/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.oops;
import java.io.*;
import java.util.*;
import sun.jvm.hotspot.interpreter.*;
import sun.jvm.hotspot.runtime.*;
import sun.jvm.hotspot.utilities.*;
/** Minimal port of the VM's oop map generator for interpreted frames */
public class GenerateOopMap {
interface JumpClosure {
public void process(GenerateOopMap c, int bcpDelta, int[] data);
}
// Used for debugging this code
private static final boolean DEBUG = false;
// These two should be removed. But requires som code to be cleaned up
private static final int MAXARGSIZE = 256; // This should be enough
private static final int MAX_LOCAL_VARS = 65536; // 16-bit entry
private static final boolean TraceMonitorMismatch = true;
private static final boolean TraceOopMapRewrites = true;
// Commonly used constants
static CellTypeState[] epsilonCTS = { CellTypeState.bottom };
static CellTypeState refCTS = CellTypeState.ref;
static CellTypeState valCTS = CellTypeState.value;
static CellTypeState[] vCTS = { CellTypeState.value, CellTypeState.bottom };
static CellTypeState[] rCTS = { CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] rrCTS = { CellTypeState.ref, CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] vrCTS = { CellTypeState.value, CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] vvCTS = { CellTypeState.value, CellTypeState.value, CellTypeState.bottom };
static CellTypeState[] rvrCTS = { CellTypeState.ref, CellTypeState.value, CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] vvrCTS = { CellTypeState.value, CellTypeState.value, CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] vvvCTS = { CellTypeState.value, CellTypeState.value, CellTypeState.value, CellTypeState.bottom };
static CellTypeState[] vvvrCTS = { CellTypeState.value, CellTypeState.value, CellTypeState.value, CellTypeState.ref, CellTypeState.bottom };
static CellTypeState[] vvvvCTS = { CellTypeState.value, CellTypeState.value, CellTypeState.value, CellTypeState.value, CellTypeState.bottom };
/** Specialization of SignatureIterator - compute the effects of a call */
static class ComputeCallStack extends SignatureIterator {
CellTypeStateList _effect;
int _idx;
void set(CellTypeState state) { _effect.get(_idx++).set(state); }
int length() { return _idx; };
public void doBool () { set(CellTypeState.value); }
public void doChar () { set(CellTypeState.value); }
public void doFloat () { set(CellTypeState.value); }
public void doByte () { set(CellTypeState.value); }
public void doShort () { set(CellTypeState.value); }
public void doInt () { set(CellTypeState.value); }
public void doVoid () { set(CellTypeState.bottom);}
public void doObject(int begin, int end) { set(CellTypeState.ref); }
public void doArray (int begin, int end) { set(CellTypeState.ref); }
public void doDouble() { set(CellTypeState.value);
set(CellTypeState.value); }
public void doLong () { set(CellTypeState.value);
set(CellTypeState.value); }
ComputeCallStack(Symbol signature) {
super(signature);
}
// Compute methods
int computeForParameters(boolean is_static, CellTypeStateList effect) {
_idx = 0;
_effect = effect;
if (!is_static) {
effect.get(_idx++).set(CellTypeState.ref);
}
iterateParameters();
return length();
};
int computeForReturntype(CellTypeStateList effect) {
_idx = 0;
_effect = effect;
iterateReturntype();
set(CellTypeState.bottom); // Always terminate with a bottom state, so ppush works
return length();
}
}
/** Specialization of SignatureIterator - in order to set up first stack frame */
static class ComputeEntryStack extends SignatureIterator {
CellTypeStateList _effect;
int _idx;
void set(CellTypeState state) { _effect.get(_idx++).set(state); }
int length() { return _idx; };
public void doBool () { set(CellTypeState.value); }
public void doChar () { set(CellTypeState.value); }
public void doFloat () { set(CellTypeState.value); }
public void doByte () { set(CellTypeState.value); }
public void doShort () { set(CellTypeState.value); }
public void doInt () { set(CellTypeState.value); }
public void doVoid () { set(CellTypeState.bottom);}
public void doObject(int begin, int end) { set(CellTypeState.makeSlotRef(_idx)); }
public void doArray (int begin, int end) { set(CellTypeState.makeSlotRef(_idx)); }
public void doDouble() { set(CellTypeState.value);
set(CellTypeState.value); }
public void doLong () { set(CellTypeState.value);
set(CellTypeState.value); }
ComputeEntryStack(Symbol signature) {
super(signature);
}
// Compute methods
int computeForParameters(boolean is_static, CellTypeStateList effect) {
_idx = 0;
_effect = effect;
if (!is_static) {
effect.get(_idx++).set(CellTypeState.makeSlotRef(0));
}
iterateParameters();
return length();
};
int computeForReturntype(CellTypeStateList effect) {
_idx = 0;
_effect = effect;
iterateReturntype();
set(CellTypeState.bottom); // Always terminate with a bottom state, so ppush works
return length();
}
}
/** Contains maping between jsr targets and there return addresses.
One-to-many mapping. */
static class RetTableEntry {
private static int _init_nof_jsrs; // Default size of jsrs list
private int _target_bci; // Target PC address of jump (bytecode index)
private List/*<int>*/ _jsrs; // List of return addresses (bytecode index)
private RetTableEntry _next; // Link to next entry
RetTableEntry(int target, RetTableEntry next) {
_target_bci = target;
_jsrs = new ArrayList(_init_nof_jsrs);
_next = next;
}
// Query
int targetBci() { return _target_bci; }
int nofJsrs() { return _jsrs.size(); }
int jsrs(int i) { return ((Integer) _jsrs.get(i)).intValue(); }
// Update entry
void addJsr (int return_bci) { _jsrs.add(new Integer(return_bci)); }
void addDelta(int bci, int delta) {
if (_target_bci > bci) {
_target_bci += delta;
}
for (int k = 0; k < nofJsrs(); k++) {
int jsr = jsrs(k);
if (jsr > bci) {
_jsrs.set(k, new Integer(jsr+delta));
}
}
}
RetTableEntry next() { return _next; }
}
static class RetTable {
private RetTableEntry _first;
private static int _init_nof_entries;
private void addJsr(int return_bci, int target_bci) {
RetTableEntry entry = _first;
// Scan table for entry
for (;(entry != null) && (entry.targetBci() != target_bci); entry = entry.next());
if (entry == null) {
// Allocate new entry and put in list
entry = new RetTableEntry(target_bci, _first);
_first = entry;
}
// Now "entry" is set. Make sure that the entry is initialized
// and has room for the new jsr.
entry.addJsr(return_bci);
}
RetTable() {}
void computeRetTable(Method method) {
BytecodeStream i = new BytecodeStream(method);
int bytecode;
while( (bytecode = i.next()) >= 0) {
switch (bytecode) {
case Bytecodes._jsr:
addJsr(i.nextBCI(), i.dest());
break;
case Bytecodes._jsr_w:
addJsr(i.nextBCI(), i.dest_w());
break;
}
}
}
void updateRetTable(int bci, int delta) {
RetTableEntry cur = _first;
while(cur != null) {
cur.addDelta(bci, delta);
cur = cur.next();
}
}
RetTableEntry findJsrsForTarget(int targBci) {
RetTableEntry cur = _first;
while(cur != null) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(cur.targetBci() != -1, "sanity check");
}
if (cur.targetBci() == targBci) {
return cur;
}
cur = cur.next();
}
throw new RuntimeException("Should not reach here");
}
}
static class BasicBlock {
private boolean _changed; // Reached a fixpoint or not
static final int _dead_basic_block = -2;
// Alive but not yet reached by analysis
static final int _unreached = -1;
// >=0: Alive and has a merged state
int _bci; // Start of basic block
int _end_bci; // Bci of last instruction in basicblock
int _max_locals; // Determines split between vars and stack
int _max_stack; // Determines split between stack and monitors
CellTypeStateList _state; // State (vars, stack) at entry.
int _stack_top; // -1 indicates bottom stack value.
int _monitor_top; // -1 indicates bottom monitor stack value.
CellTypeStateList vars() { return _state; }
CellTypeStateList stack() { return _state.subList(_max_locals, _state.size()); }
boolean changed() { return _changed; }
void setChanged(boolean s) { _changed = s; }
// Analysis has reached this basicblock
boolean isReachable() { return _stack_top >= 0; }
// All basicblocks that are unreachable are going to have a _stack_top == _dead_basic_block.
