/*
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* FUNCTION
* Internal functions for mlib_ImageConv* on U8/S16/U16 type and
* MLIB_EDGE_SRC_EXTEND mask
*/
#include "mlib_image.h"
#include "mlib_ImageConv.h"
#include "mlib_c_ImageConv.h"
/*
* This define switches between functions of different data types
*/
#define IMG_TYPE 1
/***************************************************************/
#if IMG_TYPE == 1
#define DTYPE mlib_u8
#define CONV_FUNC(KERN) mlib_c_conv##KERN##ext_u8(PARAM)
#define CONV_FUNC_MxN mlib_c_convMxNext_u8(PARAM_MxN)
#define CONV_FUNC_I(KERN) mlib_i_conv##KERN##ext_u8(PARAM)
#define CONV_FUNC_MxN_I mlib_i_convMxNext_u8(PARAM_MxN)
#define DSCALE (1 << 24)
#define FROM_S32(x) (((x) >> 24) ^ 128)
#define S64TOS32(x) (x)
#define SAT_OFF -(1u << 31)
#elif IMG_TYPE == 2
#define DTYPE mlib_s16
#define CONV_FUNC(KERN) mlib_conv##KERN##ext_s16(PARAM)
#define CONV_FUNC_MxN mlib_convMxNext_s16(PARAM_MxN)
#define CONV_FUNC_I(KERN) mlib_i_conv##KERN##ext_s16(PARAM)
#define CONV_FUNC_MxN_I mlib_i_convMxNext_s16(PARAM_MxN)
#define DSCALE 65536.0
#define FROM_S32(x) ((x) >> 16)
#define S64TOS32(x) ((x) & 0xffffffff)
#define SAT_OFF
#elif IMG_TYPE == 3
#define DTYPE mlib_u16
#define CONV_FUNC(KERN) mlib_conv##KERN##ext_u16(PARAM)
#define CONV_FUNC_MxN mlib_convMxNext_u16(PARAM_MxN)
#define CONV_FUNC_I(KERN) mlib_i_conv##KERN##ext_u16(PARAM)
#define CONV_FUNC_MxN_I mlib_i_convMxNext_u16(PARAM_MxN)
#define DSCALE 65536.0
#define FROM_S32(x) (((x) >> 16) ^ 0x8000)
#define S64TOS32(x) (x)
#define SAT_OFF -(1u << 31)
#endif /* IMG_TYPE == 1 */
/***************************************************************/
#define PARAM \
mlib_image *dst, \
const mlib_image *src, \
mlib_s32 dx_l, \
mlib_s32 dx_r, \
mlib_s32 dy_t, \
mlib_s32 dy_b, \
const mlib_s32 *kern, \
mlib_s32 scalef_expon, \
mlib_s32 cmask
/***************************************************************/
#define PARAM_MxN \
mlib_image *dst, \
const mlib_image *src, \
const mlib_s32 *kernel, \
mlib_s32 m, \
mlib_s32 n, \
mlib_s32 dx_l, \
mlib_s32 dx_r, \
mlib_s32 dy_t, \
mlib_s32 dy_b, \
mlib_s32 scale, \
mlib_s32 cmask
/***************************************************************/
#define FTYPE mlib_d64
#ifndef MLIB_USE_FTOI_CLAMPING
#define CLAMP_S32(x) \
(((x) <= MLIB_S32_MIN) ? MLIB_S32_MIN : (((x) >= MLIB_S32_MAX) ? MLIB_S32_MAX : (mlib_s32)(x)))
#else
#define CLAMP_S32(x) ((mlib_s32)(x))
#endif /* MLIB_USE_FTOI_CLAMPING */
/***************************************************************/
#define D2I(x) CLAMP_S32((x) SAT_OFF)
/***************************************************************/
#ifdef _NO_LONGLONG
#define LOAD_BUFF(buff) \
buff[i ] = sp[0]; \
buff[i + 1] = sp[chan1]
#else /* _NO_LONGLONG */
#ifdef _LITTLE_ENDIAN
#define LOAD_BUFF(buff) \
*(mlib_s64*)(buff + i) = (((mlib_s64)sp[chan1]) << 32) | S64TOS32((mlib_s64)sp[0])
#else /* _LITTLE_ENDIAN */
#define LOAD_BUFF(buff) \
*(mlib_s64*)(buff + i) = (((mlib_s64)sp[0]) << 32) | S64TOS32((mlib_s64)sp[chan1])
#endif /* _LITTLE_ENDIAN */
#endif /* _NO_LONGLONG */
/***************************************************************/
