/*
* Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.vm.ci.hotspot;
import static java.util.Objects.requireNonNull;
import static jdk.vm.ci.hotspot.CompilerToVM.compilerToVM;
import static jdk.vm.ci.hotspot.HotSpotConstantPool.isSignaturePolymorphicHolder;
import static jdk.vm.ci.hotspot.HotSpotJVMCIRuntime.runtime;
import static jdk.vm.ci.hotspot.HotSpotModifiers.jvmClassModifiers;
import static jdk.vm.ci.hotspot.HotSpotVMConfig.config;
import static jdk.vm.ci.hotspot.UnsafeAccess.UNSAFE;
import java.lang.annotation.Annotation;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.nio.ByteOrder;
import java.util.HashMap;
import jdk.vm.ci.common.JVMCIError;
import jdk.vm.ci.meta.Assumptions.AssumptionResult;
import jdk.vm.ci.meta.Assumptions.ConcreteMethod;
import jdk.vm.ci.meta.Assumptions.ConcreteSubtype;
import jdk.vm.ci.meta.Assumptions.LeafType;
import jdk.vm.ci.meta.Assumptions.NoFinalizableSubclass;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.JavaType;
import jdk.vm.ci.meta.ResolvedJavaField;
import jdk.vm.ci.meta.ResolvedJavaMethod;
import jdk.vm.ci.meta.ResolvedJavaType;
import jdk.vm.ci.meta.UnresolvedJavaField;
import jdk.vm.ci.meta.UnresolvedJavaType;
/**
* Implementation of {@link JavaType} for resolved non-primitive HotSpot classes. This class is not
* an {@link MetaspaceHandleObject} because it doesn't have to be scanned for GC. It's liveness is
* maintained by a reference to the {@link Class} instance.
*/
final class HotSpotResolvedObjectTypeImpl extends HotSpotResolvedJavaType implements HotSpotResolvedObjectType, MetaspaceObject {
private static final HotSpotResolvedJavaField[] NO_FIELDS = new HotSpotResolvedJavaField[0];
private static final int METHOD_CACHE_ARRAY_CAPACITY = 8;
/**
* The Java class this type represents.
*/
private final long metadataPointer;
private HotSpotResolvedJavaMethodImpl[] methodCacheArray;
private HashMap<Long, HotSpotResolvedJavaMethodImpl> methodCacheHashMap;
private volatile HotSpotResolvedJavaField[] instanceFields;
private volatile HotSpotResolvedObjectTypeImpl[] interfaces;
private HotSpotConstantPool constantPool;
private final JavaConstant mirror;
private HotSpotResolvedObjectTypeImpl superClass;
/**
* Managed exclusively by {@link HotSpotJDKReflection#getField}.
*/
HashMap<HotSpotResolvedJavaFieldImpl, Field> reflectionFieldCache;
static HotSpotResolvedObjectTypeImpl getJavaLangObject() {
return runtime().getJavaLangObject();
}
/**
* Gets the JVMCI mirror from a HotSpot type.
*
* Called from the VM.
*
* @param klassPointer a native pointer to the Klass*
* @return the {@link ResolvedJavaType} corresponding to {@code javaClass}
*/
@SuppressWarnings("unused")
@VMEntryPoint
private static HotSpotResolvedObjectTypeImpl fromMetaspace(long klassPointer, String signature) {
return runtime().fromMetaspace(klassPointer, signature);
}
/**
* Creates the JVMCI mirror for a {@link Class} object.
*
* <b>NOTE</b>: Creating an instance of this class does not install the mirror for the
* {@link Class} type.
* </p>
*
* @param metadataPointer the Klass* to create the mirror for
*/
@SuppressWarnings("try")
HotSpotResolvedObjectTypeImpl(long metadataPointer, String name) {
super(name);
assert metadataPointer != 0;
this.metadataPointer = metadataPointer;
// The mirror object must be in the global scope since
// this object will be cached in HotSpotJVMCIRuntime.resolvedJavaTypes
// and live across more than one compilation.
try (HotSpotObjectConstantScope global = HotSpotObjectConstantScope.enterGlobalScope()) {
this.mirror = runtime().compilerToVm.getJavaMirror(this);
assert getName().charAt(0) != '[' || isArray() : getName();
}
}
/**
* Gets the metaspace Klass for this type.