// This info. is setup in a pre-parse before the real abstract interpretation starts.
boolean isDead() { return _stack_top == _dead_basic_block; }
boolean isAlive() { return _stack_top != _dead_basic_block; }
void markAsAlive() {
if (Assert.ASSERTS_ENABLED) {
Assert.that(isDead(), "must be dead");
_stack_top = _unreached;
}
}
}
//----------------------------------------------------------------------
// Protected routines for GenerateOopMap
//
// _monitor_top is set to this constant to indicate that a monitor matching
// problem was encountered prior to this point in control flow.
protected static final int bad_monitors = -1;
// Main variables
Method _method; // The method we are examining
RetTable _rt; // Contains the return address mappings
int _max_locals; // Cached value of no. of locals
int _max_stack; // Cached value of max. stack depth
int _max_monitors; // Cached value of max. monitor stack depth
boolean _has_exceptions; // True, if exceptions exist for method
boolean _got_error; // True, if an error occured during interpretation.
String _error_msg; // Error message. Set if _got_error is true.
// bool _did_rewriting; // was bytecodes rewritten
// bool _did_relocation; // was relocation neccessary
boolean _monitor_safe; // The monitors in this method have been determined
// to be safe.
// Working Cell type state
int _state_len; // Size of states
CellTypeStateList _state; // list of states
char[] _state_vec_buf; // Buffer used to print a readable version of a state
int _stack_top;
int _monitor_top;
// Timing and statistics
// static elapsedTimer _total_oopmap_time; // Holds cumulative oopmap generation time
// static long _total_byte_count; // Holds cumulative number of bytes inspected
// Monitor query logic
int _report_for_exit_bci;
int _matching_enter_bci;
// Cell type methods
void initState() {
_state_len = _max_locals + _max_stack + _max_monitors;
_state = new CellTypeStateList(_state_len);
_state_vec_buf = new char[Math.max(_max_locals, Math.max(_max_stack, Math.max(_max_monitors, 1)))];
}
void makeContextUninitialized () {
CellTypeStateList vs = vars();
for (int i = 0; i < _max_locals; i++)
vs.get(i).set(CellTypeState.uninit);
_stack_top = 0;
_monitor_top = 0;
}
int methodsigToEffect (Symbol signature, boolean isStatic, CellTypeStateList effect) {
ComputeEntryStack ces = new ComputeEntryStack(signature);
return ces.computeForParameters(isStatic, effect);
}
boolean mergeStateVectors (CellTypeStateList cts, CellTypeStateList bbts) {
int i;
int len = _max_locals + _stack_top;
boolean change = false;
for (i = len - 1; i >= 0; i--) {
CellTypeState v = cts.get(i).merge(bbts.get(i), i);
change = change || !v.equal(bbts.get(i));
bbts.get(i).set(v);
}
if (_max_monitors > 0 && _monitor_top != bad_monitors) {
// If there are no monitors in the program, or there has been
// a monitor matching error before this point in the program,
// then we do not merge in the monitor state.
int base = _max_locals + _max_stack;
len = base + _monitor_top;
for (i = len - 1; i >= base; i--) {
CellTypeState v = cts.get(i).merge(bbts.get(i), i);
// Can we prove that, when there has been a change, it will already
// have been detected at this point? That would make this equal
// check here unnecessary.
change = change || !v.equal(bbts.get(i));
bbts.get(i).set(v);
}
}
return change;
}
void copyState (CellTypeStateList dst, CellTypeStateList src) {
int len = _max_locals + _stack_top;
for (int i = 0; i < len; i++) {
if (src.get(i).isNonlockReference()) {
dst.get(i).set(CellTypeState.makeSlotRef(i));
} else {
dst.get(i).set(src.get(i));
}
}
if (_max_monitors > 0 && _monitor_top != bad_monitors) {
int base = _max_locals + _max_stack;
len = base + _monitor_top;
for (int i = base; i < len; i++) {
dst.get(i).set(src.get(i));
}
}
}
void mergeStateIntoBB (BasicBlock bb) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(bb.isAlive(), "merging state into a dead basicblock");
}
if (_stack_top == bb._stack_top) {
if (_monitor_top == bb._monitor_top) {
if (mergeStateVectors(_state, bb._state)) {
bb.setChanged(true);
}
} else {
if (TraceMonitorMismatch) {
reportMonitorMismatch("monitor stack height merge conflict");
}
// When the monitor stacks are not matched, we set _monitor_top to
// bad_monitors. This signals that, from here on, the monitor stack cannot
// be trusted. In particular, monitorexit bytecodes may throw
// exceptions. We mark this block as changed so that the change
// propagates properly.
bb._monitor_top = bad_monitors;
bb.setChanged(true);
_monitor_safe = false;
}
} else if (!bb.isReachable()) {
// First time we look at this BB
copyState(bb._state, _state);
bb._stack_top = _stack_top;
bb._monitor_top = _monitor_top;
bb.setChanged(true);
} else {
throw new RuntimeException("stack height conflict: " +
_stack_top + " vs. " + bb._stack_top);
}
}
void mergeState (int bci, int[] data) {
mergeStateIntoBB(getBasicBlockAt(bci));
}
void setVar (int localNo, CellTypeState cts) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(cts.isReference() || cts.isValue() || cts.isAddress(),
"wrong celltypestate");
}
if (localNo < 0 || localNo > _max_locals) {
throw new RuntimeException("variable write error: r" + localNo);
}
vars().get(localNo).set(cts);
}
CellTypeState getVar (int localNo) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(localNo < _max_locals + _nof_refval_conflicts, "variable read error");
}
if (localNo < 0 || localNo > _max_locals) {
throw new RuntimeException("variable read error: r" + localNo);
}
return vars().get(localNo).copy();
}
CellTypeState pop () {
if ( _stack_top <= 0) {
throw new RuntimeException("stack underflow");
}
return stack().get(--_stack_top).copy();
}
void push (CellTypeState cts) {
if ( _stack_top >= _max_stack) {
if (DEBUG) {
System.err.println("Method: " + method().getName().asString() + method().getSignature().asString() +
" _stack_top: " + _stack_top + " _max_stack: " + _max_stack);
}
throw new RuntimeException("stack overflow");
}
stack().get(_stack_top++).set(cts);
if (DEBUG) {
System.err.println("After push: _stack_top: " + _stack_top +
" _max_stack: " + _max_stack +
" just pushed: " + cts.toChar());
}
}
CellTypeState monitorPop () {
if (Assert.ASSERTS_ENABLED) {
Assert.that(_monitor_top != bad_monitors, "monitorPop called on error monitor stack");
}
if (_monitor_top == 0) {
// We have detected a pop of an empty monitor stack.
_monitor_safe = false;
_monitor_top = bad_monitors;
if (TraceMonitorMismatch) {
reportMonitorMismatch("monitor stack underflow");
}
return CellTypeState.ref; // just to keep the analysis going.
}
return monitors().get(--_monitor_top).copy();
}
void monitorPush (CellTypeState cts) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(_monitor_top != bad_monitors, "monitorPush called on error monitor stack");
}
if (_monitor_top >= _max_monitors) {
// Some monitorenter is being executed more than once.
// This means that the monitor stack cannot be simulated.
