMember object as a proxy
// to represent the field.
int number = ctxInit.declareFieldNumber(f);
if (f.isStatic()) {
vsClass = vsClass.addVarUnassigned(number);
vsInst = vsInst.addVar(number);
} else {
vsInst = vsInst.addVarUnassigned(number);
vsClass = vsClass.addVar(number);
}
}
}
// For instance variable checks, use a context with a "this" parameter.
Context ctxInst = new Context(ctxInit, this);
LocalMember thisArg = getThisArgument();
int thisNumber = ctxInst.declare(env, thisArg);
vsInst = vsInst.addVar(thisNumber);
// Do all the initializers in order, checking the definite
// assignment of blank finals. Separate static from non-static.
for (MemberDefinition f = getFirstMember();
f != null; f = f.getNextMember()) {
try {
if (f.isVariable() || f.isInitializer()) {
if (f.isStatic()) {
vsClass = f.check(env, ctxInit, vsClass);
} else {
vsInst = f.check(env, ctxInst, vsInst);
}
}
} catch (ClassNotFound ee) {
env.error(f.getWhere(), "class.not.found", ee.name, this);
}
}
checkBlankFinals(env, ctxInit, vsClass, true);
// Check the rest of the field definitions.
// (Note: Re-checking a field is a no-op.)
for (MemberDefinition f = getFirstMember();
f != null; f = f.getNextMember()) {
try {
if (f.isConstructor()) {
// When checking a constructor, an explicit call to
// 'this(...)' makes all blank finals definitely assigned.
// See 'MethodExpression.checkValue'.
Vset vsCon = f.check(env, ctxInit, vsInst.copy());
// May issue multiple messages for the same variable!!
checkBlankFinals(env, ctxInit, vsCon, false);
// (drop vsCon here)
} else {
Vset vsFld = f.check(env, ctx, vset.copy());
// (drop vsFld here)
}
} catch (ClassNotFound ee) {
env.error(f.getWhere(), "class.not.found", ee.name, this);
}
}
// Must mark class as checked before visiting inner classes,
// as they may in turn request checking of the current class
// as an outer class. Fix for bug id 4056774.
getClassDeclaration().setDefinition(this, CS_CHECKED);
// Also check other classes in the same nest.
// All checking of this nest must be finished before any
// of its classes emit bytecode.
// Otherwise, the inner classes might not have a chance to
// add access or class literal fields to the outer class.
for (MemberDefinition f = getFirstMember();
f != null; f = f.getNextMember()) {
if (f.isInnerClass()) {
SourceClass cdef = (SourceClass) f.getInnerClass();
if (!cdef.isInsideLocal()) {
cdef.maybeCheck(env);
}
}
}
// Note: Since inner classes cannot set up-level variables,
// the returned vset is always equal to the passed-in vset.
// Still, we'll return it for the sake of regularity.
return vset;
}
/** Make sure all my blank finals exist now. */
private void checkBlankFinals(Environment env, Context ctxInit, Vset vset,
boolean isStatic) {
for (int i = 0; i < ctxInit.getVarNumber(); i++) {
if (!vset.testVar(i)) {
MemberDefinition ff = ctxInit.getElement(i);
if (ff != null && ff.isBlankFinal()
&& ff.isStatic() == isStatic
&& ff.getClassDefinition() == this) {
env.error(ff.getWhere(),
"final.var.not.initialized", ff.getName());
}
}
}
}
/**
* Check this class has its superclass and its interfaces. Also
* force it to have an <init> method (if it doesn't already have one)
* and to have all the abstract methods of its parents.
*/
private boolean basicChecking = false;
private boolean basicCheckDone = false;
protected void basicCheck(Environment env) throws ClassNotFound {
if (tracing) env.dtEnter("SourceClass.basicCheck: " + getName());
super.basicCheck(env);
if (basicChecking || basicCheckDone) {
if (tracing) env.dtExit("SourceClass.basicCheck: OK " + getName());
return;
}
if (tracing) env.dtEvent("SourceClass.basicCheck: CHECKING " + getName());
basicChecking = true;
env = setupEnv(env);
Imports imports = env.getImports();
if (imports != null) {
imports.resolve(env);
}
resolveTypeStructure(env);
// Check the existence of the superclass and all interfaces.
// Also responsible for breaking inheritance cycles. This call
// has been moved to 'resolveTypeStructure', just after the call
// to 'resolveSupers', as inheritance cycles must be broken before
// resolving types within the members. Fixes 4073739.
// checkSupers(env);
if (!isInterface()) {
// Add implicit <init> method, if necessary.
// QUERY: What keeps us from adding an implicit constructor
// when the user explicitly declares one? Is it truly guaranteed
// that the declaration for such an explicit constructor will have
// been processed by the time we arrive here? In general, 'basicCheck'
// is called very early, prior to the normal member checking phase.
if (!hasConstructor()) {
Node code = new CompoundStatement(getWhere(), new Statement[0]);
Type t = Type.tMethod(Type.tVoid);
// Default constructors inherit the access modifiers of their
// class. For non-inner classes, this follows from JLS 8.6.7,
// as the only possible modifier is 'public'. For the sake of
// robustness in the presence of errors, we ignore any other
// modifiers. For inner classes, the rule needs to be extended
// in some way to account for the possibility of private and
// protected classes. We make the 'obvious' extension, however,
// the inner classes spec is silent on this issue, and a definitive
// resolution is needed. See bugid 4087421.
// WORKAROUND: A private constructor might need an access method,
// but it is not possible to create one due to a restriction in
// the verifier. (This is a known problem -- see 4015397.)