typedef union {
mlib_d64 d64;
struct {
mlib_s32 i0;
mlib_s32 i1;
} i32s;
} d64_2x32;
/***************************************************************/
#define GET_SRC_DST_PARAMETERS(type) \
hgt = mlib_ImageGetHeight(src); \
wid = mlib_ImageGetWidth(src); \
nchannel = mlib_ImageGetChannels(src); \
sll = mlib_ImageGetStride(src) / sizeof(type); \
dll = mlib_ImageGetStride(dst) / sizeof(type); \
adr_src = (type *)mlib_ImageGetData(src); \
adr_dst = (type *)mlib_ImageGetData(dst)
/***************************************************************/
#ifndef __sparc
#if IMG_TYPE == 1
/*
* Test for the presence of any "1" bit in bits
8 to 31 of val. If present, then val is either
negative or >255. If over/underflows of 8 bits
are uncommon, then this technique can be a win,
since only a single test, rather than two, is
necessary to determine if clamping is needed.
On the other hand, if over/underflows are common,
it adds an extra test.
*/
#define CLAMP_STORE(dst, val) \
if (val & 0xffffff00) { \
if (val < MLIB_U8_MIN) \
dst = MLIB_U8_MIN; \
else \
dst = MLIB_U8_MAX; \
} else { \
dst = (mlib_u8)val; \
}
#elif IMG_TYPE == 2
#define CLAMP_STORE(dst, val) \
if (val >= MLIB_S16_MAX) \
dst = MLIB_S16_MAX; \
else if (val <= MLIB_S16_MIN) \
dst = MLIB_S16_MIN; \
else \
dst = (mlib_s16)val
#elif IMG_TYPE == 3
#define CLAMP_STORE(dst, val) \
if (val >= MLIB_U16_MAX) \
dst = MLIB_U16_MAX; \
else if (val <= MLIB_U16_MIN) \
dst = MLIB_U16_MIN; \
else \
dst = (mlib_u16)val
#endif /* IMG_TYPE == 1 */
#endif /* __sparc */
/***************************************************************/
#define MAX_KER 7
#define MAX_N 15
#define BUFF_SIZE 1600
#define CACHE_SIZE (64*1024)
static mlib_status mlib_ImageConv1xN_ext(mlib_image *dst,
const mlib_image *src,
const mlib_d64 *k,
mlib_s32 n,
mlib_s32 dy_t,
mlib_s32 dy_b,
mlib_s32 cmask)
{
DTYPE *adr_src, *sl;
DTYPE *adr_dst, *dl, *dp;
FTYPE buff[BUFF_SIZE];
FTYPE *buffd;
FTYPE *pbuff = buff;
const FTYPE *pk;
FTYPE k0, k1, k2, k3;
FTYPE p0, p1, p2, p3, p4;
FTYPE *sbuff;
mlib_s32 l, k_off, off, bsize;
mlib_s32 max_hsize, smax_hsize, shgt, hsize, kh;
mlib_s32 d0, d1, ii;
mlib_s32 wid, hgt, sll, dll;
mlib_s32 nchannel;
mlib_s32 i, j, c;
GET_SRC_DST_PARAMETERS(DTYPE);
max_hsize = ((CACHE_SIZE/sizeof(DTYPE))/sll) - (n - 1);
if (max_hsize < 1) max_hsize = 1;
if (max_hsize > hgt) max_hsize = hgt;
shgt = hgt + (n - 1);
smax_hsize = max_hsize + (n - 1);
bsize = 2 * (smax_hsize + 1);
if (bsize > BUFF_SIZE) {
pbuff = mlib_malloc(sizeof(FTYPE)*bsize);
if (pbuff == NULL) return MLIB_FAILURE;
}
sbuff = pbuff;
buffd = sbuff + smax_hsize;
shgt -= (dy_t + dy_b);
k_off = 0;
for (l = 0; l < hgt; l += hsize) {
hsize = hgt - l;
if (hsize > max_hsize) hsize = max_hsize;
smax_hsize = hsize + (n - 1);
for (c = 0; c < nchannel; c++) {
if (!(cmask & (1 << (nchannel - 1 - c)))) continue;
sl = adr_src + c;
dl = adr_dst + c;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < hsize; i++) buffd[i] = 0.0;
for (j = 0; j < wid; j++) {
FTYPE *buff = sbuff;
for (i = k_off, ii = 0; (i < dy_t) && (ii < smax_hsize); i++, ii++) {
sbuff[i - k_off] = (FTYPE)sl[0];
}