_monitor_safe = false;
_monitor_top = bad_monitors;
if (TraceMonitorMismatch) {
reportMonitorMismatch("monitor stack overflow");
}
return;
}
monitors().get(_monitor_top++).set(cts);
}
CellTypeStateList vars () { return _state; }
CellTypeStateList stack () { return _state.subList(_max_locals, _state.size()); }
CellTypeStateList monitors() { return _state.subList(_max_locals+_max_stack, _state.size()); }
void replaceAllCTSMatches (CellTypeState match,
CellTypeState replace) {
int i;
int len = _max_locals + _stack_top;
boolean change = false;
for (i = len - 1; i >= 0; i--) {
if (match.equal(_state.get(i))) {
_state.get(i).set(replace);
}
}
if (_monitor_top > 0) {
int base = _max_locals + _max_stack;
len = base + _monitor_top;
for (i = len - 1; i >= base; i--) {
if (match.equal(_state.get(i))) {
_state.get(i).set(replace);
}
}
}
}
void printStates (PrintStream tty, CellTypeStateList vector, int num) {
for (int i = 0; i < num; i++) {
vector.get(i).print(tty);
}
}
void printCurrentState (PrintStream tty,
BytecodeStream currentBC,
boolean detailed) {
if (detailed) {
tty.print(" " + currentBC.bci() + " vars = ");
printStates(tty, vars(), _max_locals);
tty.print(" " + Bytecodes.name(currentBC.code()));
switch(currentBC.code()) {
case Bytecodes._invokevirtual:
case Bytecodes._invokespecial:
case Bytecodes._invokestatic:
case Bytecodes._invokeinterface:
case Bytecodes._invokedynamic:
// FIXME: print signature of referenced method (need more
// accessors in ConstantPool and ConstantPoolCache)
int idx = currentBC.hasIndexU4() ? currentBC.getIndexU4() : currentBC.getIndexU2();
tty.print(" idx " + idx);
/*
int idx = currentBC.getIndexU2();
ConstantPool cp = method().getConstants();
int nameAndTypeIdx = cp.name_and_type_ref_index_at(idx);
int signatureIdx = cp.signature_ref_index_at(nameAndTypeIdx);
Symbol* signature = cp.symbol_at(signatureIdx);
tty.print("%s", signature.as_C_string());
*/
}
tty.println();
tty.print(" stack = ");
printStates(tty, stack(), _stack_top);
tty.println();
if (_monitor_top != bad_monitors) {
tty.print(" monitors = ");
printStates(tty, monitors(), _monitor_top);
} else {
tty.print(" [bad monitor stack]");
}
tty.println();
} else {
tty.print(" " + currentBC.bci() + " vars = '" +
stateVecToString(vars(), _max_locals) + "' ");
tty.print(" stack = '" + stateVecToString(stack(), _stack_top) + "' ");
if (_monitor_top != bad_monitors) {
tty.print(" monitors = '" + stateVecToString(monitors(), _monitor_top) + "' \t" +
Bytecodes.name(currentBC.code()));
} else {
tty.print(" [bad monitor stack]");
}
switch(currentBC.code()) {
case Bytecodes._invokevirtual:
case Bytecodes._invokespecial:
case Bytecodes._invokestatic:
case Bytecodes._invokeinterface:
case Bytecodes._invokedynamic:
// FIXME: print signature of referenced method (need more
// accessors in ConstantPool and ConstantPoolCache)
int idx = currentBC.hasIndexU4() ? currentBC.getIndexU4() : currentBC.getIndexU2();
tty.print(" idx " + idx);
/*
int idx = currentBC.getIndexU2();
ConstantPool* cp = method().constants();
int nameAndTypeIdx = cp.name_and_type_ref_index_at(idx);
int signatureIdx = cp.signature_ref_index_at(nameAndTypeIdx);
Symbol* signature = cp.symbol_at(signatureIdx);
tty.print("%s", signature.as_C_string());
*/
}
tty.println();
}
}
void reportMonitorMismatch (String msg) {
if (Assert.ASSERTS_ENABLED) {
System.err.print(" Monitor mismatch in method ");
method().printValueOn(System.err);
System.err.println(": " + msg);
}
}
// Basicblock info
BasicBlock[] _basic_blocks; // Array of basicblock info
int _gc_points;
int _bb_count;
BitMap _bb_hdr_bits;
// Basicblocks methods
void initializeBB () {
_gc_points = 0;
_bb_count = 0;
_bb_hdr_bits = new BitMap((int) _method.getCodeSize());
}
void markBBHeadersAndCountGCPoints() {
initializeBB();
boolean fellThrough = false; // False to get first BB marked.
// First mark all exception handlers as start of a basic-block
if (method().hasExceptionTable()) {
ExceptionTableElement[] excps = method().getExceptionTable();
for(int i = 0; i < excps.length; i++) {
markBB(excps[i].getHandlerPC(), null);
}
}
// Then iterate through the code
BytecodeStream bcs = new BytecodeStream(_method);
int bytecode;
while( (bytecode = bcs.next()) >= 0) {
int bci = bcs.bci();
if (!fellThrough)
markBB(bci, null);
fellThrough = jumpTargetsDo(bcs,
new JumpClosure() {
public void process(GenerateOopMap c, int bcpDelta, int[] data) {
c.markBB(bcpDelta, data);
}
},
null);
/* We will also mark successors of jsr's as basic block headers. */
switch (bytecode) {
case Bytecodes._jsr:
if (Assert.ASSERTS_ENABLED) {
Assert.that(!fellThrough, "should not happen");
}
markBB(bci + Bytecodes.lengthFor(bytecode), null);
break;
case Bytecodes._jsr_w:
if (Assert.ASSERTS_ENABLED) {
Assert.that(!fellThrough, "should not happen");
}
markBB(bci + Bytecodes.lengthFor(bytecode), null);
break;
}
if (possibleGCPoint(bcs))
_gc_points++;
}
}
boolean isBBHeader (int bci) {
return _bb_hdr_bits.at(bci);
}
int gcPoints () {
return _gc_points;
}
int bbCount () {
return _bb_count;
}
void setBBMarkBit (int bci) {
_bb_hdr_bits.atPut(bci, true);
}
void clear_bbmark_bit (int bci) {
_bb_hdr_bits.atPut(bci, false);
}
BasicBlock getBasicBlockAt (int bci) {
BasicBlock bb = getBasicBlockContaining(bci);
if (Assert.ASSERTS_ENABLED) {
Assert.that(bb._bci == bci, "should have found BB");
}
return bb;
}
BasicBlock getBasicBlockContaining (int bci) {
BasicBlock[] bbs = _basic_blocks;
int lo = 0, hi = _bb_count - 1;
while (lo <= hi) {
int m = (lo + hi) / 2;
int mbci = bbs[m]._bci;
int nbci;
if ( m == _bb_count-1) {
if (Assert.ASSERTS_ENABLED) {
Assert.that( bci >= mbci && bci < method().getCodeSize(), "sanity check failed");
}
return bbs[m];
} else {
nbci = bbs[m+1]._bci;
}
if ( mbci <= bci && bci < nbci) {
return bbs[m];
} else if (mbci < bci) {
lo = m + 1;
} else {
if (Assert.ASSERTS_ENABLED) {
Assert.that(mbci > bci, "sanity check");
}
hi = m - 1;
}
}
throw new RuntimeException("should have found BB");
}
void interpBB (BasicBlock bb) {
// We do not want to do anything in case the basic-block has not been initialized. This
// will happen in the case where there is dead-code hang around in a method.
if (Assert.ASSERTS_ENABLED) {
Assert.that(bb.isReachable(), "should be reachable or deadcode exist");
}
restoreState(bb);
BytecodeStream itr = new BytecodeStream(_method);
// Set iterator interval to be the current basicblock
int lim_bci = nextBBStartPC(bb);
itr.setInterval(bb._bci, lim_bci);
if (DEBUG) {
System.err.println("interpBB: method = " + method().getName().asString() +
method().getSignature().asString() +
", BCI interval [" + bb._bci + ", " + lim_bci + ")");
{
System.err.print("Bytecodes:");
for (int i = bb._bci; i < lim_bci; i++) {
System.err.print(" 0x" + Long.toHexString(method().getBytecodeOrBPAt(i)));
}
System.err.println();
}
}
if (Assert.ASSERTS_ENABLED) {
Assert.that(lim_bci != bb._bci, "must be at least one instruction in a basicblock");
}
itr.next(); // read first instruction
// Iterates through all bytecodes except the last in a basic block.
// We handle the last one special, since there is controlflow change.
while(itr.nextBCI() < lim_bci && !_got_error) {
if (_has_exceptions || (_monitor_top != 0)) {
// We do not need to interpret the results of exceptional
// continuation from this instruction when the method has no
// exception handlers and the monitor stack is currently
// empty.
doExceptionEdge(itr);
}
interp1(itr);
itr.next();
}
// Handle last instruction.
if (!_got_error) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(itr.nextBCI() == lim_bci, "must point to end");
}
if (_has_exceptions || (_monitor_top != 0)) {
doExceptionEdge(itr);
}
interp1(itr);
boolean fall_through = jumpTargetsDo(itr, new JumpClosure() {
public void process(GenerateOopMap c, int bcpDelta, int[] data) {
c.mergeState(bcpDelta, data);
}
}, null);
if (_got_error) return;
if (itr.code() == Bytecodes._ret) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(!fall_through, "cannot be set if ret instruction");
}
// Automatically handles 'wide' ret indicies
retJumpTargetsDo(itr, new JumpClosure() {
public void process(GenerateOopMap c, int bcpDelta, int[] data) {
c.mergeState(bcpDelta, data);
}
}, itr.getIndex(), null);
} else if (fall_through) {
// Hit end of BB, but the instr. was a fall-through instruction,
// so perform transition as if the BB ended in a "jump".
