/*
* Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.nodes.calc;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_1;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp;
import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.Graph;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.iterators.NodePredicate;
import org.graalvm.compiler.graph.spi.Canonicalizable;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ArithmeticOperation;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.NodeView;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.ValuePhiNode;
import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeValueMap;
import jdk.vm.ci.meta.Constant;
@NodeInfo(cycles = CYCLES_1, size = SIZE_1)
public abstract class BinaryArithmeticNode<OP> extends BinaryNode implements ArithmeticOperation, ArithmeticLIRLowerable, Canonicalizable.Binary<ValueNode> {
@SuppressWarnings("rawtypes") public static final NodeClass<BinaryArithmeticNode> TYPE = NodeClass.create(BinaryArithmeticNode.class);
protected BinaryArithmeticNode(NodeClass<? extends BinaryArithmeticNode<OP>> c, BinaryOp<OP> opForStampComputation, ValueNode x, ValueNode y) {
super(c, opForStampComputation.foldStamp(x.stamp(NodeView.DEFAULT), y.stamp(NodeView.DEFAULT)), x, y);
}
protected BinaryArithmeticNode(NodeClass<? extends BinaryArithmeticNode<OP>> c, Stamp stamp, ValueNode x, ValueNode y) {
super(c, stamp, x, y);
}
public static ArithmeticOpTable getArithmeticOpTable(ValueNode forValue) {
return ArithmeticOpTable.forStamp(forValue.stamp(NodeView.DEFAULT));
}
protected abstract BinaryOp<OP> getOp(ArithmeticOpTable table);
protected final BinaryOp<OP> getOp(ValueNode forX, ValueNode forY) {
ArithmeticOpTable table = getArithmeticOpTable(forX);
assert table.equals(getArithmeticOpTable(forY));
return getOp(table);
}
@Override
public final BinaryOp<OP> getArithmeticOp() {
return getOp(getX(), getY());
}
public boolean isAssociative() {
return getArithmeticOp().isAssociative();
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) {
NodeView view = NodeView.from(tool);
ValueNode result = tryConstantFold(getOp(forX, forY), forX, forY, stamp(view), view);
if (result != null) {
return result;
}
if (forX instanceof ConditionalNode && forY.isConstant() && forX.hasExactlyOneUsage()) {
ConditionalNode conditionalNode = (ConditionalNode) forX;
BinaryOp<OP> arithmeticOp = getArithmeticOp();
ConstantNode trueConstant = tryConstantFold(arithmeticOp, conditionalNode.trueValue(), forY, this.stamp(view), view);
if (trueConstant != null) {
ConstantNode falseConstant = tryConstantFold(arithmeticOp, conditionalNode.falseValue(), forY, this.stamp(view), view);
if (falseConstant != null) {
// @formatter:off
/* The arithmetic is folded into a constant on both sides of the conditional.
* Example:
* (cond ? -5 : 5) + 100
* canonicalizes to:
* (cond ? 95 : 105)
*/
// @formatter:on
return ConditionalNode.create(conditionalNode.condition, trueConstant,
falseConstant, view);
}
}
}
return this;
}
@SuppressWarnings("unused")
public static <OP> ConstantNode tryConstantFold(BinaryOp<OP> op, ValueNode forX, ValueNode forY, Stamp stamp, NodeView view) {
if (forX.isConstant() && forY.isConstant()) {
Constant ret = op.foldConstant(forX.asConstant(), forY.asConstant());
if (ret != null) {
return ConstantNode.forPrimitive(stamp, ret);
}
}
return null;
}
@Override
public Stamp foldStamp(Stamp stampX, Stamp stampY) {
assert stampX.isCompatible(x.stamp(NodeView.DEFAULT)) && stampY.isCompatible(y.stamp(NodeView.DEFAULT));
return getArithmeticOp().foldStamp(stampX, stampY);
}
public static ValueNode add(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(AddNode.create(v1, v2, view));
}
public static ValueNode add(ValueNode v1, ValueNode v2, NodeView view) {
return AddNode.create(v1, v2, view);
}
public static ValueNode add(ValueNode v1, ValueNode v2) {
return add(v1, v2, NodeView.DEFAULT);
}
public static ValueNode mul(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(MulNode.create(v1, v2, view));
}
public static ValueNode mul(ValueNode v1, ValueNode v2, NodeView view) {
return MulNode.create(v1, v2, view);
}
public static ValueNode mul(ValueNode v1, ValueNode v2) {
return mul(v1, v2, NodeView.DEFAULT);
}
public static ValueNode sub(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(SubNode.create(v1, v2, view));
}
public static ValueNode sub(ValueNode v1, ValueNode v2, NodeView view) {
return SubNode.create(v1, v2, view);
}
public static ValueNode sub(ValueNode v1, ValueNode v2) {
return sub(v1, v2, NodeView.DEFAULT);
}
public static ValueNode branchlessMin(ValueNode v1, ValueNode v2, NodeView view) {
if (v1.isDefaultConstant() && !v2.isDefaultConstant()) {
return branchlessMin(v2, v1, view);
}
int bits = ((IntegerStamp) v1.stamp(view)).getBits();
assert ((IntegerStamp) v2.stamp(view)).getBits() == bits;
ValueNode t1 = sub(v1, v2, view);
ValueNode t2 = RightShiftNode.create(t1, bits - 1, view);
ValueNode t3 = AndNode.create(t1, t2, view);
return add(v2, t3, view);
}
