/*
* Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.jshell;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Locale;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.stream.Collectors;
import javax.lang.model.element.Modifier;
import com.sun.source.tree.ArrayTypeTree;
import com.sun.source.tree.AssignmentTree;
import com.sun.source.tree.ClassTree;
import com.sun.source.tree.ExpressionStatementTree;
import com.sun.source.tree.ExpressionTree;
import com.sun.source.tree.IdentifierTree;
import com.sun.source.tree.MethodTree;
import com.sun.source.tree.ModifiersTree;
import com.sun.source.tree.NewClassTree;
import com.sun.source.tree.Tree;
import com.sun.source.tree.VariableTree;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.Pretty;
import java.io.IOException;
import java.io.StringWriter;
import java.io.Writer;
import java.util.Arrays;
import java.util.LinkedHashSet;
import java.util.Set;
import jdk.jshell.ExpressionToTypeInfo.ExpressionInfo;
import jdk.jshell.ExpressionToTypeInfo.ExpressionInfo.AnonymousDescription;
import jdk.jshell.ExpressionToTypeInfo.ExpressionInfo.AnonymousDescription.VariableDesc;
import jdk.jshell.Key.ErroneousKey;
import jdk.jshell.Key.MethodKey;
import jdk.jshell.Key.TypeDeclKey;
import jdk.jshell.Snippet.Kind;
import jdk.jshell.Snippet.SubKind;
import jdk.jshell.TaskFactory.AnalyzeTask;
import jdk.jshell.TaskFactory.BaseTask;
import jdk.jshell.TaskFactory.ParseTask;
import jdk.jshell.Util.Pair;
import jdk.jshell.Wrap.CompoundWrap;
import jdk.jshell.Wrap.Range;
import jdk.jshell.Snippet.Status;
import jdk.jshell.spi.ExecutionControl.ClassBytecodes;
import jdk.jshell.spi.ExecutionControl.ClassInstallException;
import jdk.jshell.spi.ExecutionControl.EngineTerminationException;
import jdk.jshell.spi.ExecutionControl.InternalException;
import jdk.jshell.spi.ExecutionControl.NotImplementedException;
import jdk.jshell.spi.ExecutionControl.ResolutionException;
import jdk.jshell.spi.ExecutionControl.RunException;
import jdk.jshell.spi.ExecutionControl.UserException;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toSet;
import static java.util.Collections.singletonList;
import com.sun.tools.javac.code.Symbol.TypeSymbol;
import static jdk.internal.jshell.debug.InternalDebugControl.DBG_GEN;
import static jdk.jshell.Util.DOIT_METHOD_NAME;
import static jdk.jshell.Util.PREFIX_PATTERN;
import static jdk.jshell.Util.expunge;
import static jdk.jshell.Snippet.SubKind.SINGLE_TYPE_IMPORT_SUBKIND;
import static jdk.jshell.Snippet.SubKind.SINGLE_STATIC_IMPORT_SUBKIND;
import static jdk.jshell.Snippet.SubKind.TYPE_IMPORT_ON_DEMAND_SUBKIND;
import static jdk.jshell.Snippet.SubKind.STATIC_IMPORT_ON_DEMAND_SUBKIND;
/**
* The Evaluation Engine. Source internal analysis, wrapping control,
* compilation, declaration. redefinition, replacement, and execution.
*
* @author Robert Field
*/
class Eval {
private static final Pattern IMPORT_PATTERN = Pattern.compile("import\\p{javaWhitespace}+(?<static>static\\p{javaWhitespace}+)?(?<fullname>[\\p{L}\\p{N}_\\$\\.]+\\.(?<name>[\\p{L}\\p{N}_\\$]+|\\*))");
private static final Pattern DEFAULT_PREFIX = Pattern.compile("\\p{javaWhitespace}*(default)\\p{javaWhitespace}+");
// for uses that should not change state -- non-evaluations
private boolean preserveState = false;
private int varNumber = 0;
/* The number of anonymous innerclasses seen so far. Used to generate unique
* names of these classes.
*/
private int anonCount = 0;
private final JShell state;
// The set of names of methods on Object
private final Set<String> objectMethods = Arrays
.stream(Object.class.getMethods())
.map(m -> m.getName())
.collect(toSet());
Eval(JShell state) {
this.state = state;
}
/**
* Evaluates a snippet of source.
*
* @param userSource the source of the snippet
* @return the list of primary and update events
* @throws IllegalStateException
*/
List<SnippetEvent> eval(String userSource) throws IllegalStateException {
List<SnippetEvent> allEvents = new ArrayList<>();
for (Snippet snip : sourceToSnippets(userSource)) {
if (snip.kind() == Kind.ERRONEOUS) {
state.maps.installSnippet(snip);
allEvents.add(new SnippetEvent(
snip, Status.NONEXISTENT, Status.REJECTED,
false, null, null, null));
} else {
allEvents.addAll(declare(snip, snip.syntheticDiags()));
}
}
return allEvents;
}
/**
* Converts the user source of a snippet into a Snippet list -- Snippet will
* have wrappers.