if (Assert.ASSERTS_ENABLED) {
Assert.that(lim_bci == _basic_blocks[bbIndex(bb) + 1]._bci, "there must be another bb");
}
mergeStateIntoBB(_basic_blocks[bbIndex(bb) + 1]);
}
}
}
void restoreState (BasicBlock bb) {
for (int i = 0; i < _state_len; i++) {
_state.get(i).set(bb._state.get(i));
}
_stack_top = bb._stack_top;
_monitor_top = bb._monitor_top;
}
int nextBBStartPC (BasicBlock bb) {
int bbNum = bbIndex(bb) + 1;
if (bbNum == _bb_count)
return (int) method().getCodeSize();
return _basic_blocks[bbNum]._bci;
}
void updateBasicBlocks (int bci, int delta) {
BitMap bbBits = new BitMap((int) (_method.getCodeSize() + delta));
for(int k = 0; k < _bb_count; k++) {
if (_basic_blocks[k]._bci > bci) {
_basic_blocks[k]._bci += delta;
_basic_blocks[k]._end_bci += delta;
}
bbBits.atPut(_basic_blocks[k]._bci, true);
}
_bb_hdr_bits = bbBits;
}
void markBB(int bci, int[] data) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(bci>= 0 && bci < method().getCodeSize(), "index out of bounds");
}
if (isBBHeader(bci))
return;
// FIXME: remove
// if (TraceNewOopMapGeneration) {
// tty.print_cr("Basicblock#%d begins at: %d", c._bb_count, bci);
// }
setBBMarkBit(bci);
_bb_count++;
}
// Dead code detection
void markReachableCode() {
final int[] change = new int[1];
change[0] = 1;
// Mark entry basic block as alive and all exception handlers
_basic_blocks[0].markAsAlive();
if (method().hasExceptionTable()) {
ExceptionTableElement[] excps = method().getExceptionTable();
for(int i = 0; i < excps.length; i ++) {
BasicBlock bb = getBasicBlockAt(excps[i].getHandlerPC());
// If block is not already alive (due to multiple exception handlers to same bb), then
// make it alive
if (bb.isDead())
bb.markAsAlive();
}
}
BytecodeStream bcs = new BytecodeStream(_method);
// Iterate through all basic blocks until we reach a fixpoint
while (change[0] != 0) {
change[0] = 0;
for (int i = 0; i < _bb_count; i++) {
BasicBlock bb = _basic_blocks[i];
if (bb.isAlive()) {
// Position bytecodestream at last bytecode in basicblock
bcs.setStart(bb._end_bci);
bcs.next();
int bytecode = bcs.code();
int bci = bcs.bci();
if (Assert.ASSERTS_ENABLED) {
Assert.that(bci == bb._end_bci, "wrong bci");
}
boolean fell_through = jumpTargetsDo(bcs, new JumpClosure() {
public void process(GenerateOopMap c, int bciDelta, int[] change) {
c.reachableBasicblock(bciDelta, change);
}
}, change);
// We will also mark successors of jsr's as alive.
switch (bytecode) {
case Bytecodes._jsr:
case Bytecodes._jsr_w:
if (Assert.ASSERTS_ENABLED) {
Assert.that(!fell_through, "should not happen");
}
reachableBasicblock(bci + Bytecodes.lengthFor(bytecode), change);
break;
}
if (fell_through) {
// Mark successor as alive
if (_basic_blocks[i+1].isDead()) {
_basic_blocks[i+1].markAsAlive();
change[0] = 1;
}
}
}
}
}
}
void reachableBasicblock (int bci, int[] data) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(bci>= 0 && bci < method().getCodeSize(), "index out of bounds");
}
BasicBlock bb = getBasicBlockAt(bci);
if (bb.isDead()) {
bb.markAsAlive();
data[0] = 1; // Mark basicblock as changed
}
}
// Interpretation methods (primary)
void doInterpretation () {
// "i" is just for debugging, so we can detect cases where this loop is
// iterated more than once.
int i = 0;
do {
// FIXME: remove
// if (TraceNewOopMapGeneration) {
// tty.print("\n\nIteration #%d of do_interpretation loop, method:\n", i);
// method().print_name(tty);
// tty.print("\n\n");
// }
_conflict = false;
_monitor_safe = true;
// init_state is now called from init_basic_blocks. The length of a
// state vector cannot be determined until we have made a pass through
// the bytecodes counting the possible monitor entries.
if (!_got_error) initBasicBlocks();
if (!_got_error) setupMethodEntryState();
if (!_got_error) interpAll();
if (!_got_error) rewriteRefvalConflicts();
i++;
} while (_conflict && !_got_error);
}
void initBasicBlocks () {
// Note: Could consider reserving only the needed space for each BB's state
// (entry stack may not be of maximal height for every basic block).
// But cumbersome since we don't know the stack heights yet. (Nor the
// monitor stack heights...)
_basic_blocks = new BasicBlock[_bb_count];
for (int i = 0; i < _bb_count; i++) {
_basic_blocks[i] = new BasicBlock();
}
// Make a pass through the bytecodes. Count the number of monitorenters.
// This can be used an upper bound on the monitor stack depth in programs
// which obey stack discipline with their monitor usage. Initialize the
// known information about basic blocks.
BytecodeStream j = new BytecodeStream(_method);
int bytecode;
int bbNo = 0;
int monitor_count = 0;
int prev_bci = -1;
while( (bytecode = j.next()) >= 0) {
if (j.code() == Bytecodes._monitorenter) {
monitor_count++;
}
int bci = j.bci();
if (isBBHeader(bci)) {
// Initialize the basicblock structure
BasicBlock bb = _basic_blocks[bbNo];
bb._bci = bci;
bb._max_locals = _max_locals;
bb._max_stack = _max_stack;
bb.setChanged(false);
bb._stack_top = BasicBlock._dead_basic_block; // Initialize all basicblocks are dead.
bb._monitor_top = bad_monitors;
if (bbNo > 0) {
_basic_blocks[bbNo - 1]._end_bci = prev_bci;
}
bbNo++;
}
// Remember prevous bci.
prev_bci = bci;
}
// Set
_basic_blocks[bbNo-1]._end_bci = prev_bci;
_max_monitors = monitor_count;
// Now that we have a bound on the depth of the monitor stack, we can
// initialize the CellTypeState-related information.
initState();
// We allocate space for all state-vectors for all basicblocks in one huge chuck.
// Then in the next part of the code, we set a pointer in each _basic_block that
// points to each piece.
CellTypeStateList basicBlockState = new CellTypeStateList(bbNo * _state_len);
// Make a pass over the basicblocks and assign their state vectors.
for (int blockNum=0; blockNum < bbNo; blockNum++) {
BasicBlock bb = _basic_blocks[blockNum];
bb._state = basicBlockState.subList(blockNum * _state_len, (blockNum + 1) * _state_len);
if (Assert.ASSERTS_ENABLED) {
if (blockNum + 1 < bbNo) {
int bc_len = Bytecodes.javaLengthAt(_method, bb._end_bci);
Assert.that(bb._end_bci + bc_len == _basic_blocks[blockNum + 1]._bci,
"unmatched bci info in basicblock");
}
}
}
if (Assert.ASSERTS_ENABLED) {
BasicBlock bb = _basic_blocks[bbNo-1];
int bc_len = Bytecodes.javaLengthAt(_method, bb._end_bci);
Assert.that(bb._end_bci + bc_len == _method.getCodeSize(), "wrong end bci");
}
// Check that the correct number of basicblocks was found
if (bbNo !=_bb_count) {
if (bbNo < _bb_count) {
throw new RuntimeException("jump into the middle of instruction?");
} else {
throw new RuntimeException("extra basic blocks - should not happen?");
}
}
// Mark all alive blocks
markReachableCode();
}
void setupMethodEntryState () {
// Initialize all locals to 'uninit' and set stack-height to 0
makeContextUninitialized();
// Initialize CellState type of arguments
methodsigToEffect(method().getSignature(), method().isStatic(), vars());
// If some references must be pre-assigned to null, then set that up
initializeVars();
// This is the start state
mergeStateIntoBB(_basic_blocks[0]);
if (Assert.ASSERTS_ENABLED) {
Assert.that(_basic_blocks[0].changed(), "we are not getting off the ground");
}
}
void interpAll () {
boolean change = true;
while (change && !_got_error) {
change = false;
for (int i = 0; i < _bb_count && !_got_error; i++) {
BasicBlock bb = _basic_blocks[i];
if (bb.changed()) {
if (_got_error) return;
change = true;
bb.setChanged(false);
interpBB(bb);
}
}
}
}
//
// Interpretation methods (secondary)
//
/** Sets the current state to be the state after executing the
current instruction, starting in the current state. */
void interp1 (BytecodeStream itr) {
if (DEBUG) {
System.err.println(" - bci " + itr.bci() + " " + itr.code());
printCurrentState(System.err, itr, false);
}
// if (TraceNewOopMapGeneration) {
// print_current_state(tty, itr, TraceNewOopMapGenerationDetailed);
// }
// Should we report the results? Result is reported *before* the
// instruction at the current bci is executed. However, not for
// calls. For calls we do not want to include the arguments, so we
// postpone the reporting until they have been popped (in method
// ppl).