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (; (i < shgt + dy_t) && (ii < smax_hsize); i++, ii++) {
sbuff[i - k_off] = (FTYPE)sl[(i - dy_t)*sll];
}
for (; (i < shgt + dy_t + dy_b) && (ii < smax_hsize); i++, ii++) {
sbuff[i - k_off] = (FTYPE)sl[(shgt - 1)*sll];
}
pk = k;
for (off = 0; off < (n - 4); off += 4) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < hsize; i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3;
}
pk += 4;
buff += 4;
}
dp = dl;
kh = n - off;
if (kh == 4) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (hsize - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[dll] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
dp += 2*dll;
}
if (i < hsize) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3];
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i]);
dp[0] = FROM_S32(d0);
buffd[i] = 0.0;
}
} else if (kh == 3) {
p2 = buff[0]; p3 = buff[1];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (hsize - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = buff[i + 2]; p3 = buff[i + 3];
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[dll] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
dp += 2*dll;
}
if (i < hsize) {
p0 = p2; p1 = p3;
p2 = buff[i + 2];
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + buffd[i]);
dp[0] = FROM_S32(d0);
buffd[i] = 0.0;
}
} else if (kh == 2) {
p2 = buff[0];
k0 = pk[0]; k1 = pk[1];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (hsize - 2); i += 2) {
p0 = p2;
p1 = buff[i + 1]; p2 = buff[i + 2];
d0 = D2I(p0*k0 + p1*k1 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[dll] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
dp += 2*dll;
}
if (i < hsize) {
p0 = p2;
p1 = buff[i + 1];
d0 = D2I(p0*k0 + p1*k1 + buffd[i]);
dp[0] = FROM_S32(d0);
buffd[i] = 0.0;
}
} else /* kh == 1 */{
k0 = pk[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (hsize - 2); i += 2) {
p0 = buff[i]; p1 = buff[i + 1];
d0 = D2I(p0*k0 + buffd[i ]);
d1 = D2I(p1*k0 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[dll] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
dp += 2*dll;
}
if (i < hsize) {
p0 = buff[i];
d0 = D2I(p0*k0 + buffd[i]);
dp[0] = FROM_S32(d0);
buffd[i] = 0.0;
}
}
/* next line */
sl += nchannel;
dl += nchannel;
}
}
k_off += max_hsize;
adr_dst += max_hsize*dll;
}
if (pbuff != buff) mlib_free(pbuff);
return MLIB_SUCCESS;
}
/***************************************************************/
mlib_status CONV_FUNC_MxN
{
DTYPE *adr_src, *sl, *sp = NULL;
DTYPE *adr_dst, *dl, *dp = NULL;
FTYPE buff[BUFF_SIZE], *buffs_arr[2*(MAX_N + 1)];
FTYPE **buffs = buffs_arr, *buffd;
FTYPE akernel[256], *k = akernel, fscale = DSCALE;
FTYPE *pbuff = buff;
FTYPE k0, k1, k2, k3, k4, k5, k6;
FTYPE p0, p1, p2, p3, p4, p5, p6, p7;
mlib_s32 *buffi;
mlib_s32 mn, l, off, kw, bsize, buff_ind;
mlib_s32 d0, d1;
mlib_s32 wid, hgt, sll, dll;
mlib_s32 nchannel, chan1, chan2;
mlib_s32 i, j, c, swid;
d64_2x32 dd;
mlib_status status = MLIB_SUCCESS;
GET_SRC_DST_PARAMETERS(DTYPE);
if (scale > 30) {
fscale *= 1.0/(1 << 30);
scale -= 30;
}
fscale /= (1 << scale);
mn = m*n;
if (mn > 256) {
