/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _ECP_H
#define _ECP_H
#include "ecl-priv.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
* qy). Uses affine coordinates. */
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = 2P. Uses affine coordinates. */
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Validates a point on a GFp curve. */
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses affine coordinates. */
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Converts a point P(px, py) from affine coordinates to Jacobian
* projective coordinates R(rx, ry, rz). */
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group);
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry). */
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, qz). Uses Jacobian coordinates. */
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = 2P. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
* (base point) of the group of points on the elliptic curve. Allows k1 =
* NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
* coordinates. Input and output values are assumed to be NOT
* field-encoded and are in affine form. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing);
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
* curve points P and R can be identical. Uses mixed Modified-Jacobian
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
* additions. Assumes input is already field-encoded using field_enc, and
/**代码未完, 请加载全部代码(NowJava.com).**/