if (_report_result == true) {
switch(itr.code()) {
case Bytecodes._invokevirtual:
case Bytecodes._invokespecial:
case Bytecodes._invokestatic:
case Bytecodes._invokeinterface:
case Bytecodes._invokedynamic:
_itr_send = itr;
_report_result_for_send = true;
break;
default:
fillStackmapForOpcodes(itr, vars(), stack(), _stack_top);
break;
}
}
// abstract interpretation of current opcode
switch(itr.code()) {
case Bytecodes._nop: break;
case Bytecodes._goto: break;
case Bytecodes._goto_w: break;
case Bytecodes._iinc: break;
case Bytecodes._return: doReturnMonitorCheck();
break;
case Bytecodes._aconst_null:
case Bytecodes._new: ppush1(CellTypeState.makeLineRef(itr.bci()));
break;
case Bytecodes._iconst_m1:
case Bytecodes._iconst_0:
case Bytecodes._iconst_1:
case Bytecodes._iconst_2:
case Bytecodes._iconst_3:
case Bytecodes._iconst_4:
case Bytecodes._iconst_5:
case Bytecodes._fconst_0:
case Bytecodes._fconst_1:
case Bytecodes._fconst_2:
case Bytecodes._bipush:
case Bytecodes._sipush: ppush1(valCTS); break;
case Bytecodes._lconst_0:
case Bytecodes._lconst_1:
case Bytecodes._dconst_0:
case Bytecodes._dconst_1: ppush(vvCTS); break;
case Bytecodes._ldc2_w: ppush(vvCTS); break;
case Bytecodes._ldc: doLdc(itr.bci()); break;
case Bytecodes._ldc_w: doLdc(itr.bci()); break;
case Bytecodes._iload:
case Bytecodes._fload: ppload(vCTS, itr.getIndex()); break;
case Bytecodes._lload:
case Bytecodes._dload: ppload(vvCTS,itr.getIndex()); break;
case Bytecodes._aload: ppload(rCTS, itr.getIndex()); break;
case Bytecodes._iload_0:
case Bytecodes._fload_0: ppload(vCTS, 0); break;
case Bytecodes._iload_1:
case Bytecodes._fload_1: ppload(vCTS, 1); break;
case Bytecodes._iload_2:
case Bytecodes._fload_2: ppload(vCTS, 2); break;
case Bytecodes._iload_3:
case Bytecodes._fload_3: ppload(vCTS, 3); break;
case Bytecodes._lload_0:
case Bytecodes._dload_0: ppload(vvCTS, 0); break;
case Bytecodes._lload_1:
case Bytecodes._dload_1: ppload(vvCTS, 1); break;
case Bytecodes._lload_2:
case Bytecodes._dload_2: ppload(vvCTS, 2); break;
case Bytecodes._lload_3:
case Bytecodes._dload_3: ppload(vvCTS, 3); break;
case Bytecodes._aload_0: ppload(rCTS, 0); break;
case Bytecodes._aload_1: ppload(rCTS, 1); break;
case Bytecodes._aload_2: ppload(rCTS, 2); break;
case Bytecodes._aload_3: ppload(rCTS, 3); break;
case Bytecodes._iaload:
case Bytecodes._faload:
case Bytecodes._baload:
case Bytecodes._caload:
case Bytecodes._saload: pp(vrCTS, vCTS); break;
case Bytecodes._laload: pp(vrCTS, vvCTS); break;
case Bytecodes._daload: pp(vrCTS, vvCTS); break;
case Bytecodes._aaload: ppNewRef(vrCTS, itr.bci()); break;
case Bytecodes._istore:
case Bytecodes._fstore: ppstore(vCTS, itr.getIndex()); break;
case Bytecodes._lstore:
case Bytecodes._dstore: ppstore(vvCTS, itr.getIndex()); break;
case Bytecodes._astore: doAstore(itr.getIndex()); break;
case Bytecodes._istore_0:
case Bytecodes._fstore_0: ppstore(vCTS, 0); break;
case Bytecodes._istore_1:
case Bytecodes._fstore_1: ppstore(vCTS, 1); break;
case Bytecodes._istore_2:
case Bytecodes._fstore_2: ppstore(vCTS, 2); break;
case Bytecodes._istore_3:
case Bytecodes._fstore_3: ppstore(vCTS, 3); break;
case Bytecodes._lstore_0:
case Bytecodes._dstore_0: ppstore(vvCTS, 0); break;
case Bytecodes._lstore_1:
case Bytecodes._dstore_1: ppstore(vvCTS, 1); break;
case Bytecodes._lstore_2:
case Bytecodes._dstore_2: ppstore(vvCTS, 2); break;
case Bytecodes._lstore_3:
case Bytecodes._dstore_3: ppstore(vvCTS, 3); break;
case Bytecodes._astore_0: doAstore(0); break;
case Bytecodes._astore_1: doAstore(1); break;
case Bytecodes._astore_2: doAstore(2); break;
case Bytecodes._astore_3: doAstore(3); break;
case Bytecodes._iastore:
case Bytecodes._fastore:
case Bytecodes._bastore:
case Bytecodes._castore:
case Bytecodes._sastore: ppop(vvrCTS); break;
case Bytecodes._lastore:
case Bytecodes._dastore: ppop(vvvrCTS); break;
case Bytecodes._aastore: ppop(rvrCTS); break;
case Bytecodes._pop: ppopAny(1); break;
case Bytecodes._pop2: ppopAny(2); break;
case Bytecodes._dup: ppdupswap(1, "11"); break;
case Bytecodes._dup_x1: ppdupswap(2, "121"); break;
case Bytecodes._dup_x2: ppdupswap(3, "1321"); break;
case Bytecodes._dup2: ppdupswap(2, "2121"); break;
case Bytecodes._dup2_x1: ppdupswap(3, "21321"); break;
case Bytecodes._dup2_x2: ppdupswap(4, "214321"); break;
case Bytecodes._swap: ppdupswap(2, "12"); break;
case Bytecodes._iadd:
case Bytecodes._fadd:
case Bytecodes._isub:
case Bytecodes._fsub:
case Bytecodes._imul:
case Bytecodes._fmul:
case Bytecodes._idiv:
case Bytecodes._fdiv:
case Bytecodes._irem:
case Bytecodes._frem:
case Bytecodes._ishl:
case Bytecodes._ishr:
case Bytecodes._iushr:
case Bytecodes._iand:
case Bytecodes._ior:
case Bytecodes._ixor:
case Bytecodes._l2f:
case Bytecodes._l2i:
case Bytecodes._d2f:
case Bytecodes._d2i:
case Bytecodes._fcmpl:
case Bytecodes._fcmpg: pp(vvCTS, vCTS); break;
case Bytecodes._ladd:
case Bytecodes._dadd:
case Bytecodes._lsub:
case Bytecodes._dsub:
case Bytecodes._lmul:
case Bytecodes._dmul:
case Bytecodes._ldiv:
case Bytecodes._ddiv:
case Bytecodes._lrem:
case Bytecodes._drem:
case Bytecodes._land:
case Bytecodes._lor:
case Bytecodes._lxor: pp(vvvvCTS, vvCTS); break;
case Bytecodes._ineg:
case Bytecodes._fneg:
case Bytecodes._i2f:
case Bytecodes._f2i:
case Bytecodes._i2c:
case Bytecodes._i2s:
case Bytecodes._i2b: pp(vCTS, vCTS); break;
case Bytecodes._lneg:
case Bytecodes._dneg:
case Bytecodes._l2d:
case Bytecodes._d2l: pp(vvCTS, vvCTS); break;
case Bytecodes._lshl:
case Bytecodes._lshr:
case Bytecodes._lushr: pp(vvvCTS, vvCTS); break;
case Bytecodes._i2l:
case Bytecodes._i2d:
case Bytecodes._f2l:
case Bytecodes._f2d: pp(vCTS, vvCTS); break;
case Bytecodes._lcmp: pp(vvvvCTS, vCTS); break;
case Bytecodes._dcmpl:
case Bytecodes._dcmpg: pp(vvvvCTS, vCTS); break;
case Bytecodes._ifeq:
case Bytecodes._ifne:
case Bytecodes._iflt:
case Bytecodes._ifge:
case Bytecodes._ifgt:
case Bytecodes._ifle:
case Bytecodes._tableswitch: ppop1(valCTS);
break;
case Bytecodes._ireturn:
case Bytecodes._freturn: doReturnMonitorCheck();
ppop1(valCTS);
break;
case Bytecodes._if_icmpeq:
case Bytecodes._if_icmpne:
case Bytecodes._if_icmplt:
case Bytecodes._if_icmpge:
case Bytecodes._if_icmpgt:
case Bytecodes._if_icmple: ppop(vvCTS);
break;
case Bytecodes._lreturn: doReturnMonitorCheck();
ppop(vvCTS);
break;
case Bytecodes._dreturn: doReturnMonitorCheck();
ppop(vvCTS);
break;
case Bytecodes._if_acmpeq:
case Bytecodes._if_acmpne: ppop(rrCTS); break;
case Bytecodes._jsr: doJsr(itr.dest()); break;
case Bytecodes._jsr_w: doJsr(itr.dest_w()); break;
case Bytecodes._getstatic: doField(true, true, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._putstatic: doField(false, true, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._getfield: doField(true, false, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._putfield: doField(false, false, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._invokevirtual:
case Bytecodes._invokespecial: doMethod(false, false, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._invokestatic: doMethod(true, false, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._invokedynamic: doMethod(true, false, itr.getIndexU4(), itr.bci()); break;
case Bytecodes._invokeinterface: doMethod(false, true, itr.getIndexU2Cpcache(), itr.bci()); break;
case Bytecodes._newarray:
case Bytecodes._anewarray: ppNewRef(vCTS, itr.bci()); break;
case Bytecodes._checkcast: doCheckcast(); break;
case Bytecodes._arraylength:
case Bytecodes._instanceof: pp(rCTS, vCTS); break;
case Bytecodes._monitorenter: doMonitorenter(itr.bci()); break;
case Bytecodes._monitorexit: doMonitorexit(itr.bci()); break;
case Bytecodes._athrow: // handled by do_exception_edge() BUT ...