// We therefore do not inherit the 'private' modifier from the class,
// allowing the default constructor to be package private. This
// workaround can be observed via reflection, but is otherwise
// undetectable, as the constructor is always accessible within
// the class in which its containing (private) class appears.
int accessModifiers = getModifiers() &
(isInnerClass() ? (M_PUBLIC | M_PROTECTED) : M_PUBLIC);
env.makeMemberDefinition(env, getWhere(), this, null,
accessModifiers,
t, idInit, null, null, code);
}
}
// Only do the inheritance/override checks if they are turned on.
// The idea here is that they will be done in javac, but not
// in javadoc. See the comment for turnOffChecks(), above.
if (doInheritanceChecks) {
// Verify the compatibility of all inherited method definitions
// by collecting all of our inheritable methods.
collectInheritedMethods(env);
}
basicChecking = false;
basicCheckDone = true;
if (tracing) env.dtExit("SourceClass.basicCheck: " + getName());
}
/**
* Add a group of methods to this class as miranda methods.
*
* For a definition of Miranda methods, see the comment above the
* method addMirandaMethods() in the file
* sun/tools/java/ClassDeclaration.java
*/
protected void addMirandaMethods(Environment env,
Iterator<MemberDefinition> mirandas) {
while(mirandas.hasNext()) {
MemberDefinition method = mirandas.next();
addMember(method);
//System.out.println("adding miranda method " + newMethod +
// " to " + this);
}
}
/**
* <em>After parsing is complete</em>, resolve all names
* except those inside method bodies or initializers.
* In particular, this is the point at which we find out what
* kinds of variables and methods there are in the classes,
* and therefore what is each class's interface to the world.
* <p>
* Also perform certain other transformations, such as inserting
* "this$C" arguments into constructors, and reorganizing structure
* to flatten qualified member names.
* <p>
* Do not perform type-based or name-based consistency checks
* or normalizations (such as default nullary constructors),
* and do not attempt to compile code against this class,
* until after this phase.
*/
private boolean resolving = false;
public void resolveTypeStructure(Environment env) {
if (tracing)
env.dtEnter("SourceClass.resolveTypeStructure: " + getName());
// Resolve immediately enclosing type, which in turn
// forces resolution of all enclosing type declarations.
ClassDefinition oc = getOuterClass();
if (oc != null && oc instanceof SourceClass
&& !((SourceClass)oc).resolved) {
// Do the outer class first, always.
((SourceClass)oc).resolveTypeStructure(env);
// (Note: this.resolved is probably true at this point.)
}
// Punt if we've already resolved this class, or are currently
// in the process of doing so.
if (resolved || resolving) {
if (tracing)
env.dtExit("SourceClass.resolveTypeStructure: OK " + getName());
return;
}
// Previously, 'resolved' was set here, and served to prevent
// duplicate resolutions here as well as its function in
// 'ClassDefinition.addMember'. Now, 'resolving' serves the
// former purpose, distinct from that of 'resolved'.
resolving = true;
if (tracing)
env.dtEvent("SourceClass.resolveTypeStructure: RESOLVING " + getName());
env = setupEnv(env);
// Resolve superclass names to class declarations
// for the immediate superclass and superinterfaces.
resolveSupers(env);
// Check all ancestor superclasses for various
// errors, verifying definition of all superclasses
// and superinterfaces. Also breaks inheritance cycles.
// Calls 'resolveTypeStructure' recursively for ancestors
// This call used to appear in 'basicCheck', but was not
// performed early enough. Most of the compiler will barf
// on inheritance cycles!
try {
checkSupers(env);
} catch (ClassNotFound ee) {
// Undefined classes should be reported by 'checkSupers'.
env.error(where, "class.not.found", ee.name, this);
}
for (MemberDefinition
f = getFirstMember() ; f != null ; f = f.getNextMember()) {
if (f instanceof SourceMember)
((SourceMember)f).resolveTypeStructure(env);
}
resolving = false;
// Mark class as resolved. If new members are subsequently
// added to the class, they will be resolved at that time.
// See 'ClassDefinition.addMember'. Previously, this variable was
// set prior to the calls to 'checkSupers' and 'resolveTypeStructure'
// (which may engender further calls to 'checkSupers'). This could
// lead to duplicate resolution of implicit constructors, as the call to
// 'basicCheck' from 'checkSupers' could add the constructor while
// its class is marked resolved, and thus would resolve the constructor,
// believing it to be a "late addition". It would then be resolved
// redundantly during the normal traversal of the members, which
// immediately follows in the code above.
resolved = true;
// Now we have enough information to detect method repeats.
for (MemberDefinition
f = getFirstMember() ; f != null ; f = f.getNextMember()) {
if (f.isInitializer()) continue;
if (!f.isMethod()) continue;
for (MemberDefinition f2 = f; (f2 = f2.getNextMatch()) != null; ) {
if (!f2.isMethod()) continue;
if (f.getType().equals(f2.getType())) {
env.error(f.getWhere(), "meth.multidef", f);
continue;
}
if (f.getType().equalArguments(f2.getType())) {
env.error(f.getWhere(), "meth.redef.rettype", f, f2);
continue;
}
}
}
if (tracing)
env.dtExit("SourceClass.resolveTypeStructure: " + getName());
}
protected void resolveSupers(Environment env) {
if (tracing)
env.dtEnter("SourceClass.resolveSupers: " + this);
// Find the super class
if (superClassId != null && superClass == null) {
superClass = resolveSuper(env, superClassId);
// Special-case java.lang.Object here (not in the parser).