k = mlib_malloc(mn*sizeof(mlib_d64));
if (k == NULL) return MLIB_FAILURE;
}
for (i = 0; i < mn; i++) {
k[i] = kernel[i]*fscale;
}
if (m == 1) {
status = mlib_ImageConv1xN_ext(dst, src, k, n, dy_t, dy_b, cmask);
FREE_AND_RETURN_STATUS;
}
swid = wid + (m - 1);
bsize = (n + 3)*swid;
if ((bsize > BUFF_SIZE) || (n > MAX_N)) {
pbuff = mlib_malloc(sizeof(FTYPE)*bsize + sizeof(FTYPE *)*2*(n + 1));
if (pbuff == NULL) {
status = MLIB_FAILURE;
FREE_AND_RETURN_STATUS;
}
buffs = (FTYPE **)(pbuff + bsize);
}
for (l = 0; l < (n + 1); l++) buffs[l] = pbuff + l*swid;
for (l = 0; l < (n + 1); l++) buffs[l + (n + 1)] = buffs[l];
buffd = buffs[n] + swid;
buffi = (mlib_s32*)(buffd + swid);
chan1 = nchannel;
chan2 = chan1 + chan1;
swid -= (dx_l + dx_r);
for (c = 0; c < nchannel; c++) {
if (!(cmask & (1 << (chan1 - 1 - c)))) continue;
sl = adr_src + c;
dl = adr_dst + c;
for (l = 0; l < n; l++) {
FTYPE *buff = buffs[l];
for (i = 0; i < dx_l; i++) {
buff[i] = (FTYPE)sl[0];
}
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < swid; i++) {
buff[i + dx_l] = (FTYPE)sl[i*chan1];
}
for (i = 0; i < dx_r; i++) {
buff[swid + dx_l + i] = buff[swid + dx_l - 1];
}
if ((l >= dy_t) && (l < hgt + n - dy_b - 2)) sl += sll;
}
buff_ind = 0;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < wid; i++) buffd[i] = 0.0;
for (j = 0; j < hgt; j++) {
FTYPE **buffc = buffs + buff_ind;
FTYPE *buffn = buffc[n];
FTYPE *pk = k;
for (l = 0; l < n; l++) {
FTYPE *buff_l = buffc[l];
for (off = 0; off < m;) {
FTYPE *buff = buff_l + off;
kw = m - off;
if (kw > 2*MAX_KER) kw = MAX_KER; else
if (kw > MAX_KER) kw = kw/2;
off += kw;
sp = sl;
dp = dl;
if (kw == 7) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3]; p6 = buff[4]; p7 = buff[5];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4]; k5 = pk[5]; k6 = pk[6];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7;
p6 = buff[i + 6]; p7 = buff[i + 7];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7;
p6 = buff[i + 6]; p7 = buff[i + 7];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 6) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3]; p6 = buff[4];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4]; k5 = pk[5];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = buff[i + 5]; p6 = buff[i + 6];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = buff[i + 5]; p6 = buff[i + 6];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 5) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = buff[i + 4]; p5 = buff[i + 5];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = buff[i + 4]; p5 = buff[i + 5];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 4) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 3) {
p2 = buff[0]; p3 = buff[1];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = buff[i + 2]; p3 = buff[i + 3];
buffd[i ] += p0*k0 + p1*k1 + p2*k2;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = buff[i + 2]; p3 = buff[i + 3];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + p2*k2 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
} else /* if (kw == 2) */ {
p2 = buff[0];
k0 = pk[0]; k1 = pk[1];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2;