// vlh(apple): doExceptionEdge() does not get
// called if method has no exception handlers
if ((!_has_exceptions) && (_monitor_top > 0)) {
_monitor_safe = false;
}
break;
case Bytecodes._areturn: doReturnMonitorCheck();
ppop1(refCTS);
break;
case Bytecodes._ifnull:
case Bytecodes._ifnonnull: ppop1(refCTS); break;
case Bytecodes._multianewarray: doMultianewarray(itr.codeAt(itr.bci() + 3), itr.bci()); break;
case Bytecodes._wide: throw new RuntimeException("Iterator should skip this bytecode");
case Bytecodes._ret: break;
// Java opcodes
case Bytecodes._fast_aaccess_0: ppNewRef(rCTS, itr.bci()); break; // Pair bytecode for (aload_0, _fast_agetfield)
case Bytecodes._fast_iaccess_0: ppush1(valCTS); break; // Pair bytecode for (aload_0, _fast_igetfield)
case Bytecodes._fast_igetfield: pp(rCTS, vCTS); break;
case Bytecodes._fast_agetfield: ppNewRef(rCTS, itr.bci()); break;
case Bytecodes._fast_aload_0: ppload(rCTS, 0); break;
case Bytecodes._lookupswitch:
case Bytecodes._fast_linearswitch:
case Bytecodes._fast_binaryswitch: ppop1(valCTS); break;
default:
throw new RuntimeException("unexpected opcode: " + itr.code());
}
}
void doExceptionEdge (BytecodeStream itr) {
// Only check exception edge, if bytecode can trap
if (!Bytecodes.canTrap(itr.code())) return;
switch (itr.code()) {
case Bytecodes._aload_0:
case Bytecodes._fast_aload_0:
// These bytecodes can trap for rewriting. We need to assume that
// they do not throw exceptions to make the monitor analysis work.
return;
case Bytecodes._ireturn:
case Bytecodes._lreturn:
case Bytecodes._freturn:
case Bytecodes._dreturn:
case Bytecodes._areturn:
case Bytecodes._return:
// If the monitor stack height is not zero when we leave the method,
// then we are either exiting with a non-empty stack or we have
// found monitor trouble earlier in our analysis. In either case,
// assume an exception could be taken here.
if (_monitor_top == 0) {
return;
}
break;
case Bytecodes._monitorexit:
// If the monitor stack height is bad_monitors, then we have detected a
// monitor matching problem earlier in the analysis. If the
// monitor stack height is 0, we are about to pop a monitor
// off of an empty stack. In either case, the bytecode
// could throw an exception.
if (_monitor_top != bad_monitors && _monitor_top != 0) {
return;
}
break;
}
if (_has_exceptions) {
int bci = itr.bci();
ExceptionTableElement[] exct = method().getExceptionTable();
for(int i = 0; i< exct.length; i++) {
int start_pc = exct[i].getStartPC();
int end_pc = exct[i].getEndPC();
int handler_pc = exct[i].getHandlerPC();
int catch_type = exct[i].getCatchTypeIndex();
if (start_pc <= bci && bci < end_pc) {
BasicBlock excBB = getBasicBlockAt(handler_pc);
CellTypeStateList excStk = excBB.stack();
CellTypeStateList cOpStck = stack();
CellTypeState cOpStck_0 = cOpStck.get(0).copy();
int cOpStackTop = _stack_top;
// Exception stacks are always the same.
if (Assert.ASSERTS_ENABLED) {
Assert.that(method().getMaxStack() > 0, "sanity check");
}
// We remembered the size and first element of "cOpStck"
// above; now we temporarily set them to the appropriate
// values for an exception handler.
cOpStck.get(0).set(CellTypeState.makeSlotRef(_max_locals));
_stack_top = 1;
mergeStateIntoBB(excBB);
// Now undo the temporary change.
cOpStck.get(0).set(cOpStck_0);
_stack_top = cOpStackTop;
// If this is a "catch all" handler, then we do not need to
// consider any additional handlers.
if (catch_type == 0) {
return;
}
}
}
}
// It is possible that none of the exception handlers would have caught
// the exception. In this case, we will exit the method. We must
// ensure that the monitor stack is empty in this case.
if (_monitor_top == 0) {
return;
}
// We pessimistically assume that this exception can escape the
// method. (It is possible that it will always be caught, but
// we don't care to analyse the types of the catch clauses.)
// We don't set _monitor_top to bad_monitors because there are no successors
// to this exceptional exit.
if (TraceMonitorMismatch && _monitor_safe) {
// We check _monitor_safe so that we only report the first mismatched
// exceptional exit.
reportMonitorMismatch("non-empty monitor stack at exceptional exit");
}
_monitor_safe = false;
}
void checkType (CellTypeState expected, CellTypeState actual) {
if (!expected.equalKind(actual)) {
throw new RuntimeException("wrong type on stack (found: " +
actual.toChar() + " expected: " +
expected.toChar() + ")");
}
}
void ppstore (CellTypeState[] in, int loc_no) {
for (int i = 0; i < in.length && !in[i].equal(CellTypeState.bottom); i++) {
CellTypeState expected = in[i];
CellTypeState actual = pop();
checkType(expected, actual);
if (Assert.ASSERTS_ENABLED) {
Assert.that(loc_no >= 0, "sanity check");
}
setVar(loc_no++, actual);
}
}
void ppload (CellTypeState[] out, int loc_no) {
for (int i = 0; i < out.length && !out[i].equal(CellTypeState.bottom); i++) {
CellTypeState out1 = out[i];
CellTypeState vcts = getVar(loc_no);
if (Assert.ASSERTS_ENABLED) {
Assert.that(out1.canBeReference() || out1.canBeValue(),
"can only load refs. and values.");
}
if (out1.isReference()) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(loc_no>=0, "sanity check");
}
if (!vcts.isReference()) {
// We were asked to push a reference, but the type of the
// variable can be something else
_conflict = true;
if (vcts.canBeUninit()) {
// It is a ref-uninit conflict (at least). If there are other
// problems, we'll get them in the next round
addToRefInitSet(loc_no);
vcts = out1;
} else {
// It wasn't a ref-uninit conflict. So must be a
// ref-val or ref-pc conflict. Split the variable.
recordRefvalConflict(loc_no);
vcts = out1;
}
push(out1); // recover...
} else {
push(vcts); // preserve reference.