// In all other cases, if we have a valid 'superClassId',
// we return with a valid and non-null 'superClass' value.
if (superClass == getClassDeclaration()
&& getName().equals(idJavaLangObject)) {
superClass = null;
superClassId = null;
}
}
// Find interfaces
if (interfaceIds != null && interfaces == null) {
interfaces = new ClassDeclaration[interfaceIds.length];
for (int i = 0 ; i < interfaces.length ; i++) {
interfaces[i] = resolveSuper(env, interfaceIds[i]);
for (int j = 0; j < i; j++) {
if (interfaces[i] == interfaces[j]) {
Identifier id = interfaceIds[i].getName();
long where = interfaceIds[j].getWhere();
env.error(where, "intf.repeated", id);
}
}
}
}
if (tracing)
env.dtExit("SourceClass.resolveSupers: " + this);
}
private ClassDeclaration resolveSuper(Environment env, IdentifierToken t) {
Identifier name = t.getName();
if (tracing)
env.dtEnter("SourceClass.resolveSuper: " + name);
if (isInnerClass())
name = outerClass.resolveName(env, name);
else
name = env.resolveName(name);
ClassDeclaration result = env.getClassDeclaration(name);
// Result is never null, as a new 'ClassDeclaration' is
// created if one with the given name does not exist.
if (tracing) env.dtExit("SourceClass.resolveSuper: " + name);
return result;
}
/**
* During the type-checking of an outer method body or initializer,
* this routine is called to check a local class body
* in the proper context.
* @param sup the named super class or interface (if anonymous)
* @param args the actual arguments (if anonymous)
*/
public Vset checkLocalClass(Environment env, Context ctx, Vset vset,
ClassDefinition sup,
Expression args[], Type argTypes[]
) throws ClassNotFound {
env = setupEnv(env);
if ((sup != null) != isAnonymous()) {
throw new CompilerError("resolveAnonymousStructure");
}
if (isAnonymous()) {
resolveAnonymousStructure(env, sup, args, argTypes);
}
// Run the checks in the lexical context from the outer class.
vset = checkInternal(env, ctx, vset);
// This is now done by 'checkInternal' via its call to 'checkMembers'.
// getClassDeclaration().setDefinition(this, CS_CHECKED);
return vset;
}
/**
* As with checkLocalClass, run the inline phase for a local class.
*/
public void inlineLocalClass(Environment env) {
for (MemberDefinition
f = getFirstMember(); f != null; f = f.getNextMember()) {
if ((f.isVariable() || f.isInitializer()) && !f.isStatic()) {
continue; // inlined inside of constructors only
}
try {
((SourceMember)f).inline(env);
} catch (ClassNotFound ee) {
env.error(f.getWhere(), "class.not.found", ee.name, this);
}
}
if (getReferencesFrozen() != null && !inlinedLocalClass) {
inlinedLocalClass = true;
// add more constructor arguments for uplevel references
for (MemberDefinition
f = getFirstMember(); f != null; f = f.getNextMember()) {
if (f.isConstructor()) {
//((SourceMember)f).addUplevelArguments(false);
((SourceMember)f).addUplevelArguments();
}
}
}
}
private boolean inlinedLocalClass = false;
/**
* Check a class which is inside a local class, but is not itself local.
*/
public Vset checkInsideClass(Environment env, Context ctx, Vset vset)
throws ClassNotFound {
if (!isInsideLocal() || isLocal()) {
throw new CompilerError("checkInsideClass");
}
return checkInternal(env, ctx, vset);
}
/**
* Just before checking an anonymous class, decide its true
* inheritance, and build its (sole, implicit) constructor.
*/
private void resolveAnonymousStructure(Environment env,
ClassDefinition sup,
Expression args[], Type argTypes[]
) throws ClassNotFound {
if (tracing) env.dtEvent("SourceClass.resolveAnonymousStructure: " +
this + ", super " + sup);
// Decide now on the superclass.
// This check has been removed as part of the fix for 4055017.
// In the anonymous class created to hold the 'class$' method
// of an interface, 'superClassId' refers to 'java.lang.Object'.
/*---------------------*
if (!(superClass == null && superClassId.getName() == idNull)) {
throw new CompilerError("superclass "+superClass);
}
*---------------------*/
if (sup.isInterface()) {
// allow an interface in the "super class" position
int ni = (interfaces == null) ? 0 : interfaces.length;
ClassDeclaration i1[] = new ClassDeclaration[1+ni];
if (ni > 0) {
System.arraycopy(interfaces, 0, i1, 1, ni);
if (interfaceIds != null && interfaceIds.length == ni) {
IdentifierToken id1[] = new IdentifierToken[1+ni];
System.arraycopy(interfaceIds, 0, id1, 1, ni);
id1[0] = new IdentifierToken(sup.getName());
}
}
i1[0] = sup.getClassDeclaration();
interfaces = i1;
sup = toplevelEnv.getClassDefinition(idJavaLangObject);
}
superClass = sup.getClassDeclaration();
if (hasConstructor()) {
throw new CompilerError("anonymous constructor");
}
// Synthesize an appropriate constructor.
Type t = Type.tMethod(Type.tVoid, argTypes);
IdentifierToken names[] = new IdentifierToken[argTypes.length];
for (int i = 0; i < names.length; i++) {
names[i] = new IdentifierToken(args[i].getWhere(),
Identifier.lookup("$"+i));
}
int outerArg = (sup.isTopLevel() || sup.isLocal()) ? 0 : 1;
Expression superArgs[] = new Expression[-outerArg + args.length];
for (int i = outerArg ; i < args.length ; i++) {
superArgs[-outerArg + i] = new IdentifierExpression(names[i]);
}
long where = getWhere();
Expression superExp;
if (outerArg == 0) {
superExp = new SuperExpression(where);
} else {
superExp = new SuperExpression(where,
new IdentifierExpression(names[0]));
}
Expression superCall = new MethodExpression(where,
superExp, idInit,
superArgs);
Statement body[] = { new ExpressionStatement(where, superCall) };
Node code = new CompoundStatement(where, body);
int mod = M_SYNTHETIC; // ISSUE: make M_PRIVATE, with wrapper?
env.makeMemberDefinition(env, where, this, null,
mod, t, idInit, names, null, code);
}
/**
* Convert class modifiers to a string for diagnostic purposes.
