/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2017 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// PostScript ColorRenderingDictionary and ColorSpaceArray
#define MAXPSCOLS 60 // Columns on tables
/*
Implementation
--------------
PostScript does use XYZ as its internal PCS. But since PostScript
interpolation tables are limited to 8 bits, I use Lab as a way to
improve the accuracy, favoring perceptual results. So, for the creation
of each CRD, CSA the profiles are converted to Lab via a device
link between profile -> Lab or Lab -> profile. The PS code necessary to
convert Lab <-> XYZ is also included.
Color Space Arrays (CSA)
==================================================================================
In order to obtain precision, code chooses between three ways to implement
the device -> XYZ transform. These cases identifies monochrome profiles (often
implemented as a set of curves), matrix-shaper and Pipeline-based.
Monochrome
-----------
This is implemented as /CIEBasedA CSA. The prelinearization curve is
placed into /DecodeA section, and matrix equals to D50. Since here is
no interpolation tables, I do the conversion directly to XYZ
NOTE: CLUT-based monochrome profiles are NOT supported. So, cmsFLAGS_MATRIXINPUT
flag is forced on such profiles.
[ /CIEBasedA
<<
/DecodeA { transfer function } bind
/MatrixA [D50]
/RangeLMN [ 0.0 cmsD50X 0.0 cmsD50Y 0.0 cmsD50Z ]
/WhitePoint [D50]
/BlackPoint [BP]
/RenderingIntent (intent)
>>
]
On simpler profiles, the PCS is already XYZ, so no conversion is required.
Matrix-shaper based
-------------------
This is implemented both with /CIEBasedABC or /CIEBasedDEF on dependig
of profile implementation. Since here there are no interpolation tables, I do
the conversion directly to XYZ
[ /CIEBasedABC
<<
/DecodeABC [ {transfer1} {transfer2} {transfer3} ]
/MatrixABC [Matrix]
/RangeLMN [ 0.0 cmsD50X 0.0 cmsD50Y 0.0 cmsD50Z ]
/DecodeLMN [ { / 2} dup dup ]
/WhitePoint [D50]
/BlackPoint [BP]
/RenderingIntent (intent)
>>
]
CLUT based
----------
Lab is used in such cases.
[ /CIEBasedDEF
<<
/DecodeDEF [ <prelinearization> ]
/Table [ p p p [<...>]]
/RangeABC [ 0 1 0 1 0 1]
/DecodeABC[ <postlinearization> ]
/RangeLMN [ -0.236 1.254 0 1 -0.635 1.640 ]
% -128/500 1+127/500 0 1 -127/200 1+128/200
/MatrixABC [ 1 1 1 1 0 0 0 0 -1]
/WhitePoint [D50]
/BlackPoint [BP]
/RenderingIntent (intent)
]
Color Rendering Dictionaries (CRD)
==================================
These are always implemented as CLUT, and always are using Lab. Since CRD are expected to
be used as resources, the code adds the definition as well.
<<
/ColorRenderingType 1
/WhitePoint [ D50 ]
/BlackPoint [BP]
/MatrixPQR [ Bradford ]
/RangePQR [-0.125 1.375 -0.125 1.375 -0.125 1.375 ]
/TransformPQR [
{4 index 3 get div 2 index 3 get mul exch pop exch pop exch pop exch pop } bind
{4 index 4 get div 2 index 4 get mul exch pop exch pop exch pop exch pop } bind
{4 index 5 get div 2 index 5 get mul exch pop exch pop exch pop exch pop } bind
]
/MatrixABC <...>
/EncodeABC <...>
/RangeABC <.. used for XYZ -> Lab>
/EncodeLMN
/RenderTable [ p p p [<...>]]
/RenderingIntent (Perceptual)
>>
/Current exch /ColorRendering defineresource pop
The following stages are used to convert from XYZ to Lab
--------------------------------------------------------
Input is given at LMN stage on X, Y, Z
Encode LMN gives us f(X/Xn), f(Y/Yn), f(Z/Zn)
/EncodeLMN [
{ 0.964200 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind
{ 1.000000 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind
{ 0.824900 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind
]
MatrixABC is used to compute f(Y/Yn), f(X/Xn) - f(Y/Yn), f(Y/Yn) - f(Z/Zn)
| 0 1 0|
| 1 -1 0|
| 0 1 -1|
/MatrixABC [ 0 1 0 1 -1 1 0 0 -1 ]
EncodeABC finally gives Lab values.
/EncodeABC [
{ 116 mul 16 sub 100 div } bind
{ 500 mul 128 add 255 div } bind
{ 200 mul 128 add 255 div } bind
]
The following stages are used to convert Lab to XYZ
----------------------------------------------------
/RangeABC [ 0 1 0 1 0 1]
/DecodeABC [ { 100 mul 16 add 116 div } bind
{ 255 mul 128 sub 500 div } bind
{ 255 mul 128 sub 200 div } bind
]
/MatrixABC [ 1 1 1 1 0 0 0 0 -1]
/DecodeLMN [
{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.964200 mul} bind
{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse } bind
{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.824900 mul} bind
]
*/
/*
PostScript algorithms discussion.