*/
long getMetaspaceKlass() {
long metaspacePointer = getMetaspacePointer();
if (metaspacePointer == 0) {
throw new NullPointerException("Klass* is null");
}
return metaspacePointer;
}
@Override
public long getMetaspacePointer() {
return metadataPointer;
}
@Override
public int getModifiers() {
if (isArray()) {
return (getElementalType().getModifiers() & (Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED)) | Modifier.FINAL | Modifier.ABSTRACT;
} else {
return getAccessFlags() & jvmClassModifiers();
}
}
public int getAccessFlags() {
HotSpotVMConfig config = config();
return UNSAFE.getInt(getMetaspaceKlass() + config.klassAccessFlagsOffset);
}
@Override
public ResolvedJavaType getComponentType() {
return runtime().compilerToVm.getComponentType(this);
}
@Override
public AssumptionResult<ResolvedJavaType> findLeafConcreteSubtype() {
if (isLeaf()) {
// No assumptions are required.
return new AssumptionResult<>(this);
}
HotSpotVMConfig config = config();
if (isArray()) {
ResolvedJavaType elementalType = getElementalType();
AssumptionResult<ResolvedJavaType> elementType = elementalType.findLeafConcreteSubtype();
if (elementType != null && elementType.getResult().equals(elementalType)) {
/*
* If the elementType is leaf then the array is leaf under the same assumptions but
* only if the element type is exactly the leaf type. The element type can be
* abstract even if there is only one implementor of the abstract type.
*/
AssumptionResult<ResolvedJavaType> result = new AssumptionResult<>(this);
result.add(elementType);
return result;
}
return null;
} else if (isInterface()) {
HotSpotResolvedObjectTypeImpl implementor = getSingleImplementor();
/*
* If the implementor field contains itself that indicates that the interface has more
* than one implementors (see: InstanceKlass::add_implementor).
*/
if (implementor == null || implementor.equals(this)) {
return null;
}
assert !implementor.isInterface();
if (implementor.isAbstract() || !implementor.isLeafClass()) {
AssumptionResult<ResolvedJavaType> leafConcreteSubtype = implementor.findLeafConcreteSubtype();
if (leafConcreteSubtype != null) {
assert !leafConcreteSubtype.getResult().equals(implementor);
AssumptionResult<ResolvedJavaType> newResult = new AssumptionResult<>(leafConcreteSubtype.getResult(), new ConcreteSubtype(this, implementor));
// Accumulate leaf assumptions and return the combined result.
newResult.add(leafConcreteSubtype);
return newResult;
}
return null;
}
return concreteSubtype(implementor);
} else {
HotSpotResolvedObjectTypeImpl type = this;
while (type.isAbstract()) {
HotSpotResolvedObjectTypeImpl subklass = type.getSubklass();
if (subklass == null || UNSAFE.getAddress(subklass.getMetaspaceKlass() + config.nextSiblingOffset) != 0) {
return null;
}
type = subklass;
}
if (type.isAbstract() || type.isInterface() || !type.isLeafClass()) {
return null;
}
if (this.isAbstract()) {
return concreteSubtype(type);
} else {
assert this.equals(type);
return new AssumptionResult<>(type, new LeafType(type));
}
}
}
private AssumptionResult<ResolvedJavaType> concreteSubtype(HotSpotResolvedObjectTypeImpl type) {
if (type.isLeaf()) {
return new AssumptionResult<>(type, new ConcreteSubtype(this, type));
} else {
return new AssumptionResult<>(type, new LeafType(type), new ConcreteSubtype(this, type));
}
}
/**
* Returns if type {@code type} is a leaf class. This is the case if the
* {@code Klass::_subklass} field of the underlying class is zero.
*
* @return true if the type is a leaf class
*/
private boolean isLeafClass() {
return UNSAFE.getLong(this.getMetaspaceKlass() + config().subklassOffset) == 0;
}
/**
* Returns the {@code Klass::_subklass} field of the underlying metaspace klass for the given
* type {@code type}.
