/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
*********************************************************************** */
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
u = MP_DIGITS(r);
MP_USED(r) = 6;
/* u[5] only has 6 significant bits */
z = u[5];
u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[4];
u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[3];
u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[2] >> 35; /* z only has 29 significant bits */
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[5] = u[4] = u[3] = 0;
u[2] ^= z << 35;
#else
if (MP_USED(r) < 11) {
MP_CHECKOK(s_mp_pad(r, 11));
}
u = MP_DIGITS(r);
MP_USED(r) = 11;
/* u[11] only has 6 significant bits */
z = u[10];
u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[4] ^= (z << 29);
z = u[9];
u[5] ^= (z >> 28) ^ (z >> 29);
u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[3] ^= (z << 29);
z = u[8];
u[4] ^= (z >> 28) ^ (z >> 29);
u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[2] ^= (z << 29);
z = u[7];
u[3] ^= (z >> 28) ^ (z >> 29);
u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[1] ^= (z << 29);
z = u[6];
u[2] ^= (z >> 28) ^ (z >> 29);
u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[0] ^= (z << 29);
z = u[5] >> 3; /* z only has 29 significant bits */
u[1] ^= (z >> 25) ^ (z >> 26);
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
u[5] ^= z << 3;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 3) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
MP_USED(r) = 6;
#else
if (MP_USED(a) < 6) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 12) {
MP_CHECKOK(s_mp_pad(r, 12));
}
MP_USED(r) = 12;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
u[7] = gf2m_SQR1(v[3]);
u[6] = gf2m_SQR0(v[3]);
#endif
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_163_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 163-bit curve. Assumes
* reduction polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
mp_digit rm[6];
#endif
if (a == b) {
return ec_GF2m_163_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
case 4:
a3 = MP_DIGIT(a, 3);
#endif
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
case 4:
b3 = MP_DIGIT(b, 3);
#endif
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 6));
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
MP_USED(r) = 6;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 12));
s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
b3 ^ b0);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
/**代码未完, 请加载全部代码(NowJava.com).**/