p1 = buff[i + 1]; p2 = buff[i + 2];
buffd[i ] += p0*k0 + p1*k1;
buffd[i + 1] += p1*k0 + p2*k1;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2;
p1 = buff[i + 1]; p2 = buff[i + 2];
LOAD_BUFF(buffi);
dd.d64 = *(FTYPE *)(buffi + i);
buffn[i + dx_l ] = (FTYPE)dd.i32s.i0;
buffn[i + dx_l + 1] = (FTYPE)dd.i32s.i1;
d0 = D2I(p0*k0 + p1*k1 + buffd[i ]);
d1 = D2I(p1*k0 + p2*k1 + buffd[i + 1]);
dp[0 ] = FROM_S32(d0);
dp[chan1] = FROM_S32(d1);
buffd[i ] = 0.0;
buffd[i + 1] = 0.0;
sp += chan2;
dp += chan2;
}
}
}
pk += kw;
}
}
/* last pixels */
for (; i < wid; i++) {
FTYPE *pk = k, s = 0;
mlib_s32 x, d0;
for (l = 0; l < n; l++) {
FTYPE *buff = buffc[l] + i;
for (x = 0; x < m; x++) s += buff[x] * (*pk++);
}
d0 = D2I(s);
dp[0] = FROM_S32(d0);
buffn[i + dx_l] = (FTYPE)sp[0];
sp += chan1;
dp += chan1;
}
for (; i < swid; i++) {
buffn[i + dx_l] = (FTYPE)sp[0];
sp += chan1;
}
for (i = 0; i < dx_l; i++) buffn[i] = buffn[dx_l];
for (i = 0; i < dx_r; i++) buffn[swid + dx_l + i] = buffn[swid + dx_l - 1];
/* next line */
if (j < hgt - dy_b - 2) sl += sll;
dl += dll;
buff_ind++;
if (buff_ind >= n + 1) buff_ind = 0;
}
}
FREE_AND_RETURN_STATUS;
}
/***************************************************************/
#ifndef __sparc /* for x86, using integer multiplies is faster */
#define STORE_RES(res, x) \
x >>= shift2; \
CLAMP_STORE(res, x)
mlib_status CONV_FUNC_MxN_I
{
DTYPE *adr_src, *sl, *sp = NULL;
DTYPE *adr_dst, *dl, *dp = NULL;
mlib_s32 buff[BUFF_SIZE], *buffs_arr[2*(MAX_N + 1)];
mlib_s32 *pbuff = buff;
mlib_s32 **buffs = buffs_arr, *buffd;
mlib_s32 l, off, kw, bsize, buff_ind;
mlib_s32 d0, d1, shift1, shift2;
mlib_s32 k0, k1, k2, k3, k4, k5, k6;
mlib_s32 p0, p1, p2, p3, p4, p5, p6, p7;
mlib_s32 wid, hgt, sll, dll;
mlib_s32 nchannel, chan1;
mlib_s32 i, j, c, swid;
mlib_s32 chan2;
mlib_s32 k_locl[MAX_N*MAX_N], *k = k_locl;
GET_SRC_DST_PARAMETERS(DTYPE);
#if IMG_TYPE != 1
shift1 = 16;
#else
shift1 = 8;
#endif /* IMG_TYPE != 1 */
shift2 = scale - shift1;
chan1 = nchannel;
chan2 = chan1 + chan1;
swid = wid + (m - 1);
bsize = (n + 2)*swid;
if ((bsize > BUFF_SIZE) || (n > MAX_N)) {
pbuff = mlib_malloc(sizeof(mlib_s32)*bsize + sizeof(mlib_s32 *)*2*(n + 1));
if (pbuff == NULL) return MLIB_FAILURE;
buffs = (mlib_s32 **)(pbuff + bsize);
}
for (l = 0; l < (n + 1); l++) buffs[l] = pbuff + l*swid;
for (l = 0; l < (n + 1); l++) buffs[l + (n + 1)] = buffs[l];
buffd = buffs[n] + swid;
if (m*n > MAX_N*MAX_N) {
k = mlib_malloc(sizeof(mlib_s32)*(m*n));
if (k == NULL) {
if (pbuff != buff) mlib_free(pbuff);
return MLIB_FAILURE;
}
}
for (i = 0; i < m*n; i++) {
k[i] = kernel[i] >> shift1;
}
swid -= (dx_l + dx_r);
for (c = 0; c < nchannel; c++) {
if (!(cmask & (1 << (nchannel - 1 - c)))) continue;
sl = adr_src + c;
dl = adr_dst + c;
for (l = 0; l < n; l++) {
mlib_s32 *buff = buffs[l];
for (i = 0; i < dx_l; i++) {
buff[i] = (mlib_s32)sl[0];
}
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < swid; i++) {
buff[i + dx_l] = (mlib_s32)sl[i*chan1];
}
for (i = 0; i < dx_r; i++) {
buff[swid + dx_l + i] = buff[swid + dx_l - 1];
}
if ((l >= dy_t) && (l < hgt + n - dy_b - 2)) sl += sll;