=========================================================================================================
1D interpolation algorithm
1D interpolation (float)
------------------------
val2 = Domain * Value;
cell0 = (int) floor(val2);
cell1 = (int) ceil(val2);
rest = val2 - cell0;
y0 = LutTable[cell0] ;
y1 = LutTable[cell1] ;
y = y0 + (y1 - y0) * rest;
PostScript code Stack
================================================
{ % v
<check 0..1.0>
[array] % v tab
dup % v tab tab
length 1 sub % v tab dom
3 -1 roll % tab dom v
mul % tab val2
dup % tab val2 val2
dup % tab val2 val2 val2
floor cvi % tab val2 val2 cell0
exch % tab val2 cell0 val2
ceiling cvi % tab val2 cell0 cell1
3 index % tab val2 cell0 cell1 tab
exch % tab val2 cell0 tab cell1
get % tab val2 cell0 y1
4 -1 roll % val2 cell0 y1 tab
3 -1 roll % val2 y1 tab cell0
get % val2 y1 y0
dup % val2 y1 y0 y0
3 1 roll % val2 y0 y1 y0
sub % val2 y0 (y1-y0)
3 -1 roll % y0 (y1-y0) val2
dup % y0 (y1-y0) val2 val2
floor cvi % y0 (y1-y0) val2 floor(val2)
sub % y0 (y1-y0) rest
mul % y0 t1
add % y
65535 div % result
} bind
*/
// This struct holds the memory block currently being write
typedef struct {
_cmsStageCLutData* Pipeline;
cmsIOHANDLER* m;
int FirstComponent;
int SecondComponent;
const char* PreMaj;
const char* PostMaj;
const char* PreMin;
const char* PostMin;
int FixWhite; // Force mapping of pure white
cmsColorSpaceSignature ColorSpace; // ColorSpace of profile
} cmsPsSamplerCargo;
static int _cmsPSActualColumn = 0;
// Convert to byte
static
cmsUInt8Number Word2Byte(cmsUInt16Number w)
{
return (cmsUInt8Number) floor((cmsFloat64Number) w / 257.0 + 0.5);
}
// Convert to byte (using ICC2 notation)
/*
static
cmsUInt8Number L2Byte(cmsUInt16Number w)
{
int ww = w + 0x0080;
if (ww > 0xFFFF) return 0xFF;
return (cmsUInt8Number) ((cmsUInt16Number) (ww >> 8) & 0xFF);
}
*/
// Write a cooked byte
static
void WriteByte(cmsIOHANDLER* m, cmsUInt8Number b)
{
_cmsIOPrintf(m, "%02x", b);
_cmsPSActualColumn += 2;
if (_cmsPSActualColumn > MAXPSCOLS) {
_cmsIOPrintf(m, "\n");
_cmsPSActualColumn = 0;
}
}
// ----------------------------------------------------------------- PostScript generation
// Removes offending Carriage returns
static
char* RemoveCR(const char* txt)
{
static char Buffer[2048];
char* pt;
strncpy(Buffer, txt, 2047);
Buffer[2047] = 0;
for (pt = Buffer; *pt; pt++)
if (*pt == '\n' || *pt == '\r') *pt = ' ';
return Buffer;
}
static
void EmitHeader(cmsIOHANDLER* m, const char* Title, cmsHPROFILE hProfile)
{
time_t timer;
cmsMLU *Description, *Copyright;
char DescASCII[256], CopyrightASCII[256];
time(&timer);
Description = (cmsMLU*) cmsReadTag(hProfile, cmsSigProfileDescriptionTag);
Copyright = (cmsMLU*) cmsReadTag(hProfile, cmsSigCopyrightTag);
DescASCII[0] = DescASCII[255] = 0;
CopyrightASCII[0] = CopyrightASCII[255] = 0;
if (Description != NULL) cmsMLUgetASCII(Description, cmsNoLanguage, cmsNoCountry, DescASCII, 255);
if (Copyright != NULL) cmsMLUgetASCII(Copyright, cmsNoLanguage, cmsNoCountry, CopyrightASCII, 255);
_cmsIOPrintf(m, "%%!PS-Adobe-3.0\n");
_cmsIOPrintf(m, "%%\n");
_cmsIOPrintf(m, "%% %s\n", Title);
_cmsIOPrintf(m, "%% Source: %s\n", RemoveCR(DescASCII));
_cmsIOPrintf(m, "%% %s\n", RemoveCR(CopyrightASCII));
_cmsIOPrintf(m, "%% Created: %s", ctime(&timer)); // ctime appends a \n!!!
_cmsIOPrintf(m, "%%\n");
_cmsIOPrintf(m, "%%%%BeginResource\n");
}
// Emits White & Black point. White point is always D50, Black point is the device
// Black point adapted to D50.
static
void EmitWhiteBlackD50(cmsIOHANDLER* m, cmsCIEXYZ* BlackPoint)
{
_cmsIOPrintf(m, "/BlackPoint [%f %f %f]\n", BlackPoint -> X,
BlackPoint -> Y,
BlackPoint -> Z);
_cmsIOPrintf(m, "/WhitePoint [%f %f %f]\n", cmsD50_XYZ()->X,
cmsD50_XYZ()->Y,
cmsD50_XYZ()->Z);
}
static
void EmitRangeCheck(cmsIOHANDLER* m)
{
_cmsIOPrintf(m, "dup 0.0 lt { pop 0.0 } if "
"dup 1.0 gt { pop 1.0 } if ");
}
// Does write the intent
static
void EmitIntent(cmsIOHANDLER* m, cmsUInt32Number RenderingIntent)
{
const char *intent;
switch (RenderingIntent) {
case INTENT_PERCEPTUAL: intent = "Perceptual"; break;
case INTENT_RELATIVE_COLORIMETRIC: intent = "RelativeColorimetric"; break;
case INTENT_ABSOLUTE_COLORIMETRIC: intent = "AbsoluteColorimetric"; break;
case INTENT_SATURATION: intent = "Saturation"; break;
default: intent = "Undefined"; break;
}
_cmsIOPrintf(m, "/RenderingIntent (%s)\n", intent );
}
//
// Convert L* to Y
//
// Y = Yn*[ (L* + 16) / 116] ^ 3 if (L*) >= 6 / 29
// = Yn*( L* / 116) / 7.787 if (L*) < 6 / 29
//
/*
static
void EmitL2Y(cmsIOHANDLER* m)
{
_cmsIOPrintf(m,
"{ "
"100 mul 16 add 116 div " // (L * 100 + 16) / 116
"dup 6 29 div ge " // >= 6 / 29 ?