*
* @return value of the subklass field as metaspace klass pointer
*/
private HotSpotResolvedObjectTypeImpl getSubklass() {
return compilerToVM().getResolvedJavaType(this, config().subklassOffset, false);
}
@Override
public HotSpotResolvedObjectTypeImpl getSuperclass() {
if (isInterface()) {
return null;
}
HotSpotResolvedObjectTypeImpl javaLangObject = runtime().getJavaLangObject();
if (this.equals(javaLangObject)) {
return null;
}
if (isArray()) {
return javaLangObject;
}
// Cache result of native call
if (superClass == null) {
superClass = compilerToVM().getResolvedJavaType(this, config().superOffset, false);
}
return superClass;
}
@Override
public HotSpotResolvedObjectTypeImpl[] getInterfaces() {
if (interfaces == null) {
if (isArray()) {
HotSpotResolvedObjectTypeImpl[] types = new HotSpotResolvedObjectTypeImpl[2];
types[0] = runtime().getJavaLangCloneable();
types[1] = runtime().getJavaLangSerializable();
this.interfaces = types;
} else {
interfaces = runtime().compilerToVm.getInterfaces(this);
}
}
return interfaces;
}
@Override
public HotSpotResolvedObjectTypeImpl getSingleImplementor() {
if (!isInterface()) {
throw new JVMCIError("Cannot call getSingleImplementor() on a non-interface type: %s", this);
}
return compilerToVM().getImplementor(this);
}
@Override
public HotSpotResolvedObjectTypeImpl getSupertype() {
if (isArray()) {
ResolvedJavaType componentType = getComponentType();
if (componentType.equals(getJavaLangObject()) || componentType.isPrimitive()) {
return getJavaLangObject();
}
HotSpotResolvedObjectTypeImpl supertype = ((HotSpotResolvedObjectTypeImpl) componentType).getSupertype();
return (HotSpotResolvedObjectTypeImpl) supertype.getArrayClass();
}
if (isInterface()) {
return getJavaLangObject();
}
return getSuperclass();
}
@Override
public HotSpotResolvedObjectType findLeastCommonAncestor(ResolvedJavaType otherType) {
if (otherType.isPrimitive()) {
return null;
} else {
HotSpotResolvedObjectTypeImpl t1 = this;
HotSpotResolvedObjectTypeImpl t2 = (HotSpotResolvedObjectTypeImpl) otherType;
while (true) {
if (t1.isAssignableFrom(t2)) {
return t1;
}
if (t2.isAssignableFrom(t1)) {
return t2;
}
t1 = t1.getSupertype();
t2 = t2.getSupertype();
}
}
}
@Override
public AssumptionResult<Boolean> hasFinalizableSubclass() {
assert !isArray();
if (!compilerToVM().hasFinalizableSubclass(this)) {
return new AssumptionResult<>(false, new NoFinalizableSubclass(this));
}
return new AssumptionResult<>(true);
}
@Override
public boolean hasFinalizer() {
return (getAccessFlags() & config().jvmAccHasFinalizer) != 0;
}
@Override
public boolean isArray() {
return layoutHelper() < config().klassLayoutHelperNeutralValue;
}
@Override
public boolean isEnum() {
HotSpotResolvedObjectTypeImpl superclass = getSuperclass();
return superclass != null && superclass.equals(runtime().getJavaLangEnum());
}
@Override
public boolean isInitialized() {
return isArray() ? true : getInitState() == config().instanceKlassStateFullyInitialized;
}
@Override
public boolean isBeingInitialized() {
return isArray() ? false : getInitState() == config().instanceKlassStateBeingInitialized;
}
@Override
public boolean isLinked() {
return isArray() ? true : getInitState() >= config().instanceKlassStateLinked;
}
/**
* Returns the value of the state field {@code InstanceKlass::_init_state} of the metaspace
* klass.