* Accepts modifiers applicable to inner classes and that appear
* in the InnerClasses attribute only, as well as those that may
* appear in the class modifier proper.
*/
private static int classModifierBits[] =
{ ACC_PUBLIC, ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL,
ACC_INTERFACE, ACC_ABSTRACT, ACC_SUPER, M_ANONYMOUS, M_LOCAL,
M_STRICTFP, ACC_STRICT};
private static String classModifierNames[] =
{ "PUBLIC", "PRIVATE", "PROTECTED", "STATIC", "FINAL",
"INTERFACE", "ABSTRACT", "SUPER", "ANONYMOUS", "LOCAL",
"STRICTFP", "STRICT"};
static String classModifierString(int mods) {
String s = "";
for (int i = 0; i < classModifierBits.length; i++) {
if ((mods & classModifierBits[i]) != 0) {
s = s + " " + classModifierNames[i];
mods &= ~classModifierBits[i];
}
}
if (mods != 0) {
s = s + " ILLEGAL:" + Integer.toHexString(mods);
}
return s;
}
/**
* Find or create an access method for a private member,
* or return null if this is not possible.
*/
public MemberDefinition getAccessMember(Environment env, Context ctx,
MemberDefinition field, boolean isSuper) {
return getAccessMember(env, ctx, field, false, isSuper);
}
public MemberDefinition getUpdateMember(Environment env, Context ctx,
MemberDefinition field, boolean isSuper) {
if (!field.isVariable()) {
throw new CompilerError("method");
}
return getAccessMember(env, ctx, field, true, isSuper);
}
private MemberDefinition getAccessMember(Environment env, Context ctx,
MemberDefinition field,
boolean isUpdate,
boolean isSuper) {
// The 'isSuper' argument is really only meaningful when the
// target member is a method, in which case an 'invokespecial'
// is needed. For fields, 'getfield' and 'putfield' instructions
// are generated in either case, and 'isSuper' currently plays
// no essential role. Nonetheless, we maintain the distinction
// consistently for the time being.
boolean isStatic = field.isStatic();
boolean isMethod = field.isMethod();
// Find pre-existing access method.
// In the case of a field access method, we only look for the getter.
// A getter is always created whenever a setter is.
// QUERY: Why doesn't the 'MemberDefinition' object for the field
// itself just have fields for its getter and setter?
MemberDefinition af;
for (af = getFirstMember(); af != null; af = af.getNextMember()) {
if (af.getAccessMethodTarget() == field) {
if (isMethod && af.isSuperAccessMethod() == isSuper) {
break;
}
// Distinguish the getter and the setter by the number of
// arguments.
int nargs = af.getType().getArgumentTypes().length;
// This was (nargs == (isStatic ? 0 : 1) + (isUpdate ? 1 : 0))
// in order to find a setter as well as a getter. This caused
// allocation of multiple getters.
if (nargs == (isStatic ? 0 : 1)) {
break;
}
}
}
if (af != null) {
if (!isUpdate) {
return af;
} else {
MemberDefinition uf = af.getAccessUpdateMember();
if (uf != null) {
return uf;
}
}
} else if (isUpdate) {
// must find or create the getter before creating the setter
af = getAccessMember(env, ctx, field, false, isSuper);
}
// If we arrive here, we are creating a new access member.
Identifier anm;
Type dummyType = null;
if (field.isConstructor()) {
// For a constructor, we use the same name as for all
// constructors ("<init>"), but add a distinguishing
// argument of an otherwise unused "dummy" type.
anm = idInit;
// Get the dummy class, creating it if necessary.
SourceClass outerMostClass = (SourceClass)getTopClass();
dummyType = outerMostClass.dummyArgumentType;
if (dummyType == null) {
// Create dummy class.
IdentifierToken sup =
new IdentifierToken(0, idJavaLangObject);
IdentifierToken interfaces[] = {};
IdentifierToken t = new IdentifierToken(0, idNull);
int mod = M_ANONYMOUS | M_STATIC | M_SYNTHETIC;
// If an interface has a public inner class, the dummy class for
// the constructor must always be accessible. Fix for 4221648.
if (outerMostClass.isInterface()) {
mod |= M_PUBLIC;
}
ClassDefinition dummyClass =
toplevelEnv.makeClassDefinition(toplevelEnv,
0, t, null, mod,
sup, interfaces,
outerMostClass);
// Check the class.
// It is likely that a full check is not really necessary,
// but it is essential that the class be marked as parsed.
dummyClass.getClassDeclaration().setDefinition(dummyClass, CS_PARSED);
Expression argsX[] = {};
Type argTypesX[] = {};
try {
ClassDefinition supcls =
toplevelEnv.getClassDefinition(idJavaLangObject);
dummyClass.checkLocalClass(toplevelEnv, null,
new Vset(), supcls, argsX, argTypesX);
} catch (ClassNotFound ee) {};
// Get class type.
dummyType = dummyClass.getType();
outerMostClass.dummyArgumentType = dummyType;
}
} else {
// Otherwise, we use the name "access$N", for the
// smallest value of N >= 0 yielding an unused name.
for (int i = 0; ; i++) {
anm = Identifier.lookup(prefixAccess + i);
if (getFirstMatch(anm) == null) {
break;
}
}
}
Type argTypes[];
Type t = field.getType();
if (isStatic) {
if (!isMethod) {
if (!isUpdate) {
Type at[] = { };
argTypes = at;
t = Type.tMethod(t); // nullary getter
} else {
Type at[] = { t };
argTypes = at;
t = Type.tMethod(Type.tVoid, argTypes); // unary setter
}
} else {
// Since constructors are never static, we don't
// have to worry about a dummy argument here.
argTypes = t.getArgumentTypes();
}
} else {
// All access methods for non-static members get an explicit
// 'this' pointer as an extra argument, as the access methods
// themselves must be static. EXCEPTION: Access methods for
// constructors are non-static.