}
// Otherwise it is a conflict, but one that verification would
// have caught if illegal. In particular, it can't be a topCTS
// resulting from mergeing two difference pcCTS's since the verifier
// would have rejected any use of such a merge.
} else {
push(out1); // handle val/init conflict
}
loc_no++;
}
}
void ppush1 (CellTypeState in) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(in.isReference() | in.isValue(), "sanity check");
}
if (DEBUG) {
System.err.println(" - pushing " + in.toChar());
}
push(in);
}
void ppush (CellTypeState[] in) {
for (int i = 0; i < in.length && !in[i].equal(CellTypeState.bottom); i++) {
ppush1(in[i]);
}
}
void ppush (CellTypeStateList in) {
for (int i = 0; i < in.size() && !in.get(i).equal(CellTypeState.bottom); i++) {
ppush1(in.get(i));
}
}
void ppop1 (CellTypeState out) {
CellTypeState actual = pop();
if (DEBUG) {
System.err.println(" - popping " + actual.toChar() + ", expecting " + out.toChar());
}
checkType(out, actual);
}
void ppop (CellTypeState[] out) {
for (int i = 0; i < out.length && !out[i].equal(CellTypeState.bottom); i++) {
ppop1(out[i]);
}
}
void ppopAny (int poplen) {
if (_stack_top >= poplen) {
_stack_top -= poplen;
} else {
throw new RuntimeException("stack underflow");
}
}
void pp (CellTypeState[] in, CellTypeState[] out) {
ppop(in);
ppush(out);
}
void ppNewRef (CellTypeState[] in, int bci) {
ppop(in);
ppush1(CellTypeState.makeLineRef(bci));
}
void ppdupswap (int poplen, String out) {
CellTypeState[] actual = new CellTypeState[5];
Assert.that(poplen < 5, "this must be less than length of actual vector");
// pop all arguments
for(int i = 0; i < poplen; i++) actual[i] = pop();
// put them back
for (int i = 0; i < out.length(); i++) {
char push_ch = out.charAt(i);
int idx = push_ch - '1';
if (Assert.ASSERTS_ENABLED) {
Assert.that(idx >= 0 && idx < poplen, "wrong arguments");
}
push(actual[idx]);
}
}
void doLdc (int bci) {
BytecodeLoadConstant ldc = BytecodeLoadConstant.at(_method, bci);
ConstantPool cp = method().getConstants();
BasicType bt = ldc.resultType();
CellTypeState cts = (bt == BasicType.T_OBJECT) ? CellTypeState.makeLineRef(bci) : valCTS;
ppush1(cts);
}
void doAstore (int idx) {
CellTypeState r_or_p = pop();
if (!r_or_p.isAddress() && !r_or_p.isReference()) {
// We actually expected ref or pc, but we only report that we expected a ref. It does not
// really matter (at least for now)
throw new RuntimeException("wrong type on stack (found: " +
r_or_p.toChar() + ", expected: {pr})");
}
setVar(idx, r_or_p);
}
void doJsr (int targBCI) {
push(CellTypeState.makeAddr(targBCI));
}
void doField (boolean is_get, boolean is_static, int idx, int bci) {
// Dig up signature for field in constant pool
ConstantPool cp = method().getConstants();
int nameAndTypeIdx = cp.getNameAndTypeRefIndexAt(idx);
int signatureIdx = cp.getSignatureRefIndexAt(nameAndTypeIdx);
Symbol signature = cp.getSymbolAt(signatureIdx);
if (DEBUG) {
System.err.println("doField: signature = " + signature.asString() + ", idx = " + idx +
", nameAndTypeIdx = " + nameAndTypeIdx + ", signatureIdx = " + signatureIdx + ", bci = " + bci);
}
// Parse signature (espcially simple for fields)
// The signature is UFT8 encoded, but the first char is always ASCII for signatures.
char sigch = (char) signature.getByteAt(0);
CellTypeState[] temp = new CellTypeState[4];
CellTypeState[] eff = sigcharToEffect(sigch, bci, temp);
CellTypeState[] in = new CellTypeState[4];
CellTypeState[] out;
int i = 0;
if (is_get) {
out = eff;
} else {
out = epsilonCTS;
i = copyCTS(in, eff);
}
if (!is_static) in[i++] = CellTypeState.ref;
in[i] = CellTypeState.bottom;
if (Assert.ASSERTS_ENABLED) {
Assert.that(i<=3, "sanity check");
}
pp(in, out);
}
void doMethod (boolean is_static, boolean is_interface, int idx, int bci) {
// Dig up signature for field in constant pool
ConstantPool cp = _method.getConstants();
Symbol signature = cp.getSignatureRefAt(idx);
// Parse method signature
CellTypeStateList out = new CellTypeStateList(4);
CellTypeStateList in = new CellTypeStateList(MAXARGSIZE+1); // Includes result
ComputeCallStack cse = new ComputeCallStack(signature);
// Compute return type
int res_length = cse.computeForReturntype(out);
// Temporary hack.
if (out.get(0).equal(CellTypeState.ref) && out.get(1).equal(CellTypeState.bottom)) {
out.get(0).set(CellTypeState.makeLineRef(bci));
}
if (Assert.ASSERTS_ENABLED) {
Assert.that(res_length<=4, "max value should be vv");
}
// Compute arguments
int arg_length = cse.computeForParameters(is_static, in);
if (Assert.ASSERTS_ENABLED) {
Assert.that(arg_length<=MAXARGSIZE, "too many locals");
}
// Pop arguments
for (int i = arg_length - 1; i >= 0; i--) ppop1(in.get(i));// Do args in reverse order.
// Report results
if (_report_result_for_send == true) {
fillStackmapForOpcodes(_itr_send, vars(), stack(), _stack_top);
_report_result_for_send = false;
}
// Push return address
ppush(out);
}
void doMultianewarray (int dims, int bci) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(dims >= 1, "sanity check");
}
for(int i = dims -1; i >=0; i--) {
ppop1(valCTS);
}
ppush1(CellTypeState.makeLineRef(bci));
}
void doMonitorenter (int bci) {
CellTypeState actual = pop();
if (_monitor_top == bad_monitors) {
return;
}
// Bail out when we get repeated locks on an identical monitor. This case
// isn't too hard to handle and can be made to work if supporting nested
// redundant synchronized statements becomes a priority.
//
// See also "Note" in do_monitorexit(), below.
if (actual.isLockReference()) {
_monitor_top = bad_monitors;
_monitor_safe = false;
if (TraceMonitorMismatch) {
reportMonitorMismatch("nested redundant lock -- bailout...");
}
return;
}
CellTypeState lock = CellTypeState.makeLockRef(bci);
checkType(refCTS, actual);
if (!actual.isInfoTop()) {
replaceAllCTSMatches(actual, lock);
monitorPush(lock);
}
}
void doMonitorexit (int bci) {
CellTypeState actual = pop();
if (_monitor_top == bad_monitors) {
return;
}
checkType(refCTS, actual);
CellTypeState expected = monitorPop();
if (!actual.isLockReference() || !expected.equal(actual)) {
// The monitor we are exiting is not verifiably the one
// on the top of our monitor stack. This causes a monitor
// mismatch.
_monitor_top = bad_monitors;
_monitor_safe = false;
// We need to mark this basic block as changed so that
// this monitorexit will be visited again. We need to
// do this to ensure that we have accounted for the
// possibility that this bytecode will throw an
// exception.
BasicBlock bb = getBasicBlockContaining(bci);
bb.setChanged(true);
bb._monitor_top = bad_monitors;
if (TraceMonitorMismatch) {
reportMonitorMismatch("improper monitor pair");
}
} else {
// This code is a fix for the case where we have repeated
// locking of the same object in straightline code. We clear
// out the lock when it is popped from the monitor stack
// and replace it with an unobtrusive reference value that can
// be locked again.
//
// Note: when generateOopMap is fixed to properly handle repeated,
// nested, redundant locks on the same object, then this
// fix will need to be removed at that time.
replaceAllCTSMatches(actual, CellTypeState.makeLineRef(bci));
}
if (_report_for_exit_bci == bci) {
_matching_enter_bci = expected.getMonitorSource();
}
}
void doReturnMonitorCheck () {
if (_monitor_top > 0) {
// The monitor stack must be empty when we leave the method
// for the monitors to be properly matched.