*
* @return state field value of this type
*/
private int getInitState() {
assert !isArray() : "_init_state only exists in InstanceKlass";
return UNSAFE.getByte(getMetaspaceKlass() + config().instanceKlassInitStateOffset) & 0xFF;
}
@Override
public void initialize() {
if (!isInitialized()) {
runtime().compilerToVm.ensureInitialized(this);
assert isInitialized() || isBeingInitialized();
}
}
@Override
public boolean isInstance(JavaConstant obj) {
if (obj.getJavaKind() == JavaKind.Object && !obj.isNull()) {
return runtime().reflection.isInstance(this, (HotSpotObjectConstantImpl) obj);
}
return false;
}
@Override
public boolean isInstanceClass() {
return !isArray() && !isInterface();
}
@Override
public boolean isInterface() {
return (getAccessFlags() & config().jvmAccInterface) != 0;
}
@Override
public boolean isAssignableFrom(ResolvedJavaType other) {
assert other != null;
if (other instanceof HotSpotResolvedObjectTypeImpl) {
HotSpotResolvedObjectTypeImpl otherType = (HotSpotResolvedObjectTypeImpl) other;
return runtime().reflection.isAssignableFrom(this, otherType);
}
return false;
}
@Override
public ResolvedJavaType getHostClass() {
if (isArray()) {
return null;
}
return compilerToVM().getHostClass(this);
}
@Override
public boolean isJavaLangObject() {
return getName().equals("Ljava/lang/Object;");
}
@Override
public JavaKind getJavaKind() {
return JavaKind.Object;
}
@Override
public ResolvedJavaMethod resolveMethod(ResolvedJavaMethod method, ResolvedJavaType callerType) {
assert !callerType.isArray();
if (isInterface()) {
// Methods can only be resolved against concrete types
return null;
}
if (method.isConcrete() && method.getDeclaringClass().equals(this) && method.isPublic() && !isSignaturePolymorphicHolder(method.getDeclaringClass())) {
return method;
}
if (!method.getDeclaringClass().isAssignableFrom(this)) {
return null;
}
HotSpotResolvedJavaMethodImpl hotSpotMethod = (HotSpotResolvedJavaMethodImpl) method;
HotSpotResolvedObjectTypeImpl hotSpotCallerType = (HotSpotResolvedObjectTypeImpl) callerType;
return compilerToVM().resolveMethod(this, hotSpotMethod, hotSpotCallerType);
}
@Override
public HotSpotConstantPool getConstantPool() {
if (constantPool == null || !isArray() && UNSAFE.getAddress(getMetaspaceKlass() + config().instanceKlassConstantsOffset) != constantPool.getMetaspaceConstantPool()) {
/*
* If the pointer to the ConstantPool has changed since this was last read refresh the
* HotSpotConstantPool wrapper object. This ensures that uses of the constant pool are
* operating on the latest one and that HotSpotResolvedJavaMethodImpls will be able to
* use the shared copy instead of creating their own instance.
*/
constantPool = compilerToVM().getConstantPool(this);
}
return constantPool;
}
/**
* Gets the instance size of this type. If an instance of this type cannot be fast path
* allocated, then the returned value is negative (its absolute value gives the size). Must not
* be called if this is an array or interface type.
*/
@Override
public int instanceSize() {
assert !isArray();
assert !isInterface();
HotSpotVMConfig config = config();
final int layoutHelper = layoutHelper();
assert layoutHelper > config.klassLayoutHelperNeutralValue : "must be instance";
// See: Klass::layout_helper_size_in_bytes
int size = layoutHelper & ~config.klassLayoutHelperInstanceSlowPathBit;
// See: Klass::layout_helper_needs_slow_path
boolean needsSlowPath = (layoutHelper & config.klassLayoutHelperInstanceSlowPathBit) != 0;
return needsSlowPath ? -size : size;
}
@Override
public int layoutHelper() {
HotSpotVMConfig config = config();
assert getMetaspaceKlass() != 0 : getName();
return UNSAFE.getInt(getMetaspaceKlass() + config.klassLayoutHelperOffset);
}
@Override
public long getFingerprint() {
return compilerToVM().getFingerprint(getMetaspaceKlass());
}
synchronized HotSpotResolvedJavaMethod createMethod(long metaspaceHandle) {
long metaspaceMethod = UNSAFE.getLong(metaspaceHandle);
// Maintain cache as array.
if (methodCacheArray == null) {
methodCacheArray = new HotSpotResolvedJavaMethodImpl[METHOD_CACHE_ARRAY_CAPACITY];
}
int i = 0;
for (; i < methodCacheArray.length; ++i) {
HotSpotResolvedJavaMethodImpl curMethod = methodCacheArray[i];
if (curMethod == null) {
HotSpotResolvedJavaMethodImpl newMethod = new HotSpotResolvedJavaMethodImpl(this, metaspaceHandle);
methodCacheArray[i] = newMethod;
return newMethod;
} else if (curMethod.getMetaspaceMethod() == metaspaceMethod) {
return curMethod;
}
}
// Fall-back to hash table.