"{ dup dup mul mul } " // yes, ^3 and done
"{ 4 29 div sub 108 841 div mul } " // no, slope limiting
"ifelse } bind ");
}
*/
// Lab -> XYZ, see the discussion above
static
void EmitLab2XYZ(cmsIOHANDLER* m)
{
_cmsIOPrintf(m, "/RangeABC [ 0 1 0 1 0 1]\n");
_cmsIOPrintf(m, "/DecodeABC [\n");
_cmsIOPrintf(m, "{100 mul 16 add 116 div } bind\n");
_cmsIOPrintf(m, "{255 mul 128 sub 500 div } bind\n");
_cmsIOPrintf(m, "{255 mul 128 sub 200 div } bind\n");
_cmsIOPrintf(m, "]\n");
_cmsIOPrintf(m, "/MatrixABC [ 1 1 1 1 0 0 0 0 -1]\n");
_cmsIOPrintf(m, "/RangeLMN [ -0.236 1.254 0 1 -0.635 1.640 ]\n");
_cmsIOPrintf(m, "/DecodeLMN [\n");
_cmsIOPrintf(m, "{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.964200 mul} bind\n");
_cmsIOPrintf(m, "{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse } bind\n");
_cmsIOPrintf(m, "{dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.824900 mul} bind\n");
_cmsIOPrintf(m, "]\n");
}
// Outputs a table of words. It does use 16 bits
static
void Emit1Gamma(cmsIOHANDLER* m, cmsToneCurve* Table)
{
cmsUInt32Number i;
cmsFloat64Number gamma;
if (Table == NULL) return; // Error
if (Table ->nEntries <= 0) return; // Empty table
// Suppress whole if identity
if (cmsIsToneCurveLinear(Table)) return;
// Check if is really an exponential. If so, emit "exp"
gamma = cmsEstimateGamma(Table, 0.001);
if (gamma > 0) {
_cmsIOPrintf(m, "{ %g exp } bind ", gamma);
return;
}
_cmsIOPrintf(m, "{ ");
// Bounds check
EmitRangeCheck(m);
// Emit intepolation code
// PostScript code Stack
// =============== ========================
// v
_cmsIOPrintf(m, " [");
for (i=0; i < Table->nEntries; i++) {
_cmsIOPrintf(m, "%d ", Table->Table16[i]);
}
_cmsIOPrintf(m, "] "); // v tab
_cmsIOPrintf(m, "dup "); // v tab tab
_cmsIOPrintf(m, "length 1 sub "); // v tab dom
_cmsIOPrintf(m, "3 -1 roll "); // tab dom v
_cmsIOPrintf(m, "mul "); // tab val2
_cmsIOPrintf(m, "dup "); // tab val2 val2
_cmsIOPrintf(m, "dup "); // tab val2 val2 val2
_cmsIOPrintf(m, "floor cvi "); // tab val2 val2 cell0
_cmsIOPrintf(m, "exch "); // tab val2 cell0 val2
_cmsIOPrintf(m, "ceiling cvi "); // tab val2 cell0 cell1
_cmsIOPrintf(m, "3 index "); // tab val2 cell0 cell1 tab
_cmsIOPrintf(m, "exch "); // tab val2 cell0 tab cell1
_cmsIOPrintf(m, "get "); // tab val2 cell0 y1
_cmsIOPrintf(m, "4 -1 roll "); // val2 cell0 y1 tab
_cmsIOPrintf(m, "3 -1 roll "); // val2 y1 tab cell0
_cmsIOPrintf(m, "get "); // val2 y1 y0
_cmsIOPrintf(m, "dup "); // val2 y1 y0 y0
_cmsIOPrintf(m, "3 1 roll "); // val2 y0 y1 y0
_cmsIOPrintf(m, "sub "); // val2 y0 (y1-y0)
_cmsIOPrintf(m, "3 -1 roll "); // y0 (y1-y0) val2
_cmsIOPrintf(m, "dup "); // y0 (y1-y0) val2 val2
_cmsIOPrintf(m, "floor cvi "); // y0 (y1-y0) val2 floor(val2)
_cmsIOPrintf(m, "sub "); // y0 (y1-y0) rest
_cmsIOPrintf(m, "mul "); // y0 t1
_cmsIOPrintf(m, "add "); // y
_cmsIOPrintf(m, "65535 div "); // result
_cmsIOPrintf(m, " } bind ");
}
// Compare gamma table
static
cmsBool GammaTableEquals(cmsUInt16Number* g1, cmsUInt16Number* g2, cmsUInt32Number nEntries)
{
return memcmp(g1, g2, nEntries* sizeof(cmsUInt16Number)) == 0;
}
// Does write a set of gamma curves
static
void EmitNGamma(cmsIOHANDLER* m, cmsUInt32Number n, cmsToneCurve* g[])
{
cmsUInt32Number i;
for( i=0; i < n; i++ )
{
if (g[i] == NULL) return; // Error
if (i > 0 && GammaTableEquals(g[i-1]->Table16, g[i]->Table16, g[i]->nEntries)) {
_cmsIOPrintf(m, "dup ");
}
else {
Emit1Gamma(m, g[i]);
}
}
}
// Following code dumps a LUT onto memory stream
// This is the sampler. Intended to work in SAMPLER_INSPECT mode,
// that is, the callback will be called for each knot with
//
// In[] The grid location coordinates, normalized to 0..ffff
// Out[] The Pipeline values, normalized to 0..ffff
//
// Returning a value other than 0 does terminate the sampling process
//
// Each row contains Pipeline values for all but first component. So, I
// detect row changing by keeping a copy of last value of first
// component. -1 is used to mark beginning of whole block.