_monitor_safe = false;
// Since there are no successors to the *return bytecode, it
// isn't necessary to set _monitor_top to bad_monitors.
if (TraceMonitorMismatch) {
reportMonitorMismatch("non-empty monitor stack at return");
}
}
}
void doCheckcast () {
CellTypeState actual = pop();
checkType(refCTS, actual);
push(actual);
}
CellTypeState[] sigcharToEffect (char sigch, int bci, CellTypeState[] out) {
// Object and array
if (sigch=='L' || sigch=='[') {
out[0] = CellTypeState.makeLineRef(bci);
out[1] = CellTypeState.bottom;
return out;
}
if (sigch == 'J' || sigch == 'D' ) return vvCTS; // Long and Double
if (sigch == 'V' ) return epsilonCTS; // Void
return vCTS; // Otherwise
}
// Copies (optionally bottom/zero terminated) CTS string from "src" into "dst".
// Does NOT terminate with a bottom. Returns the number of cells copied.
int copyCTS (CellTypeState[] dst, CellTypeState[] src) {
int idx = 0;
for (; idx < src.length && !src[idx].isBottom(); idx++) {
dst[idx] = src[idx];
}
return idx;
}
// Create result set
boolean _report_result;
boolean _report_result_for_send; // Unfortunatly, stackmaps for sends are special, so we need some extra
BytecodeStream _itr_send; // variables to handle them properly.
void reportResult () {
// if (TraceNewOopMapGeneration) tty.print_cr("Report result pass");
// We now want to report the result of the parse
_report_result = true;
// Prolog code
fillStackmapProlog(_gc_points);
// Mark everything changed, then do one interpretation pass.
for (int i = 0; i<_bb_count; i++) {
if (_basic_blocks[i].isReachable()) {
_basic_blocks[i].setChanged(true);
interpBB(_basic_blocks[i]);
}
}
// Note: Since we are skipping dead-code when we are reporting results, then
// the no. of encountered gc-points might be fewer than the previously number
// we have counted. (dead-code is a pain - it should be removed before we get here)
fillStackmapEpilog();
// Report initvars
fillInitVars(_init_vars);
_report_result = false;
}
// Initvars
List/*<Integer>*/ _init_vars;
void initializeVars () {
for (int k = 0; k < _init_vars.size(); k++)
_state.get(((Integer) _init_vars.get(k)).intValue()).set(CellTypeState.makeSlotRef(k));
}
void addToRefInitSet (int localNo) {
// if (TraceNewOopMapGeneration)
// tty.print_cr("Added init vars: %d", localNo);
Integer local = new Integer(localNo);
// Is it already in the set?
if (_init_vars.contains(local))
return;
_init_vars.add(local);
}
// Conflicts rewrite logic
boolean _conflict; // True, if a conflict occured during interpretation
int _nof_refval_conflicts; // No. of conflicts that require rewrites
int[] _new_var_map;
void recordRefvalConflict (int varNo) {
if (Assert.ASSERTS_ENABLED) {
Assert.that(varNo>=0 && varNo< _max_locals, "index out of range");
}
if (TraceOopMapRewrites) {
System.err.println("### Conflict detected (local no: " + varNo + ")");
}
if (_new_var_map == null) {
_new_var_map = new int[_max_locals];
for (int k = 0; k < _max_locals; k++) _new_var_map[k] = k;
}
if ( _new_var_map[varNo] == varNo) {
// Check if max. number of locals has been reached
if (_max_locals + _nof_refval_conflicts >= MAX_LOCAL_VARS) {
throw new RuntimeException("Rewriting exceeded local variable limit");
}
_new_var_map[varNo] = _max_locals + _nof_refval_conflicts;
_nof_refval_conflicts++;
}
}
void rewriteRefvalConflicts () {
if (_nof_refval_conflicts > 0) {
if (VM.getVM().isDebugging()) {
throw new RuntimeException("Should not reach here (method rewriting should have been done by the VM already)");
} else {
throw new RuntimeException("Method rewriting not yet implemented in Java");
}
}
}
// Rewriting-related routines are not needed here
// void rewrite_refval_conflict (int from, int to);
// bool rewrite_refval_conflict_inst (BytecodeStream *i, int from, int to);
// bool rewrite_load_or_store (BytecodeStream *i, Bytecodes.Code bc, Bytecodes.Code bc0, unsigned int varNo);
// bool expand_current_instr (int bci, int ilen, int newIlen, u_char inst_buffer[]);
// bool is_astore (BytecodeStream *itr, int *index);
// bool is_aload (BytecodeStream *itr, int *index);
// List of bci's where a return address is on top of the stack
// GrowableArray<intptr_t> *_ret_adr_tos;
// bool stack_top_holds_ret_addr (int bci);
// void compute_ret_adr_at_TOS ();
// void update_ret_adr_at_TOS (int bci, int delta);
String stateVecToString (CellTypeStateList vec, int len) {
for (int i = 0; i < len; i++) {
_state_vec_buf[i] = vec.get(i).toChar();
}
return new String(_state_vec_buf, 0, len);
}
// Helper method. Can be used in subclasses to fx. calculate gc_points. If the current instuction
// is a control transfer, then calls the jmpFct all possible destinations.
void retJumpTargetsDo (BytecodeStream bcs, JumpClosure closure, int varNo, int[] data) {
CellTypeState ra = vars().get(varNo);
if (!ra.isGoodAddress()) {
throw new RuntimeException("ret returns from two jsr subroutines?");
}
int target = ra.getInfo();
RetTableEntry rtEnt = _rt.findJsrsForTarget(target);
int bci = bcs.bci();
for (int i = 0; i < rtEnt.nofJsrs(); i++) {
int target_bci = rtEnt.jsrs(i);
// Make sure a jrtRet does not set the changed bit for dead basicblock.
BasicBlock jsr_bb = getBasicBlockContaining(target_bci - 1);
if (Assert.ASSERTS_ENABLED) {
BasicBlock target_bb = _basic_blocks[1 + bbIndex(jsr_bb)];
Assert.that(target_bb == getBasicBlockAt(target_bci), "wrong calc. of successor basicblock");
}
boolean alive = jsr_bb.isAlive();
// if (TraceNewOopMapGeneration) {
// tty.print("pc = %d, ret . %d alive: %s\n", bci, target_bci, alive ? "true" : "false");
// }
if (alive) {
closure.process(this, target_bci, data);
}
}
}
/** If the current instruction in "c" has no effect on control flow,
returns "true". Otherwise, calls "closure.process()" one or
more times, with "c", an appropriate "pcDelta", and "data" as
arguments, then returns "false". There is one exception: if the
current instruction is a "ret", returns "false" without calling
"jmpFct". Arrangements for tracking the control flow of a "ret"
must be made externally. */
boolean jumpTargetsDo (BytecodeStream bcs, JumpClosure closure, int[] data) {
int bci = bcs.bci();
switch (bcs.code()) {
case Bytecodes._ifeq:
case Bytecodes._ifne:
case Bytecodes._iflt:
case Bytecodes._ifge:
case Bytecodes._ifgt:
case Bytecodes._ifle:
case Bytecodes._if_icmpeq:
case Bytecodes._if_icmpne:
case Bytecodes._if_icmplt:
case Bytecodes._if_icmpge:
case Bytecodes._if_icmpgt:
case Bytecodes._if_icmple:
case Bytecodes._if_acmpeq:
case Bytecodes._if_acmpne:
case Bytecodes._ifnull:
case Bytecodes._ifnonnull:
closure.process(this, bcs.dest(), data);
closure.process(this, bci + 3, data);
break;
case Bytecodes._goto:
closure.process(this, bcs.dest(), data);
break;
case Bytecodes._goto_w:
closure.process(this, bcs.dest_w(), data);
break;
case Bytecodes._tableswitch:
{
BytecodeTableswitch tableswitch = BytecodeTableswitch.at(bcs);
int len = tableswitch.length();
closure.process(this, bci + tableswitch.defaultOffset(), data); /* Default. jump address */
while (--len >= 0) {
closure.process(this, bci + tableswitch.destOffsetAt(len), data);
}
break;
}
case Bytecodes._fast_linearswitch: // Java opcodes
case Bytecodes._fast_binaryswitch: // get_int_table handles conversions
case Bytecodes._lookupswitch:
{
BytecodeLookupswitch lookupswitch = BytecodeLookupswitch.at(bcs);
int npairs = lookupswitch.numberOfPairs();
closure.process(this, bci + lookupswitch.defaultOffset(), data); /* Default. */
while(--npairs >= 0) {
LookupswitchPair pair = lookupswitch.pairAt(npairs);
closure.process(this, bci + pair.offset(), data);
}
break;
/**代码未完, 请加载全部代码(NowJava.com).**/