if (methodCacheHashMap == null) {
methodCacheHashMap = new HashMap<>();
}
HotSpotResolvedJavaMethodImpl lookupResult = methodCacheHashMap.get(metaspaceMethod);
if (lookupResult == null) {
HotSpotResolvedJavaMethodImpl newMethod = new HotSpotResolvedJavaMethodImpl(this, metaspaceHandle);
methodCacheHashMap.put(metaspaceMethod, newMethod);
return newMethod;
} else {
return lookupResult;
}
}
@Override
public int getVtableLength() {
HotSpotVMConfig config = config();
if (isInterface() || isArray()) {
/* Everything has the core vtable of java.lang.Object */
return config.baseVtableLength();
}
int result = UNSAFE.getInt(getMetaspaceKlass() + config.klassVtableLengthOffset) / (config.vtableEntrySize / config.heapWordSize);
assert result >= config.baseVtableLength() : UNSAFE.getInt(getMetaspaceKlass() + config.klassVtableLengthOffset) + " " + config.vtableEntrySize;
return result;
}
HotSpotResolvedJavaField createField(JavaType type, long offset, int rawFlags, int index) {
return new HotSpotResolvedJavaFieldImpl(this, type, offset, rawFlags, index);
}
@Override
public AssumptionResult<ResolvedJavaMethod> findUniqueConcreteMethod(ResolvedJavaMethod method) {
HotSpotResolvedJavaMethod hmethod = (HotSpotResolvedJavaMethod) method;
HotSpotResolvedObjectType declaredHolder = hmethod.getDeclaringClass();
/*
* Sometimes the receiver type in the graph hasn't stabilized to a subtype of declared
* holder, usually because of phis, so make sure that the type is related to the declared
* type before using it for lookup. Unlinked types should also be ignored because we can't
* resolve the proper method to invoke. Generally unlinked types in invokes should result in
* a deopt instead since they can't really be used if they aren't linked yet.
*/
if (!declaredHolder.isAssignableFrom(this) || this.isArray() || this.equals(declaredHolder) || !isLinked() || isInterface()) {
if (hmethod.canBeStaticallyBound()) {
// No assumptions are required.
return new AssumptionResult<>(hmethod);
}
ResolvedJavaMethod result = hmethod.uniqueConcreteMethod(declaredHolder);
if (result != null) {
return new AssumptionResult<>(result, new ConcreteMethod(method, declaredHolder, result));
}
return null;
}
/*
* The holder may be a subtype of the declaredHolder so make sure to resolve the method to
* the correct method for the subtype.
*/
HotSpotResolvedJavaMethod resolvedMethod = (HotSpotResolvedJavaMethod) resolveMethod(hmethod, this);
if (resolvedMethod == null) {
// The type isn't known to implement the method.
return null;
}
if (resolvedMethod.canBeStaticallyBound()) {
// No assumptions are required.
return new AssumptionResult<>(resolvedMethod);
}
ResolvedJavaMethod result = resolvedMethod.uniqueConcreteMethod(this);
if (result != null) {
return new AssumptionResult<>(result, new ConcreteMethod(method, this, result));
}
return null;
}
FieldInfo createFieldInfo(int index) {
return new FieldInfo(index);
}
public void ensureInitialized() {
runtime().compilerToVm.ensureInitialized(this);
}
@Override
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof HotSpotResolvedObjectTypeImpl)) {
return false;
}
HotSpotResolvedObjectTypeImpl that = (HotSpotResolvedObjectTypeImpl) obj;
return getMetaspaceKlass() == that.getMetaspaceKlass();
}
@Override
JavaConstant getJavaMirror() {
return mirror;
}
/**
* This class represents the field information for one field contained in the fields array of an
* {@code InstanceKlass}. The implementation is similar to the native {@code FieldInfo} class.
*/
class FieldInfo {
/**
* Native pointer into the array of Java shorts.
*/
private final long metaspaceData;
/**
* Creates a field info for the field in the fields array at index {@code index}.