Type classType = this.getType();
if (!isMethod) {
if (!isUpdate) {
Type at[] = { classType };
argTypes = at;
t = Type.tMethod(t, argTypes); // nullary getter
} else {
Type at[] = { classType, t };
argTypes = at;
t = Type.tMethod(Type.tVoid, argTypes); // unary setter
}
} else {
// Target is a method, possibly a constructor.
Type at[] = t.getArgumentTypes();
int nargs = at.length;
if (field.isConstructor()) {
// Access method is a constructor.
// Requires a dummy argument.
MemberDefinition outerThisArg =
((SourceMember)field).getOuterThisArg();
if (outerThisArg != null) {
// Outer instance link must be the first argument.
// The following is a sanity check that will catch
// most cases in which in this requirement is violated.
if (at[0] != outerThisArg.getType()) {
throw new CompilerError("misplaced outer this");
}
// Strip outer 'this' argument.
// It will be added back when the access method is checked.
argTypes = new Type[nargs];
argTypes[0] = dummyType;
for (int i = 1; i < nargs; i++) {
argTypes[i] = at[i];
}
} else {
// There is no outer instance.
argTypes = new Type[nargs+1];
argTypes[0] = dummyType;
for (int i = 0; i < nargs; i++) {
argTypes[i+1] = at[i];
}
}
} else {
// Access method is static.
// Requires an explicit 'this' argument.
argTypes = new Type[nargs+1];
argTypes[0] = classType;
for (int i = 0; i < nargs; i++) {
argTypes[i+1] = at[i];
}
}
t = Type.tMethod(t.getReturnType(), argTypes);
}
}
int nlen = argTypes.length;
long where = field.getWhere();
IdentifierToken names[] = new IdentifierToken[nlen];
for (int i = 0; i < nlen; i++) {
names[i] = new IdentifierToken(where, Identifier.lookup("$"+i));
}
Expression access = null;
Expression thisArg = null;
Expression args[] = null;
if (isStatic) {
args = new Expression[nlen];
for (int i = 0 ; i < nlen ; i++) {
args[i] = new IdentifierExpression(names[i]);
}
} else {
if (field.isConstructor()) {
// Constructor access method is non-static, so
// 'this' works normally.
thisArg = new ThisExpression(where);
// Remove dummy argument, as it is not
// passed to the target method.
args = new Expression[nlen-1];
for (int i = 1 ; i < nlen ; i++) {
args[i-1] = new IdentifierExpression(names[i]);
}
} else {
// Non-constructor access method is static, so
// we use the first argument as 'this'.
thisArg = new IdentifierExpression(names[0]);
// Remove first argument.
args = new Expression[nlen-1];
for (int i = 1 ; i < nlen ; i++) {
args[i-1] = new IdentifierExpression(names[i]);
}
}
access = thisArg;
}
if (!isMethod) {
access = new FieldExpression(where, access, field);
if (isUpdate) {
access = new AssignExpression(where, access, args[0]);
}
} else {
// If true, 'isSuper' forces a non-virtual call.
access = new MethodExpression(where, access, field, args, isSuper);
}
Statement code;
if (t.getReturnType().isType(TC_VOID)) {
code = new ExpressionStatement(where, access);
} else {
code = new ReturnStatement(where, access);
}
Statement body[] = { code };
code = new CompoundStatement(where, body);
// Access methods are now static (constructors excepted), and no longer final.
// This change was mandated by the interaction of the access method
// naming conventions and the restriction against overriding final
// methods.
int mod = M_SYNTHETIC;
if (!field.isConstructor()) {
mod |= M_STATIC;
}
// Create the synthetic method within the class in which the referenced
// private member appears. The 'env' argument to 'makeMemberDefinition'
// is suspect because it represents the environment at the point at
// which a reference takes place, while it should represent the
// environment in which the definition of the synthetic method appears.
// We get away with this because 'env' is used only to access globals
// such as 'Environment.error', and also as an argument to
// 'resolveTypeStructure', which immediately discards it using
// 'setupEnv'. Apparently, the current definition of 'setupEnv'
// represents a design change that has not been thoroughly propagated.
// An access method is declared with same list of exceptions as its
// target. As the exceptions are simply listed by name, the correctness
// of this approach requires that the access method be checked
// (name-resolved) in the same context as its target method This
// should always be the case.
SourceMember newf = (SourceMember)
env.makeMemberDefinition(env, where, this,
null, mod, t, anm, names,
field.getExceptionIds(), code);
// Just to be safe, copy over the name-resolved exceptions from the
// target so that the context in which the access method is checked
// doesn't matter.
newf.setExceptions(field.getExceptions(env));
newf.setAccessMethodTarget(field);
if (isUpdate) {
af.setAccessUpdateMember(newf);
}
newf.setIsSuperAccessMethod(isSuper);
// The call to 'check' is not needed, as the access method will be
// checked by the containing class after it is added. This is the
// idiom followed in the implementation of class literals. (See
// 'FieldExpression.java'.) In any case, the context is wrong in the
// call below. The access method must be checked in the context in
// which it is declared, i.e., the class containing the referenced
// private member, not the (inner) class in which the original member
// reference occurs.
//
// try {
// newf.check(env, ctx, new Vset());
// } catch (ClassNotFound ee) {
// env.error(where, "class.not.found", ee.name, this);
// }
// The comment above is inaccurate. While it is often the case
// that the containing class will check the access method, this is
// by no means guaranteed. In fact, an access method may be added
// after the checking of its class is complete. In this case, however,
// the context in which the class was checked will have been saved in
// the class definition object (by the fix for 4095716), allowing us
// to check the field now, and in the correct context.