*
* @param userSource the source of the snippet
* @return usually a singleton list of Snippet, but may be empty or multiple
*/
List<Snippet> sourceToSnippetsWithWrappers(String userSource) {
List<Snippet> snippets = sourceToSnippets(userSource);
for (Snippet snip : snippets) {
if (snip.outerWrap() == null) {
snip.setOuterWrap(
(snip.kind() == Kind.IMPORT)
? state.outerMap.wrapImport(snip.guts(), snip)
: state.outerMap.wrapInTrialClass(snip.guts())
);
}
}
return snippets;
}
/**
* Converts the user source of a snippet into a Snippet object (or list of
* objects in the case of: int x, y, z;). Does not install the Snippets
* or execute them. Does not change any state.
*
* @param userSource the source of the snippet
* @return usually a singleton list of Snippet, but may be empty or multiple
*/
List<Snippet> toScratchSnippets(String userSource) {
try {
preserveState = true;
return sourceToSnippets(userSource);
} finally {
preserveState = false;
}
}
/**
* Converts the user source of a snippet into a Snippet object (or list of
* objects in the case of: int x, y, z;). Does not install the Snippets
* or execute them.
*
* @param userSource the source of the snippet
* @return usually a singleton list of Snippet, but may be empty or multiple
*/
private List<Snippet> sourceToSnippets(String userSource) {
String compileSource = Util.trimEnd(new MaskCommentsAndModifiers(userSource, false).cleared());
if (compileSource.length() == 0) {
return Collections.emptyList();
}
return state.taskFactory.parse(compileSource, pt -> {
List<? extends Tree> units = pt.units();
if (units.isEmpty()) {
return compileFailResult(pt, userSource, Kind.ERRONEOUS);
}
Tree unitTree = units.get(0);
if (pt.getDiagnostics().hasOtherThanNotStatementErrors()) {
Matcher matcher = DEFAULT_PREFIX.matcher(compileSource);
DiagList dlist = matcher.lookingAt()
? new DiagList(new ModifierDiagnostic(true,
state.messageFormat("jshell.diag.modifier.single.fatal", "'default'"),
matcher.start(1), matcher.end(1)))
: pt.getDiagnostics();
return compileFailResult(dlist, userSource, kindOfTree(unitTree));
}
// Erase illegal/ignored modifiers
String compileSourceInt = new MaskCommentsAndModifiers(compileSource, true).cleared();
state.debug(DBG_GEN, "Kind: %s -- %s\n", unitTree.getKind(), unitTree);
switch (unitTree.getKind()) {
case IMPORT:
return processImport(userSource, compileSourceInt);
case VARIABLE:
return processVariables(userSource, units, compileSourceInt, pt);
case EXPRESSION_STATEMENT:
return processExpression(userSource, unitTree, compileSourceInt, pt);
case CLASS:
return processClass(userSource, unitTree, compileSourceInt, SubKind.CLASS_SUBKIND, pt);
case ENUM:
return processClass(userSource, unitTree, compileSourceInt, SubKind.ENUM_SUBKIND, pt);
case ANNOTATION_TYPE:
return processClass(userSource, unitTree, compileSourceInt, SubKind.ANNOTATION_TYPE_SUBKIND, pt);
case INTERFACE:
return processClass(userSource, unitTree, compileSourceInt, SubKind.INTERFACE_SUBKIND, pt);
case RECORD:
@SuppressWarnings("preview")
List<Snippet> snippets = processClass(userSource, unitTree, compileSourceInt, SubKind.RECORD_SUBKIND, pt);
return snippets;
case METHOD:
return processMethod(userSource, unitTree, compileSourceInt, pt);
default:
return processStatement(userSource, compileSourceInt);
}
});
}
private List<Snippet> processImport(String userSource, String compileSource) {
Wrap guts = Wrap.simpleWrap(compileSource);
Matcher mat = IMPORT_PATTERN.matcher(compileSource);
String fullname;
String name;
boolean isStatic;
if (mat.find()) {
isStatic = mat.group("static") != null;
name = mat.group("name");
fullname = mat.group("fullname");
} else {
// bad import -- fake it
isStatic = compileSource.contains("static");
name = fullname = compileSource;
}
String fullkey = (isStatic ? "static-" : "") + fullname;
boolean isStar = name.equals("*");
String keyName = isStar
? fullname
: name;
SubKind snippetKind = isStar
? (isStatic ? STATIC_IMPORT_ON_DEMAND_SUBKIND : TYPE_IMPORT_ON_DEMAND_SUBKIND)
: (isStatic ? SINGLE_STATIC_IMPORT_SUBKIND : SINGLE_TYPE_IMPORT_SUBKIND);
Snippet snip = new ImportSnippet(state.keyMap.keyForImport(keyName, snippetKind),
userSource, guts, fullname, name, snippetKind, fullkey, isStatic, isStar);
return singletonList(snip);
}
private static class EvalPretty extends Pretty {
private final Writer out;
public EvalPretty(Writer writer, boolean bln) {
super(writer, bln);
this.out = writer;
}
/**
* Print string, DO NOT replacing all non-ascii character with unicode
* escapes.