*
* @param index index to the fields array
*/
FieldInfo(int index) {
HotSpotVMConfig config = config();
// Get Klass::_fields
final long metaspaceFields = UNSAFE.getAddress(getMetaspaceKlass() + config.instanceKlassFieldsOffset);
assert config.fieldInfoFieldSlots == 6 : "revisit the field parsing code";
int offset = config.fieldInfoFieldSlots * Short.BYTES * index;
metaspaceData = metaspaceFields + config.arrayU2DataOffset + offset;
}
private int getAccessFlags() {
return readFieldSlot(config().fieldInfoAccessFlagsOffset);
}
private int getNameIndex() {
return readFieldSlot(config().fieldInfoNameIndexOffset);
}
private int getSignatureIndex() {
return readFieldSlot(config().fieldInfoSignatureIndexOffset);
}
public int getOffset() {
HotSpotVMConfig config = config();
final int lowPacked = readFieldSlot(config.fieldInfoLowPackedOffset);
final int highPacked = readFieldSlot(config.fieldInfoHighPackedOffset);
final int offset = ((highPacked << Short.SIZE) | lowPacked) >> config.fieldInfoTagSize;
return offset;
}
/**
* Helper method to read an entry (slot) from the field array. Currently field info is laid
* on top an array of Java shorts.
*/
private int readFieldSlot(int index) {
int offset = Short.BYTES * index;
return UNSAFE.getChar(metaspaceData + offset);
}
/**
* Returns the name of this field as a {@link String}. If the field is an internal field the
* name index is pointing into the vmSymbols table.
*/
public String getName() {
final int nameIndex = getNameIndex();
return isInternal() ? config().symbolAt(nameIndex) : getConstantPool().lookupUtf8(nameIndex);
}
/**
* Returns the signature of this field as {@link String}. If the field is an internal field
* the signature index is pointing into the vmSymbols table.
*/
public String getSignature() {
final int signatureIndex = getSignatureIndex();
return isInternal() ? config().symbolAt(signatureIndex) : getConstantPool().lookupUtf8(signatureIndex);
}
public JavaType getType() {
String signature = getSignature();
return runtime().lookupType(signature, HotSpotResolvedObjectTypeImpl.this, false);
}
private boolean isInternal() {
return (getAccessFlags() & config().jvmAccFieldInternal) != 0;
}
public boolean isStatic() {
return Modifier.isStatic(getAccessFlags());
}
public boolean hasGenericSignature() {
return (getAccessFlags() & config().jvmAccFieldHasGenericSignature) != 0;
}
}
@Override
public ResolvedJavaField[] getInstanceFields(boolean includeSuperclasses) {
if (instanceFields == null) {
if (isArray() || isInterface()) {
instanceFields = NO_FIELDS;
} else {
HotSpotResolvedJavaField[] prepend = NO_FIELDS;
if (getSuperclass() != null) {
prepend = (HotSpotResolvedJavaField[]) getSuperclass().getInstanceFields(true);
}
instanceFields = getFields(false, prepend);
}
}
if (!includeSuperclasses && getSuperclass() != null) {
int superClassFieldCount = getSuperclass().getInstanceFields(true).length;
if (superClassFieldCount == instanceFields.length) {
// This class does not have any instance fields of its own.
return NO_FIELDS;
} else if (superClassFieldCount != 0) {
HotSpotResolvedJavaField[] result = new HotSpotResolvedJavaField[instanceFields.length - superClassFieldCount];
System.arraycopy(instanceFields, superClassFieldCount, result, 0, result.length);
return result;
} else {
// The super classes of this class do not have any instance fields.
}
}
return instanceFields;
}
@Override
public ResolvedJavaField[] getStaticFields() {
if (isArray()) {
return new HotSpotResolvedJavaField[0];
} else {
return getFields(true, NO_FIELDS);
}
}
/**
* Gets the instance or static fields of this class.
*
* @param retrieveStaticFields specifies whether to return instance or static fields
* @param prepend an array to be prepended to the returned result
*/
private HotSpotResolvedJavaField[] getFields(boolean retrieveStaticFields, HotSpotResolvedJavaField[] prepend) {
HotSpotVMConfig config = config();
final long metaspaceFields = UNSAFE.getAddress(getMetaspaceKlass() + config.instanceKlassFieldsOffset);
int metaspaceFieldsLength = UNSAFE.getInt(metaspaceFields + config.arrayU1LengthOffset);
int resultCount = 0;
int index = 0;
for (int i = 0; i < metaspaceFieldsLength; i += config.fieldInfoFieldSlots, index++) {
FieldInfo field = new FieldInfo(index);
if (field.hasGenericSignature()) {
metaspaceFieldsLength--;
}
if (field.isStatic() == retrieveStaticFields) {
resultCount++;
}
}
if (resultCount == 0) {
return prepend;
}
int prependLength = prepend.length;
resultCount += prependLength;
HotSpotResolvedJavaField[] result = new HotSpotResolvedJavaField[resultCount];
if (prependLength != 0) {
System.arraycopy(prepend, 0, result, 0, prependLength);
}
int resultIndex = prependLength;
for (int i = 0; i < index; ++i) {
FieldInfo field = new FieldInfo(i);
if (field.isStatic() == retrieveStaticFields) {
int offset = field.getOffset();
HotSpotResolvedJavaField resolvedJavaField = createField(field.getType(), offset, field.getAccessFlags(), i);
// Make sure the result is sorted by offset.