public static ValueNode branchlessMax(ValueNode v1, ValueNode v2, NodeView view) {
if (v1.isDefaultConstant() && !v2.isDefaultConstant()) {
return branchlessMax(v2, v1, view);
}
int bits = ((IntegerStamp) v1.stamp(view)).getBits();
assert ((IntegerStamp) v2.stamp(view)).getBits() == bits;
if (v2.isDefaultConstant()) {
// prefer a & ~(a>>31) to a - (a & (a>>31))
return AndNode.create(v1, NotNode.create(RightShiftNode.create(v1, bits - 1, view)), view);
} else {
ValueNode t1 = sub(v1, v2, view);
ValueNode t2 = RightShiftNode.create(t1, bits - 1, view);
ValueNode t3 = AndNode.create(t1, t2, view);
return sub(v1, t3, view);
}
}
private enum ReassociateMatch {
x,
y;
public ValueNode getValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getX();
case y:
return binary.getY();
default:
throw GraalError.shouldNotReachHere();
}
}
public ValueNode getOtherValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getY();
case y:
return binary.getX();
default:
throw GraalError.shouldNotReachHere();
}
}
}
private static ReassociateMatch findReassociate(BinaryNode binary, NodePredicate criterion) {
boolean resultX = criterion.apply(binary.getX());
boolean resultY = criterion.apply(binary.getY());
if (resultX && !resultY) {
return ReassociateMatch.x;
}
if (!resultX && resultY) {
return ReassociateMatch.y;
}
return null;
}
//@formatter:off
/*
* In reassociate, complexity comes from the handling of IntegerSub (non commutative) which can
* be mixed with IntegerAdd. It first tries to find m1, m2 which match the criterion :
* (a o m2) o m1
* (m2 o a) o m1
* m1 o (a o m2)
* m1 o (m2 o a)
* It then produces 4 boolean for the -/+ cases:
* invertA : should the final expression be like *-a (rather than a+*)
* aSub : should the final expression be like a-* (rather than a+*)
* invertM1 : should the final expression contain -m1
* invertM2 : should the final expression contain -m2
*
*/
//@formatter:on
/**
* Tries to re-associate values which satisfy the criterion. For example with a constantness
* criterion: {@code (a + 2) + 1 => a + (1 + 2)}
* <p>
* This method accepts only {@linkplain BinaryOp#isAssociative() associative} operations such as
* +, -, *, &, | and ^
*
* @param forY
* @param forX
*/
public static ValueNode reassociate(BinaryArithmeticNode<?> node, NodePredicate criterion, ValueNode forX, ValueNode forY, NodeView view) {
assert node.getOp(forX, forY).isAssociative();
ReassociateMatch match1 = findReassociate(node, criterion);
if (match1 == null) {
return node;
}
ValueNode otherValue = match1.getOtherValue(node);
boolean addSub = false;
boolean subAdd = false;
if (otherValue.getClass() != node.getClass()) {
if (node instanceof AddNode && otherValue instanceof SubNode) {
addSub = true;
} else if (node instanceof SubNode && otherValue instanceof AddNode) {
subAdd = true;
} else {
return node;
}
}
BinaryNode other = (BinaryNode) otherValue;
ReassociateMatch match2 = findReassociate(other, criterion);
if (match2 == null) {
return node;
}
boolean invertA = false;
boolean aSub = false;
boolean invertM1 = false;
boolean invertM2 = false;
if (addSub) {
invertM2 = match2 == ReassociateMatch.y;
invertA = !invertM2;
} else if (subAdd) {
invertA = invertM2 = match1 == ReassociateMatch.x;
invertM1 = !invertM2;
} else if (node instanceof SubNode && other instanceof SubNode) {
invertA = match1 == ReassociateMatch.x ^ match2 == ReassociateMatch.x;
aSub = match1 == ReassociateMatch.y && match2 == ReassociateMatch.y;
invertM1 = match1 == ReassociateMatch.y && match2 == ReassociateMatch.x;
invertM2 = match1 == ReassociateMatch.x && match2 == ReassociateMatch.x;
}
assert !(invertM1 && invertM2) && !(invertA && aSub);
ValueNode m1 = match1.getValue(node);
ValueNode m2 = match2.getValue(other);
ValueNode a = match2.getOtherValue(other);
if (node instanceof AddNode || node instanceof SubNode) {
ValueNode associated;
if (invertM1) {
associated = BinaryArithmeticNode.sub(m2, m1, view);
} else if (invertM2) {
associated = BinaryArithmeticNode.sub(m1, m2, view);
} else {
associated = BinaryArithmeticNode.add(m1, m2, view);
}
if (invertA) {
return BinaryArithmeticNode.sub(associated, a, view);
}
if (aSub) {
return BinaryArithmeticNode.sub(a, associated, view);
}
return BinaryArithmeticNode.add(a, associated, view);
} else if (node instanceof MulNode) {
return BinaryArithmeticNode.mul(a, AddNode.mul(m1, m2, view), view);
} else if (node instanceof AndNode) {
return new AndNode(a, new AndNode(m1, m2));
} else if (node instanceof OrNode) {
return new OrNode(a, new OrNode(m1, m2));
} else if (node instanceof XorNode) {
return new XorNode(a, new XorNode(m1, m2));
} else {
throw GraalError.shouldNotReachHere();
}
}
/**
* Ensure a canonical ordering of inputs for commutative nodes to improve GVN results. Order the
* inputs by increasing {@link Node#id} and call {@link Graph#findDuplicate(Node)} on the node
* if it's currently in a graph. It's assumed that if there was a constant on the left it's been
* moved to the right by other code and that ordering is left alone.
*
/**代码未完, 请加载全部代码(NowJava.com).**/