*/
@Override
public void print(Object o) throws IOException {
out.write(o.toString());
}
static String prettyExpr(JCTree tree, boolean bln) {
StringWriter out = new StringWriter();
try {
new EvalPretty(out, bln).printExpr(tree);
} catch (IOException e) {
throw new AssertionError(e);
}
return out.toString();
}
}
private List<Snippet> processVariables(String userSource, List<? extends Tree> units, String compileSource, ParseTask pt) {
List<Snippet> snippets = new ArrayList<>();
TreeDissector dis = TreeDissector.createByFirstClass(pt);
for (Tree unitTree : units) {
VariableTree vt = (VariableTree) unitTree;
String name = vt.getName().toString();
String typeName;
String fullTypeName;
String displayType;
boolean hasEnhancedType = false;
TreeDependencyScanner tds = new TreeDependencyScanner();
Wrap typeWrap;
Wrap anonDeclareWrap = null;
Wrap winit = null;
boolean enhancedDesugaring = false;
Set<String> anonymousClasses = Collections.emptySet();
StringBuilder sbBrackets = new StringBuilder();
Tree baseType = vt.getType();
if (baseType != null) {
tds.scan(baseType); // Not dependent on initializer
fullTypeName = displayType = typeName = EvalPretty.prettyExpr((JCTree) vt.getType(), false);
while (baseType instanceof ArrayTypeTree) {
//TODO handle annotations too
baseType = ((ArrayTypeTree) baseType).getType();
sbBrackets.append("[]");
}
Range rtype = dis.treeToRange(baseType);
typeWrap = Wrap.rangeWrap(compileSource, rtype);
} else {
DiagList dl = trialCompile(Wrap.methodWrap(compileSource));
if (dl.hasErrors()) {
return compileFailResult(dl, userSource, kindOfTree(unitTree));
}
Tree init = vt.getInitializer();
if (init != null) {
Range rinit = dis.treeToRange(init);
String initCode = rinit.part(compileSource);
ExpressionInfo ei =
ExpressionToTypeInfo.localVariableTypeForInitializer(initCode, state, false);
if (ei != null && ei.declareTypeName != null) {
typeName = ei.declareTypeName;
fullTypeName = ei.fullTypeName;
displayType = ei.displayTypeName;
hasEnhancedType = !typeName.equals(fullTypeName);
enhancedDesugaring = !ei.isPrimitiveType;
Pair<Wrap, Wrap> anonymous2Member =
anonymous2Member(ei, compileSource, rinit, dis, init);
anonDeclareWrap = anonymous2Member.first;
winit = anonymous2Member.second;
anonymousClasses = ei.anonymousClasses.stream().map(ad -> ad.declareTypeName).collect(Collectors.toSet());
} else {
displayType = fullTypeName = typeName = "java.lang.Object";
}
tds.scan(init);
} else {
displayType = fullTypeName = typeName = "java.lang.Object";
}
typeWrap = Wrap.identityWrap(typeName);
}
Range runit = dis.treeToRange(vt);
runit = new Range(runit.begin, runit.end - 1);
ExpressionTree it = vt.getInitializer();
int nameMax = runit.end - 1;
SubKind subkind;
if (it != null) {
subkind = SubKind.VAR_DECLARATION_WITH_INITIALIZER_SUBKIND;
Range rinit = dis.treeToRange(it);
winit = winit == null ? Wrap.rangeWrap(compileSource, rinit) : winit;
nameMax = rinit.begin - 1;
} else {
String sinit;
switch (typeName) {
case "byte":
case "short":
case "int":
sinit = "0";
break;
case "long":
sinit = "0L";
break;
case "float":
sinit = "0.0f";
break;
case "double":
sinit = "0.0d";
break;
case "boolean":
sinit = "false";
break;
case "char":
sinit = "'\\u0000'";
break;
default:
sinit = "null";
break;
}
winit = Wrap.simpleWrap(sinit);
subkind = SubKind.VAR_DECLARATION_SUBKIND;
}
int nameStart = compileSource.lastIndexOf(name, nameMax);
if (nameStart < 0) {
throw new AssertionError("Name '" + name + "' not found");
}
int nameEnd = nameStart + name.length();
Range rname = new Range(nameStart, nameEnd);
Wrap guts = Wrap.varWrap(compileSource, typeWrap, sbBrackets.toString(), rname,
winit, enhancedDesugaring, anonDeclareWrap);
DiagList modDiag = modifierDiagnostics(vt.getModifiers(), dis, true);
Snippet snip = new VarSnippet(state.keyMap.keyForVariable(name), userSource, guts,
name, subkind, displayType, hasEnhancedType ? fullTypeName : null, anonymousClasses,
tds.declareReferences(), modDiag);
snippets.add(snip);
}
return snippets;
}
/**Convert anonymous classes in "init" to member classes, based
* on the additional information from ExpressionInfo.anonymousClasses.