static
int OutputValueSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
{
cmsPsSamplerCargo* sc = (cmsPsSamplerCargo*) Cargo;
cmsUInt32Number i;
if (sc -> FixWhite) {
if (In[0] == 0xFFFF) { // Only in L* = 100, ab = [-8..8]
if ((In[1] >= 0x7800 && In[1] <= 0x8800) &&
(In[2] >= 0x7800 && In[2] <= 0x8800)) {
cmsUInt16Number* Black;
cmsUInt16Number* White;
cmsUInt32Number nOutputs;
if (!_cmsEndPointsBySpace(sc ->ColorSpace, &White, &Black, &nOutputs))
return 0;
for (i=0; i < nOutputs; i++)
Out[i] = White[i];
}
}
}
// Hadle the parenthesis on rows
if (In[0] != sc ->FirstComponent) {
if (sc ->FirstComponent != -1) {
_cmsIOPrintf(sc ->m, sc ->PostMin);
sc ->SecondComponent = -1;
_cmsIOPrintf(sc ->m, sc ->PostMaj);
}
// Begin block
_cmsPSActualColumn = 0;
_cmsIOPrintf(sc ->m, sc ->PreMaj);
sc ->FirstComponent = In[0];
}
if (In[1] != sc ->SecondComponent) {
if (sc ->SecondComponent != -1) {
_cmsIOPrintf(sc ->m, sc ->PostMin);
}
_cmsIOPrintf(sc ->m, sc ->PreMin);
sc ->SecondComponent = In[1];
}
// Dump table.
for (i=0; i < sc -> Pipeline ->Params->nOutputs; i++) {
cmsUInt16Number wWordOut = Out[i];
cmsUInt8Number wByteOut; // Value as byte
// We always deal with Lab4
wByteOut = Word2Byte(wWordOut);
WriteByte(sc -> m, wByteOut);
}
return 1;
}
// Writes a Pipeline on memstream. Could be 8 or 16 bits based
static
void WriteCLUT(cmsIOHANDLER* m, cmsStage* mpe, const char* PreMaj,
const char* PostMaj,
const char* PreMin,
const char* PostMin,
int FixWhite,
cmsColorSpaceSignature ColorSpace)
{
cmsUInt32Number i;
cmsPsSamplerCargo sc;
sc.FirstComponent = -1;
sc.SecondComponent = -1;
sc.Pipeline = (_cmsStageCLutData *) mpe ->Data;
sc.m = m;
sc.PreMaj = PreMaj;
sc.PostMaj= PostMaj;
sc.PreMin = PreMin;
sc.PostMin = PostMin;
sc.FixWhite = FixWhite;
sc.ColorSpace = ColorSpace;
_cmsIOPrintf(m, "[");
for (i=0; i < sc.Pipeline->Params->nInputs; i++)
_cmsIOPrintf(m, " %d ", sc.Pipeline->Params->nSamples[i]);
_cmsIOPrintf(m, " [\n");
cmsStageSampleCLut16bit(mpe, OutputValueSampler, (void*) &sc, SAMPLER_INSPECT);
_cmsIOPrintf(m, PostMin);
_cmsIOPrintf(m, PostMaj);
_cmsIOPrintf(m, "] ");
}
// Dumps CIEBasedA Color Space Array
static
int EmitCIEBasedA(cmsIOHANDLER* m, cmsToneCurve* Curve, cmsCIEXYZ* BlackPoint)
{
_cmsIOPrintf(m, "[ /CIEBasedA\n");
_cmsIOPrintf(m, " <<\n");
_cmsIOPrintf(m, "/DecodeA ");
Emit1Gamma(m, Curve);
_cmsIOPrintf(m, " \n");
_cmsIOPrintf(m, "/MatrixA [ 0.9642 1.0000 0.8249 ]\n");
_cmsIOPrintf(m, "/RangeLMN [ 0.0 0.9642 0.0 1.0000 0.0 0.8249 ]\n");
EmitWhiteBlackD50(m, BlackPoint);
EmitIntent(m, INTENT_PERCEPTUAL);
_cmsIOPrintf(m, ">>\n");
_cmsIOPrintf(m, "]\n");
return 1;
}
// Dumps CIEBasedABC Color Space Array
static
int EmitCIEBasedABC(cmsIOHANDLER* m, cmsFloat64Number* Matrix, cmsToneCurve** CurveSet, cmsCIEXYZ* BlackPoint)