// This fixes bug 4098093.
Context checkContext = newf.getClassDefinition().getClassContext();
if (checkContext != null) {
//System.out.println("checking late addition: " + this);
try {
newf.check(env, checkContext, new Vset());
} catch (ClassNotFound ee) {
env.error(where, "class.not.found", ee.name, this);
}
}
//System.out.println("[Access member '" +
// newf + "' created for field '" +
// field +"' in class '" + this + "']");
return newf;
}
/**
* Find an inner class of 'this', chosen arbitrarily.
* Result is always an actual class, never an interface.
* Returns null if none found.
*/
SourceClass findLookupContext() {
// Look for an immediate inner class.
for (MemberDefinition f = getFirstMember();
f != null;
f = f.getNextMember()) {
if (f.isInnerClass()) {
SourceClass ic = (SourceClass)f.getInnerClass();
if (!ic.isInterface()) {
return ic;
}
}
}
// Look for a class nested within an immediate inner interface.
// At this point, we have given up on finding a minimally-nested
// class (which would require a breadth-first traversal). It doesn't
// really matter which inner class we find.
for (MemberDefinition f = getFirstMember();
f != null;
f = f.getNextMember()) {
if (f.isInnerClass()) {
SourceClass lc =
((SourceClass)f.getInnerClass()).findLookupContext();
if (lc != null) {
return lc;
}
}
}
// No inner classes.
return null;
}
private MemberDefinition lookup = null;
/**
* Get helper method for class literal lookup.
*/
public MemberDefinition getClassLiteralLookup(long fwhere) {
// If we have already created a lookup method, reuse it.
if (lookup != null) {
return lookup;
}
// If the current class is a nested class, make sure we put the
// lookup method in the outermost class. Set 'lookup' for the
// intervening inner classes so we won't have to do the search
// again.
if (outerClass != null) {
lookup = outerClass.getClassLiteralLookup(fwhere);
return lookup;
}
// If we arrive here, there was no existing 'class$' method.
ClassDefinition c = this;
boolean needNewClass = false;
if (isInterface()) {
// The top-level type is an interface. Try to find an existing
// inner class in which to create the helper method. Any will do.
c = findLookupContext();
if (c == null) {
// The interface has no inner classes. Create an anonymous
// inner class to hold the helper method, as an interface must
// not have any methods. The tests above for prior creation
// of a 'class$' method assure that only one such class is
// allocated for each outermost class containing a class
// literal embedded somewhere within. Part of fix for 4055017.
needNewClass = true;
IdentifierToken sup =
new IdentifierToken(fwhere, idJavaLangObject);
IdentifierToken interfaces[] = {};
IdentifierToken t = new IdentifierToken(fwhere, idNull);
int mod = M_PUBLIC | M_ANONYMOUS | M_STATIC | M_SYNTHETIC;
c = (SourceClass)
toplevelEnv.makeClassDefinition(toplevelEnv,
fwhere, t, null, mod,
sup, interfaces, this);
}
}
// The name of the class-getter stub is "class$"
Identifier idDClass = Identifier.lookup(prefixClass);
Type strarg[] = { Type.tString };
// Some sanity checks of questionable value.
//
// This check became useless after matchMethod() was modified
// to not return synthetic methods.
//
//try {
// lookup = c.matchMethod(toplevelEnv, c, idDClass, strarg);
//} catch (ClassNotFound ee) {
// throw new CompilerError("unexpected missing class");
//} catch (AmbiguousMember ee) {
// throw new CompilerError("synthetic name clash");
//}
//if (lookup != null && lookup.getClassDefinition() == c) {
// // Error if method found was not inherited.
// throw new CompilerError("unexpected duplicate");
//}
// Some sanity checks of questionable value.
/* // The helper function looks like this.
* // It simply maps a checked exception to an unchecked one.
* static Class class$(String class$) {
* try { return Class.forName(class$); }
* catch (ClassNotFoundException forName) {
* throw new NoClassDefFoundError(forName.getMessage());
* }
* }
*/
long w = c.getWhere();
IdentifierToken arg = new IdentifierToken(w, idDClass);
Expression e = new IdentifierExpression(arg);
Expression a1[] = { e };
Identifier idForName = Identifier.lookup("forName");
e = new MethodExpression(w, new TypeExpression(w, Type.tClassDesc),
idForName, a1);
Statement body = new ReturnStatement(w, e);
// map the exceptions
Identifier idClassNotFound =
Identifier.lookup("java.lang.ClassNotFoundException");
Identifier idNoClassDefFound =
Identifier.lookup("java.lang.NoClassDefFoundError");
Type ctyp = Type.tClass(idClassNotFound);
Type exptyp = Type.tClass(idNoClassDefFound);
Identifier idGetMessage = Identifier.lookup("getMessage");
e = new IdentifierExpression(w, idForName);
e = new MethodExpression(w, e, idGetMessage, new Expression[0]);
Expression a2[] = { e };
e = new NewInstanceExpression(w, new TypeExpression(w, exptyp), a2);
Statement handler = new CatchStatement(w, new TypeExpression(w, ctyp),
new IdentifierToken(idForName),
new ThrowStatement(w, e));
Statement handlers[] = { handler };
body = new TryStatement(w, body, handlers);
Type mtype = Type.tMethod(Type.tClassDesc, strarg);
IdentifierToken args[] = { arg };
// Use default (package) access. If private, an access method would
// be needed in the event that the class literal belonged to an interface.