*
* This means:
* -if the code in the anonymous class captures any variables from the
* enclosing context, create fields for them
* -creating an explicit constructor that:
* --if the new class expression has a base/enclosing expression, make it an
* explicit constructor parameter "encl" and use "encl.super" when invoking
* the supertype constructor
* --if the (used) supertype constructor has any parameters, declare them
* as explicit parameters of the constructor, and pass them to the super
* constructor
* --if the code in the anonymous class captures any variables from the
* enclosing context, make them an explicit paramters of the constructor
* and assign to respective fields.
* --if there are any explicit fields with initializers in the anonymous class,
* move the initializers at the end of the constructor (after the captured fields
* are assigned, so that the initializers of these fields can use them).
* -from the captured variables fields, constructor, and existing members
* (with cleared field initializers), create an explicit class that extends or
* implements the supertype of the anonymous class.
*
* This method returns two wraps: the first contains the class declarations for the
* converted classes, the first one should be used instead of "init" in the variable
* declaration.
*/
private Pair<Wrap, Wrap> anonymous2Member(ExpressionInfo ei,
String compileSource,
Range rinit,
TreeDissector dis,
Tree init) {
List<Wrap> anonymousDeclarations = new ArrayList<>();
List<Wrap> partitionedInit = new ArrayList<>();
int lastPos = rinit.begin;
com.sun.tools.javac.util.List<NewClassTree> toConvert =
ExpressionToTypeInfo.listAnonymousClassesToConvert(init);
com.sun.tools.javac.util.List<AnonymousDescription> descriptions =
ei.anonymousClasses;
while (toConvert.nonEmpty() && descriptions.nonEmpty()) {
NewClassTree node = toConvert.head;
AnonymousDescription ad = descriptions.head;
toConvert = toConvert.tail;
descriptions = descriptions.tail;
List<Object> classBodyParts = new ArrayList<>();
//declarations of the captured variables:
for (VariableDesc vd : ad.capturedVariables) {
classBodyParts.add(vd.type + " " + vd.name + ";\n");
}
List<Object> constructorParts = new ArrayList<>();
constructorParts.add(ad.declareTypeName + "(");
String sep = "";
//add the parameter for the base/enclosing expression, if any:
if (ad.enclosingInstanceType != null) {
constructorParts.add(ad.enclosingInstanceType + " encl");
sep = ", ";
}
int idx = 0;
//add parameters of the super constructor, if any:
for (String type : ad.parameterTypes) {
constructorParts.add(sep);
constructorParts.add(type + " " + "arg" + idx++);
sep = ", ";
}
//add parameters for the captured variables:
for (VariableDesc vd : ad.capturedVariables) {
constructorParts.add(sep);
constructorParts.add(vd.type + " " + "cap$" + vd.name);
sep = ", ";
}
//construct super constructor call:
if (ad.enclosingInstanceType != null) {
//if there's an enclosing instance, call super on it:
constructorParts.add(") { encl.super (");
} else {
constructorParts.add(") { super (");
}
sep = "";
for (int i = 0; i < idx; i++) {
constructorParts.add(sep);
constructorParts.add("arg" + i);
sep = ", ";
}
constructorParts.add(");");
//initialize the captured variables:
for (VariableDesc vd : ad.capturedVariables) {
constructorParts.add("this." + vd.name + " = " + "cap$" + vd.name + ";\n");
}
List<? extends Tree> members =
node.getClassBody().getMembers();
for (Tree member : members) {
if (member.getKind() == Tree.Kind.VARIABLE) {
VariableTree vt = (VariableTree) member;
if (vt.getInitializer() != null) {
//for variables with initializer, explicitly move the initializer
//to the constructor after the captured variables as assigned
//(the initializers would otherwise run too early):
Range wholeVar = dis.treeToRange(vt);
int name = ((JCTree) vt).pos;
classBodyParts.add(new CompoundWrap(Wrap.rangeWrap(compileSource,
new Range(wholeVar.begin, name)),
vt.getName().toString(),
";\n"));
constructorParts.add(Wrap.rangeWrap(compileSource,
new Range(name, wholeVar.end)));
continue;
}
}
classBodyParts.add(Wrap.rangeWrap(compileSource,
dis.treeToRange(member)));
}
constructorParts.add("}");
//construct the member class:
classBodyParts.add(new CompoundWrap(constructorParts.toArray()));
Wrap classBodyWrap = new CompoundWrap(classBodyParts.toArray());
anonymousDeclarations.add(new CompoundWrap("public static class ", ad.declareTypeName,
(ad.isClass ? " extends " : " implements "),
ad.superTypeName, " { ", classBodyWrap, "}"));
//change the new class expression to use the newly created member type:
Range argRange = dis.treeListToRange(node.getArguments());
Wrap argWrap;
if (argRange != null) {
argWrap = Wrap.rangeWrap(compileSource, argRange);
} else {
argWrap = Wrap.simpleWrap(" ");
}