{
int i;
_cmsIOPrintf(m, "[ /CIEBasedABC\n");
_cmsIOPrintf(m, "<<\n");
_cmsIOPrintf(m, "/DecodeABC [ ");
EmitNGamma(m, 3, CurveSet);
_cmsIOPrintf(m, "]\n");
_cmsIOPrintf(m, "/MatrixABC [ " );
for( i=0; i < 3; i++ ) {
_cmsIOPrintf(m, "%.6f %.6f %.6f ", Matrix[i + 3*0],
Matrix[i + 3*1],
Matrix[i + 3*2]);
}
_cmsIOPrintf(m, "]\n");
_cmsIOPrintf(m, "/RangeLMN [ 0.0 0.9642 0.0 1.0000 0.0 0.8249 ]\n");
EmitWhiteBlackD50(m, BlackPoint);
EmitIntent(m, INTENT_PERCEPTUAL);
_cmsIOPrintf(m, ">>\n");
_cmsIOPrintf(m, "]\n");
return 1;
}
static
int EmitCIEBasedDEF(cmsIOHANDLER* m, cmsPipeline* Pipeline, cmsUInt32Number Intent, cmsCIEXYZ* BlackPoint)
{
const char* PreMaj;
const char* PostMaj;
const char* PreMin, *PostMin;
cmsStage* mpe;
mpe = Pipeline ->Elements;
switch (cmsStageInputChannels(mpe)) {
case 3:
_cmsIOPrintf(m, "[ /CIEBasedDEF\n");
PreMaj ="<";
PostMaj= ">\n";
PreMin = PostMin = "";
break;
case 4:
_cmsIOPrintf(m, "[ /CIEBasedDEFG\n");
PreMaj = "[";
PostMaj = "]\n";
PreMin = "<";
PostMin = ">\n";
break;
default:
return 0;
}
_cmsIOPrintf(m, "<<\n");
if (cmsStageType(mpe) == cmsSigCurveSetElemType) {
_cmsIOPrintf(m, "/DecodeDEF [ ");
EmitNGamma(m, cmsStageOutputChannels(mpe), _cmsStageGetPtrToCurveSet(mpe));
_cmsIOPrintf(m, "]\n");
mpe = mpe ->Next;
}
if (cmsStageType(mpe) == cmsSigCLutElemType) {
_cmsIOPrintf(m, "/Table ");
WriteCLUT(m, mpe, PreMaj, PostMaj, PreMin, PostMin, FALSE, (cmsColorSpaceSignature) 0);
_cmsIOPrintf(m, "]\n");
}
EmitLab2XYZ(m);
EmitWhiteBlackD50(m, BlackPoint);
EmitIntent(m, Intent);
_cmsIOPrintf(m, " >>\n");
_cmsIOPrintf(m, "]\n");
return 1;
}
// Generates a curve from a gray profile
static
cmsToneCurve* ExtractGray2Y(cmsContext ContextID, cmsHPROFILE hProfile, cmsUInt32Number Intent)
{
cmsToneCurve* Out = cmsBuildTabulatedToneCurve16(ContextID, 256, NULL);
cmsHPROFILE hXYZ = cmsCreateXYZProfile();
cmsHTRANSFORM xform = cmsCreateTransformTHR(ContextID, hProfile, TYPE_GRAY_8, hXYZ, TYPE_XYZ_DBL, Intent, cmsFLAGS_NOOPTIMIZE);
int i;
if (Out != NULL && xform != NULL) {
for (i=0; i < 256; i++) {
cmsUInt8Number Gray = (cmsUInt8Number) i;
cmsCIEXYZ XYZ;
cmsDoTransform(xform, &Gray, &XYZ, 1);
Out ->Table16[i] =_cmsQuickSaturateWord(XYZ.Y * 65535.0);
}
}
if (xform) cmsDeleteTransform(xform);
if (hXYZ) cmsCloseProfile(hXYZ);
return Out;
}
// Because PostScript has only 8 bits in /Table, we should use
// a more perceptually uniform space... I do choose Lab.
static
int WriteInputLUT(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{
cmsHPROFILE hLab;
cmsHTRANSFORM xform;
cmsUInt32Number nChannels;
cmsUInt32Number InputFormat;
int rc;
cmsHPROFILE Profiles[2];
cmsCIEXYZ BlackPointAdaptedToD50;
// Does create a device-link based transform.
// The DeviceLink is next dumped as working CSA.