// Also, making it private tickles bug 4098316.
lookup = toplevelEnv.makeMemberDefinition(toplevelEnv, w,
c, null,
M_STATIC | M_SYNTHETIC,
mtype, idDClass,
args, null, body);
// If a new class was created to contain the helper method,
// check it now.
if (needNewClass) {
if (c.getClassDeclaration().getStatus() == CS_CHECKED) {
throw new CompilerError("duplicate check");
}
c.getClassDeclaration().setDefinition(c, CS_PARSED);
Expression argsX[] = {};
Type argTypesX[] = {};
try {
ClassDefinition sup =
toplevelEnv.getClassDefinition(idJavaLangObject);
c.checkLocalClass(toplevelEnv, null,
new Vset(), sup, argsX, argTypesX);
} catch (ClassNotFound ee) {};
}
return lookup;
}
/**
* A list of active ongoing compilations. This list
* is used to stop two compilations from saving the
* same class.
*/
private static Vector<Object> active = new Vector<>();
/**
* Compile this class
*/
public void compile(OutputStream out)
throws InterruptedException, IOException {
Environment env = toplevelEnv;
synchronized (active) {
while (active.contains(getName())) {
active.wait();
}
active.addElement(getName());
}
try {
compileClass(env, out);
} catch (ClassNotFound e) {
throw new CompilerError(e);
} finally {
synchronized (active) {
active.removeElement(getName());
active.notifyAll();
}
}
}
/**
* Verify that the modifier bits included in 'required' are
* all present in 'mods', otherwise signal an internal error.
* Note that errors in the source program may corrupt the modifiers,
* thus we rely on the fact that 'CompilerError' exceptions are
* silently ignored after an error message has been issued.
*/
private static void assertModifiers(int mods, int required) {
if ((mods & required) != required) {
throw new CompilerError("illegal class modifiers");
}
}
protected void compileClass(Environment env, OutputStream out)
throws IOException, ClassNotFound {
Vector<CompilerMember> variables = new Vector<>();
Vector<CompilerMember> methods = new Vector<>();
Vector<ClassDefinition> innerClasses = new Vector<>();
CompilerMember init = new CompilerMember(new MemberDefinition(getWhere(), this, M_STATIC, Type.tMethod(Type.tVoid), idClassInit, null, null), new Assembler());
Context ctx = new Context((Context)null, init.field);
for (ClassDefinition def = this; def.isInnerClass(); def = def.getOuterClass()) {
innerClasses.addElement(def);
}
// Reverse the order, so that outer levels come first:
int ncsize = innerClasses.size();
for (int i = ncsize; --i >= 0; )
innerClasses.addElement(innerClasses.elementAt(i));
for (int i = ncsize; --i >= 0; )
innerClasses.removeElementAt(i);
// System.out.println("compile class " + getName());
boolean haveDeprecated = this.isDeprecated();
boolean haveSynthetic = this.isSynthetic();
boolean haveConstantValue = false;
boolean haveExceptions = false;
// Generate code for all fields
for (SourceMember field = (SourceMember)getFirstMember();
field != null;
field = (SourceMember)field.getNextMember()) {
//System.out.println("compile field " + field.getName());
haveDeprecated |= field.isDeprecated();
haveSynthetic |= field.isSynthetic();
try {
if (field.isMethod()) {
haveExceptions |=
(field.getExceptions(env).length > 0);
if (field.isInitializer()) {
if (field.isStatic()) {
field.code(env, init.asm);
}
} else {
CompilerMember f =
new CompilerMember(field, new Assembler());
field.code(env, f.asm);
methods.addElement(f);
}
} else if (field.isInnerClass()) {
innerClasses.addElement(field.getInnerClass());
} else if (field.isVariable()) {
field.inline(env);
CompilerMember f = new CompilerMember(field, null);
variables.addElement(f);
if (field.isStatic()) {
field.codeInit(env, ctx, init.asm);
}
haveConstantValue |=
(field.getInitialValue() != null);
}
} catch (CompilerError ee) {
ee.printStackTrace();
env.error(field, 0, "generic",
field.getClassDeclaration() + ":" + field +
"@" + ee.toString(), null, null);
}
}
if (!init.asm.empty()) {
init.asm.add(getWhere(), opc_return, true);
methods.addElement(init);
}
// bail out if there were any errors
if (getNestError()) {
return;
}
int nClassAttrs = 0;
// Insert constants
if (methods.size() > 0) {
tab.put("Code");
}
if (haveConstantValue) {
tab.put("ConstantValue");
}
String sourceFile = null;
if (env.debug_source()) {
sourceFile = ((ClassFile)getSource()).getName();
tab.put("SourceFile");
tab.put(sourceFile);
nClassAttrs += 1;
}
if (haveExceptions) {
tab.put("Exceptions");
}
if (env.debug_lines()) {
tab.put("LineNumberTable");
}
if (haveDeprecated) {
tab.put("Deprecated");
if (this.isDeprecated()) {
nClassAttrs += 1;
}
}
if (haveSynthetic) {
tab.put("Synthetic");
if (this.isSynthetic()) {
nClassAttrs += 1;
}
}
// JCOV
if (env.coverage()) {
nClassAttrs += 2; // AbsoluteSourcePath, TimeStamp
tab.put("AbsoluteSourcePath");
tab.put("TimeStamp");
tab.put("CoverageTable");
}
// end JCOV
if (env.debug_vars()) {
tab.put("LocalVariableTable");
}
if (innerClasses.size() > 0) {
tab.put("InnerClasses");
nClassAttrs += 1; // InnerClasses
}
// JCOV
String absoluteSourcePath = "";
long timeStamp = 0;
if (env.coverage()) {
absoluteSourcePath = getAbsoluteName();
timeStamp = System.currentTimeMillis();
tab.put(absoluteSourcePath);
}
// end JCOV
tab.put(getClassDeclaration());
if (getSuperClass() != null) {
tab.put(getSuperClass());
}
for (int i = 0 ; i < interfaces.length ; i++) {
tab.put(interfaces[i]);
}
// Sort the methods in order to make sure both constant pool
// entries and methods are in a deterministic order from run
// to run (this allows comparing class files for a fixed point
// to validate the compiler)
CompilerMember[] ordered_methods =
new CompilerMember[methods.size()];
methods.copyInto(ordered_methods);
java.util.Arrays.sort(ordered_methods);
for (int i=0; i<methods.size(); i++)
methods.setElementAt(ordered_methods[i], i);
// Optimize Code and Collect method constants
for (Enumeration<CompilerMember> e = methods.elements() ; e.hasMoreElements() ; ) {
CompilerMember f = e.nextElement();
try {
f.asm.optimize(env);
f.asm.collect(env, f.field, tab);
tab.put(f.name);
tab.put(f.sig);
ClassDeclaration exp[] = f.field.getExceptions(env);
for (int i = 0 ; i < exp.length ; i++) {
tab.put(exp[i]);
}
} catch (Exception ee) {
ee.printStackTrace();
env.error(f.field, -1, "generic", f.field.getName() + "@" + ee.toString(), null, null);
f.asm.listing(System.out);
}
}
// Collect field constants
for (Enumeration<CompilerMember> e = variables.elements() ; e.hasMoreElements() ; ) {
CompilerMember f = e.nextElement();
tab.put(f.name);
tab.put(f.sig);
Object val = f.field.getInitialValue();
if (val != null) {
tab.put((val instanceof String) ? new StringExpression(f.field.getWhere(), (String)val) : val);
}
}
// Collect inner class constants
for (Enumeration<ClassDefinition> e = innerClasses.elements();
e.hasMoreElements() ; ) {
ClassDefinition inner = e.nextElement();
tab.put(inner.getClassDeclaration());
// If the inner class is local, we do not need to add its
// outer class here -- the outer_class_info_index is zero.