if (ad.enclosingInstanceType != null) {
//if there's an enclosing expression, set it as the first parameter:
Range enclosingRanges =
dis.treeToRange(node.getEnclosingExpression());
Wrap enclosingWrap = Wrap.rangeWrap(compileSource, enclosingRanges);
argWrap = argRange != null ? new CompoundWrap(enclosingWrap,
Wrap.simpleWrap(","),
argWrap)
: enclosingWrap;
}
Range current = dis.treeToRange(node);
String capturedArgs;
if (!ad.capturedVariables.isEmpty()) {
capturedArgs = (ad.parameterTypes.isEmpty() ? "" : ", ") +
ad.capturedVariables.stream()
.map(vd -> vd.name)
.collect(Collectors.joining(","));
} else {
capturedArgs = "";
}
if (lastPos < current.begin)
partitionedInit.add(Wrap.rangeWrap(compileSource,
new Range(lastPos, current.begin)));
partitionedInit.add(new CompoundWrap("new " + ad.declareTypeName + "(",
argWrap,
capturedArgs,
")"));
lastPos = current.end;
}
if (lastPos < rinit.end)
partitionedInit.add(Wrap.rangeWrap(compileSource, new Range(lastPos, rinit.end)));
return new Pair<>(new CompoundWrap(anonymousDeclarations.toArray()),
new CompoundWrap(partitionedInit.toArray()));
}
private List<Snippet> processExpression(String userSource, Tree tree, String compileSource, ParseTask pt) {
ExpressionStatementTree expr = (ExpressionStatementTree) tree;
String name = null;
ExpressionInfo ei = ExpressionToTypeInfo.expressionInfo(compileSource, state);
ExpressionTree assignVar;
Wrap guts;
Snippet snip;
if (ei != null && ei.isNonVoid) {
String typeName = ei.typeName;
SubKind subkind;
if (ei.tree instanceof IdentifierTree) {
IdentifierTree id = (IdentifierTree) ei.tree;
name = id.getName().toString();
subkind = SubKind.VAR_VALUE_SUBKIND;
} else if (ei.tree instanceof AssignmentTree
&& (assignVar = ((AssignmentTree) ei.tree).getVariable()) instanceof IdentifierTree) {
name = assignVar.toString();
subkind = SubKind.ASSIGNMENT_SUBKIND;
} else {
subkind = SubKind.OTHER_EXPRESSION_SUBKIND;
}
if (shouldGenTempVar(subkind)) {
if (preserveState) {
name = "$$";
} else {
if (state.tempVariableNameGenerator != null) {
name = state.tempVariableNameGenerator.get();
}
while (name == null || state.keyMap.doesVariableNameExist(name)) {
name = "$" + ++varNumber;
}
}
ExpressionInfo varEI =
ExpressionToTypeInfo.localVariableTypeForInitializer(compileSource, state, true);
String declareTypeName;
String fullTypeName;
String displayTypeName;
Set<String> anonymousClasses;
if (varEI != null) {
declareTypeName = varEI.declareTypeName;
fullTypeName = varEI.fullTypeName;
displayTypeName = varEI.displayTypeName;
TreeDissector dis = TreeDissector.createByFirstClass(pt);
Pair<Wrap, Wrap> anonymous2Member =
anonymous2Member(varEI, compileSource, new Range(0, compileSource.length()), dis, expr.getExpression());
guts = Wrap.tempVarWrap(anonymous2Member.second.wrapped(), declareTypeName, name, anonymous2Member.first);
anonymousClasses = varEI.anonymousClasses.stream().map(ad -> ad.declareTypeName).collect(Collectors.toSet());
} else {
declareTypeName = ei.accessibleTypeName;
displayTypeName = fullTypeName = typeName;
guts = Wrap.tempVarWrap(compileSource, declareTypeName, name, null);
anonymousClasses = Collections.emptySet();
}
Collection<String> declareReferences = null; //TODO
snip = new VarSnippet(state.keyMap.keyForVariable(name), userSource, guts,
name, SubKind.TEMP_VAR_EXPRESSION_SUBKIND, displayTypeName, fullTypeName, anonymousClasses, declareReferences, null);
} else {
guts = Wrap.methodReturnWrap(compileSource);
snip = new ExpressionSnippet(state.keyMap.keyForExpression(name, typeName), userSource, guts,
name, subkind);
}
} else {
guts = Wrap.methodWrap(compileSource);
if (ei == null) {
// We got no type info, check for not a statement by trying
DiagList dl = trialCompile(guts);
if (dl.hasNotStatement()) {
guts = Wrap.methodReturnWrap(compileSource);
dl = trialCompile(guts);
}
if (dl.hasErrors()) {
return compileFailResult(dl, userSource, Kind.EXPRESSION);
}
}
snip = new StatementSnippet(state.keyMap.keyForStatement(), userSource, guts);
}
return singletonList(snip);
}
private List<Snippet> processClass(String userSource, Tree unitTree, String compileSource, SubKind snippetKind, ParseTask pt) {
TreeDependencyScanner tds = new TreeDependencyScanner();
tds.scan(unitTree);
TreeDissector dis = TreeDissector.createByFirstClass(pt);
ClassTree klassTree = (ClassTree) unitTree;
String name = klassTree.getSimpleName().toString();
DiagList modDiag = modifierDiagnostics(klassTree.getModifiers(), dis, false);
TypeDeclKey key = state.keyMap.keyForClass(name);
// Corralling
Wrap corralled = new Corraller(dis, key.index(), compileSource).corralType(klassTree);
Wrap guts = Wrap.classMemberWrap(compileSource);
Snippet snip = new TypeDeclSnippet(key, userSource, guts,
name, snippetKind,
corralled, tds.declareReferences(), tds.bodyReferences(), modDiag);