InputFormat = cmsFormatterForColorspaceOfProfile(hProfile, 2, FALSE);
nChannels = T_CHANNELS(InputFormat);
cmsDetectBlackPoint(&BlackPointAdaptedToD50, hProfile, Intent, 0);
// Adjust output to Lab4
hLab = cmsCreateLab4ProfileTHR(m ->ContextID, NULL);
Profiles[0] = hProfile;
Profiles[1] = hLab;
xform = cmsCreateMultiprofileTransform(Profiles, 2, InputFormat, TYPE_Lab_DBL, Intent, 0);
cmsCloseProfile(hLab);
if (xform == NULL) {
cmsSignalError(m ->ContextID, cmsERROR_COLORSPACE_CHECK, "Cannot create transform Profile -> Lab");
return 0;
}
// Only 1, 3 and 4 channels are allowed
switch (nChannels) {
case 1: {
cmsToneCurve* Gray2Y = ExtractGray2Y(m ->ContextID, hProfile, Intent);
EmitCIEBasedA(m, Gray2Y, &BlackPointAdaptedToD50);
cmsFreeToneCurve(Gray2Y);
}
break;
case 3:
case 4: {
cmsUInt32Number OutFrm = TYPE_Lab_16;
cmsPipeline* DeviceLink;
_cmsTRANSFORM* v = (_cmsTRANSFORM*) xform;
DeviceLink = cmsPipelineDup(v ->Lut);
if (DeviceLink == NULL) return 0;
dwFlags |= cmsFLAGS_FORCE_CLUT;
_cmsOptimizePipeline(m->ContextID, &DeviceLink, Intent, &InputFormat, &OutFrm, &dwFlags);
rc = EmitCIEBasedDEF(m, DeviceLink, Intent, &BlackPointAdaptedToD50);
cmsPipelineFree(DeviceLink);
if (rc == 0) return 0;
}
break;
default:
cmsSignalError(m ->ContextID, cmsERROR_COLORSPACE_CHECK, "Only 3, 4 channels supported for CSA. This profile has %d channels.", nChannels);
return 0;
}
cmsDeleteTransform(xform);
return 1;
}
static
cmsFloat64Number* GetPtrToMatrix(const cmsStage* mpe)
{
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
return Data -> Double;
}
// Does create CSA based on matrix-shaper. Allowed types are gray and RGB based
static
int WriteInputMatrixShaper(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsStage* Matrix, cmsStage* Shaper)
{
cmsColorSpaceSignature ColorSpace;
int rc;
cmsCIEXYZ BlackPointAdaptedToD50;
ColorSpace = cmsGetColorSpace(hProfile);
cmsDetectBlackPoint(&BlackPointAdaptedToD50, hProfile, INTENT_RELATIVE_COLORIMETRIC, 0);
if (ColorSpace == cmsSigGrayData) {
cmsToneCurve** ShaperCurve = _cmsStageGetPtrToCurveSet(Shaper);
rc = EmitCIEBasedA(m, ShaperCurve[0], &BlackPointAdaptedToD50);
}
else
if (ColorSpace == cmsSigRgbData) {
cmsMAT3 Mat;
int i, j;
memmove(&Mat, GetPtrToMatrix(Matrix), sizeof(Mat));
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
Mat.v[i].n[j] *= MAX_ENCODEABLE_XYZ;
rc = EmitCIEBasedABC(m, (cmsFloat64Number *)&Mat,
_cmsStageGetPtrToCurveSet(Shaper),
&BlackPointAdaptedToD50);
}
else {
cmsSignalError(m->ContextID, cmsERROR_COLORSPACE_CHECK, "Profile is not suitable for CSA. Unsupported colorspace.");
return 0;
}
return rc;
}
// Creates a PostScript color list from a named profile data.
// This is a HP extension, and it works in Lab instead of XYZ
static
int WriteNamedColorCSA(cmsIOHANDLER* m, cmsHPROFILE hNamedColor, cmsUInt32Number Intent)
{
cmsHTRANSFORM xform;
cmsHPROFILE hLab;
cmsUInt32Number i, nColors;
char ColorName[cmsMAX_PATH];
cmsNAMEDCOLORLIST* NamedColorList;
hLab = cmsCreateLab4ProfileTHR(m ->ContextID, NULL);
xform = cmsCreateTransform(hNamedColor, TYPE_NAMED_COLOR_INDEX, hLab, TYPE_Lab_DBL, Intent, 0);
if (xform == NULL) return 0;
NamedColorList = cmsGetNamedColorList(xform);
if (NamedColorList == NULL) return 0;
_cmsIOPrintf(m, "<<\n");
_cmsIOPrintf(m, "(colorlistcomment) (%s)\n", "Named color CSA");
_cmsIOPrintf(m, "(Prefix) [ (Pantone ) (PANTONE ) ]\n");
_cmsIOPrintf(m, "(Suffix) [ ( CV) ( CVC) ( C) ]\n");
nColors = cmsNamedColorCount(NamedColorList);
for (i=0; i < nColors; i++) {
cmsUInt16Number In[1];
cmsCIELab Lab;
In[0] = (cmsUInt16Number) i;
if (!cmsNamedColorInfo(NamedColorList, i, ColorName, NULL, NULL, NULL, NULL))
continue;
cmsDoTransform(xform, In, &Lab, 1);
_cmsIOPrintf(m, " (%s) [ %.3f %.3f %.3f ]\n", ColorName, Lab.L, Lab.a, Lab.b);
}
_cmsIOPrintf(m, ">>\n");
cmsDeleteTransform(xform);
cmsCloseProfile(hLab);
return 1;
}
// Does create a Color Space Array on XYZ colorspace for PostScript usage
static
cmsUInt32Number GenerateCSA(cmsContext ContextID,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
cmsIOHANDLER* mem)
{
cmsUInt32Number dwBytesUsed;
cmsPipeline* lut = NULL;
cmsStage* Matrix, *Shaper;
// Is a named color profile?