}
buff_ind = 0;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < wid; i++) buffd[i] = 0;
for (j = 0; j < hgt; j++) {
mlib_s32 **buffc = buffs + buff_ind;
mlib_s32 *buffn = buffc[n];
mlib_s32 *pk = k;
for (l = 0; l < n; l++) {
mlib_s32 *buff_l = buffc[l];
for (off = 0; off < m;) {
mlib_s32 *buff = buff_l + off;
sp = sl;
dp = dl;
kw = m - off;
if (kw > 2*MAX_KER) kw = MAX_KER; else
if (kw > MAX_KER) kw = kw/2;
off += kw;
if (kw == 7) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3]; p6 = buff[4]; p7 = buff[5];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4]; k5 = pk[5]; k6 = pk[6];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7;
p6 = buff[i + 6]; p7 = buff[i + 7];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7;
p6 = buff[i + 6]; p7 = buff[i + 7];
buffn[i + dx_l ] = (mlib_s32)sp[0];
buffn[i + dx_l + 1] = (mlib_s32)sp[chan1];
d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]);
d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]);
STORE_RES(dp[0 ], d0);
STORE_RES(dp[chan1], d1);
buffd[i ] = 0;
buffd[i + 1] = 0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 6) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3]; p6 = buff[4];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4]; k5 = pk[5];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = buff[i + 5]; p6 = buff[i + 6];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = buff[i + 5]; p6 = buff[i + 6];
buffn[i + dx_l ] = (mlib_s32)sp[0];
buffn[i + dx_l + 1] = (mlib_s32)sp[chan1];
d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]);
d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]);
STORE_RES(dp[0 ], d0);
STORE_RES(dp[chan1], d1);
buffd[i ] = 0;
buffd[i + 1] = 0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 5) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
p5 = buff[3];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = buff[i + 4]; p5 = buff[i + 5];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = buff[i + 4]; p5 = buff[i + 5];
buffn[i + dx_l ] = (mlib_s32)sp[0];
buffn[i + dx_l + 1] = (mlib_s32)sp[chan1];
d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]);
d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]);
STORE_RES(dp[0 ], d0);
STORE_RES(dp[chan1], d1);
buffd[i ] = 0;
buffd[i + 1] = 0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 4) {
p2 = buff[0]; p3 = buff[1]; p4 = buff[2];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3;
buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = buff[i + 3]; p4 = buff[i + 4];
buffn[i + dx_l ] = (mlib_s32)sp[0];
buffn[i + dx_l + 1] = (mlib_s32)sp[chan1];
d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]);
d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]);
STORE_RES(dp[0 ], d0);
STORE_RES(dp[chan1], d1);
buffd[i ] = 0;
buffd[i + 1] = 0;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 3) {
p2 = buff[0]; p3 = buff[1];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2];
if (l < (n - 1) || off < m) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = buff[i + 2]; p3 = buff[i + 3];
/**代码未完, 请加载全部代码(NowJava.com).**/