return singletonList(snip);
}
private List<Snippet> processStatement(String userSource, String compileSource) {
Wrap guts = Wrap.methodWrap(compileSource);
// Check for unreachable by trying
DiagList dl = trialCompile(guts);
if (dl.hasErrors()) {
if (dl.hasUnreachableError()) {
guts = Wrap.methodUnreachableSemiWrap(compileSource);
dl = trialCompile(guts);
if (dl.hasErrors()) {
if (dl.hasUnreachableError()) {
// Without ending semicolon
guts = Wrap.methodUnreachableWrap(compileSource);
dl = trialCompile(guts);
}
if (dl.hasErrors()) {
return compileFailResult(dl, userSource, Kind.STATEMENT);
}
}
} else {
return compileFailResult(dl, userSource, Kind.STATEMENT);
}
}
Snippet snip = new StatementSnippet(state.keyMap.keyForStatement(), userSource, guts);
return singletonList(snip);
}
private DiagList trialCompile(Wrap guts) {
OuterWrap outer = state.outerMap.wrapInTrialClass(guts);
return state.taskFactory.analyze(outer, AnalyzeTask::getDiagnostics);
}
private List<Snippet> processMethod(String userSource, Tree unitTree, String compileSource, ParseTask pt) {
TreeDependencyScanner tds = new TreeDependencyScanner();
tds.scan(unitTree);
final TreeDissector dis = TreeDissector.createByFirstClass(pt);
final MethodTree mt = (MethodTree) unitTree;
final String name = mt.getName().toString();
if (objectMethods.contains(name)) {
// The name matches a method on Object, short of an overhaul, this
// fails, see 8187137. Generate a descriptive error message
// The error position will be the position of the name, find it
long possibleStart = dis.getEndPosition(mt.getReturnType());
Range possibleRange = new Range((int) possibleStart,
dis.getStartPosition(mt.getBody()));
String possibleNameSection = possibleRange.part(compileSource);
int offset = possibleNameSection.indexOf(name);
long start = offset < 0
? possibleStart // something wrong, punt
: possibleStart + offset;
return compileFailResult(new DiagList(objectMethodNameDiag(name, start)), userSource, Kind.METHOD);
}
String parameterTypes
= mt.getParameters()
.stream()
.map(param -> dis.treeToRange(param.getType()).part(compileSource))
.collect(Collectors.joining(","));
Tree returnType = mt.getReturnType();
DiagList modDiag = modifierDiagnostics(mt.getModifiers(), dis, true);
MethodKey key = state.keyMap.keyForMethod(name, parameterTypes);
// Corralling
Wrap corralled = new Corraller(dis, key.index(), compileSource).corralMethod(mt);
if (modDiag.hasErrors()) {
return compileFailResult(modDiag, userSource, Kind.METHOD);
}
Wrap guts = Wrap.classMemberWrap(compileSource);
Range typeRange = dis.treeToRange(returnType);
String signature = "(" + parameterTypes + ")" + typeRange.part(compileSource);
Snippet snip = new MethodSnippet(key, userSource, guts,
name, signature,
corralled, tds.declareReferences(), tds.bodyReferences(), modDiag);
return singletonList(snip);
}
private Kind kindOfTree(Tree tree) {
switch (tree.getKind()) {
case IMPORT:
return Kind.IMPORT;
case VARIABLE:
return Kind.VAR;
case EXPRESSION_STATEMENT:
return Kind.EXPRESSION;
case CLASS:
case ENUM:
case ANNOTATION_TYPE:
case INTERFACE:
return Kind.TYPE_DECL;
case METHOD:
return Kind.METHOD;
default:
return Kind.STATEMENT;
}
}
/**
* The snippet has failed, return with the rejected snippet
*
* @param xt the task from which to extract the failure diagnostics
* @param userSource the incoming bad user source
* @return a rejected snippet
*/
private List<Snippet> compileFailResult(BaseTask xt, String userSource, Kind probableKind) {
return compileFailResult(xt.getDiagnostics(), userSource, probableKind);
}
/**
* The snippet has failed, return with the rejected snippet
*
* @param diags the failure diagnostics
* @param userSource the incoming bad user source
* @return a rejected snippet
*/
private List<Snippet> compileFailResult(DiagList diags, String userSource, Kind probableKind) {
ErroneousKey key = state.keyMap.keyForErroneous();
Snippet snip = new ErroneousSnippet(key, userSource, null,
probableKind, SubKind.UNKNOWN_SUBKIND);
snip.setFailed(diags);
// Install wrapper for query by SourceCodeAnalysis.wrapper
String compileSource = Util.trimEnd(new MaskCommentsAndModifiers(userSource, true).cleared());
OuterWrap outer;
switch (probableKind) {
case IMPORT:
outer = state.outerMap.wrapImport(Wrap.simpleWrap(compileSource), snip);
break;
case EXPRESSION:
outer = state.outerMap.wrapInTrialClass(Wrap.methodReturnWrap(compileSource));
break;
case VAR:
case TYPE_DECL:
case METHOD:
outer = state.outerMap.wrapInTrialClass(Wrap.classMemberWrap(compileSource));
break;
default:
outer = state.outerMap.wrapInTrialClass(Wrap.methodWrap(compileSource));
break;
}
snip.setOuterWrap(outer);
return singletonList(snip);
}
/**
* Should a temp var wrap the expression. TODO make this user configurable.