if (cmsGetDeviceClass(hProfile) == cmsSigNamedColorClass) {
if (!WriteNamedColorCSA(mem, hProfile, Intent)) goto Error;
}
else {
// Any profile class are allowed (including devicelink), but
// output (PCS) colorspace must be XYZ or Lab
cmsColorSpaceSignature ColorSpace = cmsGetPCS(hProfile);
if (ColorSpace != cmsSigXYZData &&
ColorSpace != cmsSigLabData) {
cmsSignalError(ContextID, cmsERROR_COLORSPACE_CHECK, "Invalid output color space");
goto Error;
}
// Read the lut with all necessary conversion stages
lut = _cmsReadInputLUT(hProfile, Intent);
if (lut == NULL) goto Error;
// Tone curves + matrix can be implemented without any LUT
if (cmsPipelineCheckAndRetreiveStages(lut, 2, cmsSigCurveSetElemType, cmsSigMatrixElemType, &Shaper, &Matrix)) {
if (!WriteInputMatrixShaper(mem, hProfile, Matrix, Shaper)) goto Error;
}
else {
// We need a LUT for the rest
if (!WriteInputLUT(mem, hProfile, Intent, dwFlags)) goto Error;
}
}
// Done, keep memory usage
dwBytesUsed = mem ->UsedSpace;
// Get rid of LUT
if (lut != NULL) cmsPipelineFree(lut);
// Finally, return used byte count
return dwBytesUsed;
Error:
if (lut != NULL) cmsPipelineFree(lut);
return 0;
}
// ------------------------------------------------------ Color Rendering Dictionary (CRD)
/*
Black point compensation plus chromatic adaptation:
Step 1 - Chromatic adaptation
=============================
WPout
X = ------- PQR
Wpin
Step 2 - Black point compensation
=================================
(WPout - BPout)*X - WPout*(BPin - BPout)
out = ---------------------------------------
WPout - BPin
Algorithm discussion
====================
TransformPQR(WPin, BPin, WPout, BPout, PQR)
Wpin,etc= { Xws Yws Zws Pws Qws Rws }
Algorithm Stack 0...n
===========================================================
PQR BPout WPout BPin WPin
4 index 3 get WPin PQR BPout WPout BPin WPin
div (PQR/WPin) BPout WPout BPin WPin
2 index 3 get WPout (PQR/WPin) BPout WPout BPin WPin
mult WPout*(PQR/WPin) BPout WPout BPin WPin
2 index 3 get WPout WPout*(PQR/WPin) BPout WPout BPin WPin
2 index 3 get BPout WPout WPout*(PQR/WPin) BPout WPout BPin WPin
sub (WPout-BPout) WPout*(PQR/WPin) BPout WPout BPin WPin
mult (WPout-BPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
2 index 3 get WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
4 index 3 get BPin WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
3 index 3 get BPout BPin WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
sub (BPin-BPout) WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
mult (BPin-BPout)*WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
sub (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
3 index 3 get BPin (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
3 index 3 get WPout BPin (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
exch
sub (WPout-BPin) (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
div
exch pop
exch pop
exch pop
exch pop
*/
static
void EmitPQRStage(cmsIOHANDLER* m, cmsHPROFILE hProfile, int DoBPC, int lIsAbsolute)
{
if (lIsAbsolute) {
// For absolute colorimetric intent, encode back to relative
// and generate a relative Pipeline
// Relative encoding is obtained across XYZpcs*(D50/WhitePoint)
cmsCIEXYZ White;
_cmsReadMediaWhitePoint(&White, hProfile);
_cmsIOPrintf(m,"/MatrixPQR [1 0 0 0 1 0 0 0 1 ]\n");
_cmsIOPrintf(m,"/RangePQR [ -0.5 2 -0.5 2 -0.5 2 ]\n");
_cmsIOPrintf(m, "%% Absolute colorimetric -- encode to relative to maximize LUT usage\n"
"/TransformPQR [\n"
"{0.9642 mul %g div exch pop exch pop exch pop exch pop} bind\n"
"{1.0000 mul %g div exch pop exch pop exch pop exch pop} bind\n"
"{0.8249 mul %g div exch pop exch pop exch pop exch pop} bind\n]\n",
White.X, White.Y, White.Z);
return;
}
_cmsIOPrintf(m,"%% Bradford Cone Space\n"
"/MatrixPQR [0.8951 -0.7502 0.0389 0.2664 1.7135 -0.0685 -0.1614 0.0367 1.0296 ] \n");
_cmsIOPrintf(m, "/RangePQR [ -0.5 2 -0.5 2 -0.5 2 ]\n");
// No BPC
if (!DoBPC) {
_cmsIOPrintf(m, "%% VonKries-like transform in Bradford Cone Space\n"
"/TransformPQR [\n"
"{exch pop exch 3 get mul exch pop exch 3 get div} bind\n"
"{exch pop exch 4 get mul exch pop exch 4 get div} bind\n"
"{exch pop exch 5 get mul exch pop exch 5 get div} bind\n]\n");
} else {
// BPC
_cmsIOPrintf(m, "%% VonKries-like transform in Bradford Cone Space plus BPC\n"
"/TransformPQR [\n");
_cmsIOPrintf(m, "{4 index 3 get div 2 index 3 get mul "
"2 index 3 get 2 index 3 get sub mul "
"2 index 3 get 4 index 3 get 3 index 3 get sub mul sub "
"3 index 3 get 3 index 3 get exch sub div "
"exch pop exch pop exch pop exch pop } bind\n");
_cmsIOPrintf(m, "{4 index 4 get div 2 index 4 get mul "
"2 index 4 get 2 index 4 get sub mul "
"2 index 4 get 4 index 4 get 3 index 4 get sub mul sub "
"3 index 4 get 3 index 4 get exch sub div "
"exch pop exch pop exch pop exch pop } bind\n");
_cmsIOPrintf(m, "{4 index 5 get div 2 index 5 get mul "
"2 index 5 get 2 index 5 get sub mul "
"2 index 5 get 4 index 5 get 3 index 5 get sub mul sub "
"3 index 5 get 3 index 5 get exch sub div "
"exch pop exch pop exch pop exch pop } bind\n]\n");
}
}
static
void EmitXYZ2Lab(cmsIOHANDLER* m)
{
_cmsIOPrintf(m, "/RangeLMN [ -0.635 2.0 0 2 -0.635 2.0 ]\n");
_cmsIOPrintf(m, "/EncodeLMN [\n");
_cmsIOPrintf(m, "{ 0.964200 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind\n");
_cmsIOPrintf(m, "{ 1.000000 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind\n");
_cmsIOPrintf(m, "{ 0.824900 div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind\n");
_cmsIOPrintf(m, "]\n");
_cmsIOPrintf(m, "/MatrixABC [ 0 1 0 1 -1 1 0 0 -1 ]\n");
_cmsIOPrintf(m, "/EncodeABC [\n");
_cmsIOPrintf(m, "{ 116 mul 16 sub 100 div } bind\n");
_cmsIOPrintf(m, "{ 500 mul 128 add 256 div } bind\n");
_cmsIOPrintf(m, "{ 200 mul 128 add 256 div } bind\n");
_cmsIOPrintf(m, "]\n");
}
// Due to impedance mismatch between XYZ and almost all RGB and CMYK spaces
// I choose to dump LUTS in Lab instead of XYZ. There is still a lot of wasted
// space on 3D CLUT, but since space seems not to be a problem here, 33 points
// would give a reasonable accurancy. Note also that CRD tables must operate in
// 8 bits.