if (!inner.isLocal()) {
ClassDefinition outer = inner.getOuterClass();
tab.put(outer.getClassDeclaration());
}
// If the local name of the class is idNull, don't bother to
// add it to the constant pool. We won't need it.
Identifier inner_local_name = inner.getLocalName();
if (inner_local_name != idNull) {
tab.put(inner_local_name.toString());
}
}
// Write header
DataOutputStream data = new DataOutputStream(out);
data.writeInt(JAVA_MAGIC);
data.writeShort(toplevelEnv.getMinorVersion());
data.writeShort(toplevelEnv.getMajorVersion());
tab.write(env, data);
// Write class information
int cmods = getModifiers() & MM_CLASS;
// Certain modifiers are implied:
// 1. Any interface (nested or not) is implicitly deemed to be abstract,
// whether it is explicitly marked so or not. (Java 1.0.)
// 2. A interface which is a member of a type is implicitly deemed to
// be static, whether it is explicitly marked so or not.
// 3a. A type which is a member of an interface is implicitly deemed
// to be public, whether it is explicitly marked so or not.
// 3b. A type which is a member of an interface is implicitly deemed
// to be static, whether it is explicitly marked so or not.
// All of these rules are implemented in 'BatchParser.beginClass',
// but the results are verified here.
if (isInterface()) {
// Rule 1.
// The VM spec states that ACC_ABSTRACT must be set when
// ACC_INTERFACE is; this was not done by javac prior to 1.2,
// and the runtime compensates by setting it. Making sure
// it is set here will allow the runtime hack to eventually
// be removed. Rule 2 doesn't apply to transformed modifiers.
assertModifiers(cmods, ACC_ABSTRACT);
} else {
// Contrary to the JVM spec, we only set ACC_SUPER for classes,
// not interfaces. This is a workaround for a bug in IE3.0,
// which refuses interfaces with ACC_SUPER on.
cmods |= ACC_SUPER;
}
// If this is a nested class, transform access modifiers.
if (outerClass != null) {
// If private, transform to default (package) access.
// If protected, transform to public.
// M_PRIVATE and M_PROTECTED are already masked off by MM_CLASS above.
// cmods &= ~(M_PRIVATE | M_PROTECTED);
if (isProtected()) cmods |= M_PUBLIC;
// Rule 3a. Note that Rule 3b doesn't apply to transformed modifiers.
if (outerClass.isInterface()) {
assertModifiers(cmods, M_PUBLIC);
}
}
data.writeShort(cmods);
if (env.dumpModifiers()) {
Identifier cn = getName();
Identifier nm =
Identifier.lookup(cn.getQualifier(), cn.getFlatName());
System.out.println();
System.out.println("CLASSFILE " + nm);
System.out.println("---" + classModifierString(cmods));
}
data.writeShort(tab.index(getClassDeclaration()));
data.writeShort((getSuperClass() != null) ? tab.index(getSuperClass()) : 0);
data.writeShort(interfaces.length);
for (int i = 0 ; i < interfaces.length ; i++) {
data.writeShort(tab.index(interfaces[i]));
}
// write variables
ByteArrayOutputStream buf = new ByteArrayOutputStream(256);
ByteArrayOutputStream attbuf = new ByteArrayOutputStream(256);
DataOutputStream databuf = new DataOutputStream(buf);
data.writeShort(variables.size());
for (Enumeration<CompilerMember> e = variables.elements() ; e.hasMoreElements() ; ) {
CompilerMember f = e.nextElement();
Object val = f.field.getInitialValue();
data.writeShort(f.field.getModifiers() & MM_FIELD);
data.writeShort(tab.index(f.name));
data.writeShort(tab.index(f.sig));
int fieldAtts = (val != null ? 1 : 0);
boolean dep = f.field.isDeprecated();
boolean syn = f.field.isSynthetic();
fieldAtts += (dep ? 1 : 0) + (syn ? 1 : 0);
data.writeShort(fieldAtts);
if (val != null) {
data.writeShort(tab.index("ConstantValue"));
data.writeInt(2);
/**代码未完, 请加载全部代码(NowJava.com).**/