*
* @param snippetKind
* @return
*/
private boolean shouldGenTempVar(SubKind snippetKind) {
return snippetKind == SubKind.OTHER_EXPRESSION_SUBKIND;
}
List<SnippetEvent> drop(Snippet si) {
Unit c = new Unit(state, si);
Set<Unit> outs;
if (si instanceof PersistentSnippet) {
Set<Unit> ins = c.dependents().collect(toSet());
outs = compileAndLoad(ins);
} else {
outs = Collections.emptySet();
}
return events(c, outs, null, null);
}
private List<SnippetEvent> declare(Snippet si, DiagList generatedDiagnostics) {
Unit c = new Unit(state, si, null, generatedDiagnostics);
Set<Unit> ins = new LinkedHashSet<>();
ins.add(c);
Set<Unit> outs = compileAndLoad(ins);
if (!si.status().isDefined()
&& si.diagnostics().isEmpty()
&& si.unresolved().isEmpty()) {
// did not succeed, but no record of it, extract from others
si.setDiagnostics(outs.stream()
.flatMap(u -> u.snippet().diagnostics().stream())
.collect(Collectors.toCollection(DiagList::new)));
}
// If appropriate, execute the snippet
String value = null;
JShellException exception = null;
if (si.status().isDefined()) {
if (si.isExecutable()) {
try {
value = state.executionControl().invoke(si.classFullName(), DOIT_METHOD_NAME);
value = si.subKind().hasValue()
? expunge(value)
: "";
} catch (ResolutionException ex) {
exception = asUnresolvedReferenceException(ex);
} catch (UserException ex) {
exception = asEvalException(ex);
} catch (RunException ex) {
// StopException - no-op
} catch (InternalException ex) {
state.debug(ex, "invoke");
} catch (EngineTerminationException ex) {
state.debug(ex, "termination");
state.closeDown();
}
}
}
return events(c, outs, value, exception);
}
// Convert an internal UserException to an API EvalException, translating
// the stack to snippet form. Convert any chained exceptions
private EvalException asEvalException(UserException ue) {
return new EvalException(ue.getMessage(),
ue.causeExceptionClass(),
translateExceptionStack(ue),
asJShellException(ue.getCause()));
}
// Convert an internal ResolutionException to an API UnresolvedReferenceException,
// translating the snippet id to snipper and the stack to snippet form
private UnresolvedReferenceException asUnresolvedReferenceException(ResolutionException re) {
DeclarationSnippet sn = (DeclarationSnippet) state.maps.getSnippetDeadOrAlive(re.id());
return new UnresolvedReferenceException(sn, translateExceptionStack(re));
}
// Convert an internal UserException/ResolutionException to an API
// EvalException/UnresolvedReferenceException
private JShellException asJShellException(Throwable e) {
if (e == null) {
return null;
} else if (e instanceof UserException) {
return asEvalException((UserException) e);
} else if (e instanceof ResolutionException) {
return asUnresolvedReferenceException((ResolutionException) e);
} else {
throw new AssertionError(e);
}
}
private boolean interestingEvent(SnippetEvent e) {
return e.isSignatureChange()
|| e.causeSnippet() == null
|| e.status() != e.previousStatus()
|| e.exception() != null;
}
private List<SnippetEvent> events(Unit c, Collection<Unit> outs, String value, JShellException exception) {
List<SnippetEvent> events = new ArrayList<>();
events.add(c.event(value, exception));
events.addAll(outs.stream()
.filter(u -> u != c)
.map(u -> u.event(null, null))
.filter(this::interestingEvent)
.collect(Collectors.toList()));
events.addAll(outs.stream()
.flatMap(u -> u.secondaryEvents().stream())
.filter(this::interestingEvent)
.collect(Collectors.toList()));
//System.err.printf("Events: %s\n", events);
return events;
}
private Set<OuterWrap> outerWrapSet(Collection<Unit> units) {
return units.stream()
.map(u -> u.snippet().outerWrap())
.collect(toSet());
}
private Set<Unit> compileAndLoad(Set<Unit> ins) {
if (ins.isEmpty()) {
return ins;
}
Set<Unit> replaced = new LinkedHashSet<>();
// Loop until dependencies and errors are stable