int j;
for (j = resultIndex - 1; j >= prependLength && result[j].getOffset() > offset; j--) {
result[j + 1] = result[j];
}
result[j + 1] = resolvedJavaField;
resultIndex++;
}
}
return result;
}
@Override
public String getSourceFileName() {
HotSpotVMConfig config = config();
final int sourceFileNameIndex = UNSAFE.getChar(getMetaspaceKlass() + config.instanceKlassSourceFileNameIndexOffset);
if (sourceFileNameIndex == 0) {
return null;
}
return getConstantPool().lookupUtf8(sourceFileNameIndex);
}
@Override
public Annotation[] getAnnotations() {
return runtime().reflection.getAnnotations(this);
}
@Override
public Annotation[] getDeclaredAnnotations() {
return runtime().reflection.getDeclaredAnnotations(this);
}
@Override
public <T extends Annotation> T getAnnotation(Class<T> annotationClass) {
return runtime().reflection.getAnnotation(this, annotationClass);
}
/**
* Performs a fast-path check that this type is resolved in the context of a given accessing
* class. A negative result does not mean this type is not resolved with respect to
* {@code accessingClass}. That can only be determined by
* {@linkplain HotSpotJVMCIRuntime#lookupType(String, HotSpotResolvedObjectType, boolean)
* re-resolving} the type.
*/
@Override
public boolean isDefinitelyResolvedWithRespectTo(ResolvedJavaType accessingClass) {
assert accessingClass != null;
ResolvedJavaType elementType = getElementalType();
if (elementType.isPrimitive()) {
// Primitive type resolution is context free.
return true;
}
if (elementType.getName().startsWith("Ljava/") && hasSameClassLoader(runtime().getJavaLangObject())) {
// Classes in a java.* package defined by the boot class loader are always resolved.
return true;
}
HotSpotResolvedObjectTypeImpl otherMirror = ((HotSpotResolvedObjectTypeImpl) accessingClass);
return hasSameClassLoader(otherMirror);
}
private boolean hasSameClassLoader(HotSpotResolvedObjectTypeImpl otherMirror) {
return UnsafeAccess.UNSAFE.getAddress(getMetaspaceKlass() + config().classLoaderDataOffset) == UnsafeAccess.UNSAFE.getAddress(
otherMirror.getMetaspaceKlass() + config().classLoaderDataOffset);
}
@Override
public ResolvedJavaType resolve(ResolvedJavaType accessingClass) {
if (isDefinitelyResolvedWithRespectTo(requireNonNull(accessingClass))) {
return this;
}
HotSpotResolvedObjectTypeImpl accessingType = (HotSpotResolvedObjectTypeImpl) accessingClass;
return (ResolvedJavaType) runtime().lookupType(getName(), accessingType, true);
}
/**
* Gets the metaspace Klass boxed in a {@link JavaConstant}.
*/
@Override
public Constant klass() {
return HotSpotMetaspaceConstantImpl.forMetaspaceObject(this, false);
}
@Override
public boolean isPrimaryType() {
return config().secondarySuperCacheOffset != superCheckOffset();
}
@Override
public int superCheckOffset() {
HotSpotVMConfig config = config();
return UNSAFE.getInt(getMetaspaceKlass() + config.superCheckOffsetOffset);
}
@Override
public long prototypeMarkWord() {
HotSpotVMConfig config = config();
if (isArray()) {
return config.arrayPrototypeMarkWord();
} else {
return UNSAFE.getAddress(getMetaspaceKlass() + config.prototypeMarkWordOffset);
}
}
@Override
/**代码未完, 请加载全部代码(NowJava.com).**/