while (true) {
state.debug(DBG_GEN, "compileAndLoad %s\n", ins);
ins.stream().forEach(Unit::initialize);
ins.stream().forEach(u -> u.setWrap(ins, ins));
state.taskFactory.analyze(outerWrapSet(ins), at -> {
ins.stream().forEach(u -> u.setDiagnostics(at));
// corral any Snippets that need it
if (ins.stream().filter(u -> u.corralIfNeeded(ins)).count() > 0) {
// if any were corralled, re-analyze everything
state.taskFactory.analyze(outerWrapSet(ins), cat -> {
ins.stream().forEach(u -> u.setCorralledDiagnostics(cat));
ins.stream().forEach(u -> u.setStatus(cat));
return null;
});
} else {
ins.stream().forEach(u -> u.setStatus(at));
}
return null;
});
// compile and load the legit snippets
boolean success;
while (true) {
List<Unit> legit = ins.stream()
.filter(Unit::isDefined)
.collect(toList());
state.debug(DBG_GEN, "compileAndLoad ins = %s -- legit = %s\n",
ins, legit);
if (legit.isEmpty()) {
// no class files can be generated
success = true;
} else {
// re-wrap with legit imports
legit.stream().forEach(u -> u.setWrap(ins, legit));
// generate class files for those capable
Result res = state.taskFactory.compile(outerWrapSet(legit), ct -> {
if (!ct.compile()) {
// oy! compile failed because of recursive new unresolved
if (legit.stream()
.filter(u -> u.smashingErrorDiagnostics(ct))
.count() > 0) {
// try again, with the erroreous removed
return Result.CONTINUE;
} else {
state.debug(DBG_GEN, "Should never happen error-less failure - %s\n",
legit);
}
}
// load all new classes
load(legit.stream()
.flatMap(u -> u.classesToLoad(ct.classList(u.snippet().outerWrap())))
.collect(toSet()));
// attempt to redefine the remaining classes
List<Unit> toReplace = legit.stream()
.filter(u -> !u.doRedefines())
.collect(toList());
// prevent alternating redefine/replace cyclic dependency
// loop by replacing all that have been replaced
if (!toReplace.isEmpty()) {
replaced.addAll(toReplace);
replaced.stream().forEach(Unit::markForReplacement);
//ensure correct classnames are set in the snippets:
replaced.stream().forEach(u -> u.setWrap(ins, legit));
}
return toReplace.isEmpty() ? Result.SUCESS : Result.FAILURE;
});
switch (res) {
case CONTINUE: continue;
case SUCESS: success = true; break;
default:
case FAILURE: success = false; break;
}
}
break;
}
// add any new dependencies to the working set
List<Unit> newDependencies = ins.stream()
.flatMap(Unit::effectedDependents)
.collect(toList());
state.debug(DBG_GEN, "compileAndLoad %s -- deps: %s success: %s\n",
ins, newDependencies, success);
if (!ins.addAll(newDependencies) && success) {
// all classes that could not be directly loaded (because they
// are new) have been redefined, and no new dependnencies were
// identified
ins.stream().forEach(Unit::finish);
return ins;
}
}
}
//where:
enum Result {SUCESS, FAILURE, CONTINUE}
/**
* If there are classes to load, loads by calling the execution engine.
* @param classbytecodes names of the classes to load.
*/
private void load(Collection<ClassBytecodes> classbytecodes) {
if (!classbytecodes.isEmpty()) {
ClassBytecodes[] cbcs = classbytecodes.toArray(new ClassBytecodes[classbytecodes.size()]);
try {
state.executionControl().load(cbcs);
state.classTracker.markLoaded(cbcs);
} catch (ClassInstallException ex) {
state.classTracker.markLoaded(cbcs, ex.installed());
} catch (NotImplementedException ex) {
state.debug(ex, "Seriously?!? load not implemented");
state.closeDown();
} catch (EngineTerminationException ex) {
state.closeDown();
}
}
}
private StackTraceElement[] translateExceptionStack(Exception ex) {
StackTraceElement[] raw = ex.getStackTrace();
int last = raw.length;
do {
if (last == 0) {
last = raw.length - 1;
break;
}
} while (!isWrap(raw[--last]));
StackTraceElement[] elems = new StackTraceElement[last + 1];
for (int i = 0; i <= last; ++i) {
StackTraceElement r = raw[i];
/**代码未完, 请加载全部代码(NowJava.com).**/