static
int WriteOutputLUT(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{
cmsHPROFILE hLab;
cmsHTRANSFORM xform;
cmsUInt32Number i, nChannels;
cmsUInt32Number OutputFormat;
_cmsTRANSFORM* v;
cmsPipeline* DeviceLink;
cmsHPROFILE Profiles[3];
cmsCIEXYZ BlackPointAdaptedToD50;
cmsBool lDoBPC = (cmsBool) (dwFlags & cmsFLAGS_BLACKPOINTCOMPENSATION);
cmsBool lFixWhite = (cmsBool) !(dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP);
cmsUInt32Number InFrm = TYPE_Lab_16;
cmsUInt32Number RelativeEncodingIntent;
cmsColorSpaceSignature ColorSpace;
hLab = cmsCreateLab4ProfileTHR(m ->ContextID, NULL);
if (hLab == NULL) return 0;
OutputFormat = cmsFormatterForColorspaceOfProfile(hProfile, 2, FALSE);
nChannels = T_CHANNELS(OutputFormat);
ColorSpace = cmsGetColorSpace(hProfile);
// For absolute colorimetric, the LUT is encoded as relative in order to preserve precision.
RelativeEncodingIntent = Intent;
if (RelativeEncodingIntent == INTENT_ABSOLUTE_COLORIMETRIC)
RelativeEncodingIntent = INTENT_RELATIVE_COLORIMETRIC;
// Use V4 Lab always
Profiles[0] = hLab;
Profiles[1] = hProfile;
xform = cmsCreateMultiprofileTransformTHR(m ->ContextID,
Profiles, 2, TYPE_Lab_DBL,
OutputFormat, RelativeEncodingIntent, 0);
cmsCloseProfile(hLab);
if (xform == NULL) {
cmsSignalError(m ->ContextID, cmsERROR_COLORSPACE_CHECK, "Cannot create transform Lab -> Profile in CRD creation");
return 0;
}
// Get a copy of the internal devicelink
v = (_cmsTRANSFORM*) xform;
DeviceLink = cmsPipelineDup(v ->Lut);
if (DeviceLink == NULL) return 0;
// We need a CLUT
dwFlags |= cmsFLAGS_FORCE_CLUT;
_cmsOptimizePipeline(m->ContextID, &DeviceLink, RelativeEncodingIntent, &InFrm, &OutputFormat, &dwFlags);
_cmsIOPrintf(m, "<<\n");
_cmsIOPrintf(m, "/ColorRenderingType 1\n");
cmsDetectBlackPoint(&BlackPointAdaptedToD50, hProfile, Intent, 0);
// Emit headers, etc.
EmitWhiteBlackD50(m, &BlackPointAdaptedToD50);
EmitPQRStage(m, hProfile, lDoBPC, Intent == INTENT_ABSOLUTE_COLORIMETRIC);
EmitXYZ2Lab(m);
// FIXUP: map Lab (100, 0, 0) to perfect white, because the particular encoding for Lab
// does map a=b=0 not falling into any specific node. Since range a,b goes -128..127,
// zero is slightly moved towards right, so assure next node (in L=100 slice) is mapped to
// zero. This would sacrifice a bit of highlights, but failure to do so would cause
// scum dot. Ouch.
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
lFixWhite = FALSE;
_cmsIOPrintf(m, "/RenderTable ");
WriteCLUT(m, cmsPipelineGetPtrToFirstStage(DeviceLink), "<", ">\n", "", "", lFixWhite, ColorSpace);
_cmsIOPrintf(m, " %d {} bind ", nChannels);
for (i=1; i < nChannels; i++)
_cmsIOPrintf(m, "dup ");
_cmsIOPrintf(m, "]\n");
EmitIntent(m, Intent);
_cmsIOPrintf(m, ">>\n");
if (!(dwFlags & cmsFLAGS_NODEFAULTRESOURCEDEF)) {
_cmsIOPrintf(m, "/Current exch /ColorRendering defineresource pop\n");
}
cmsPipelineFree(DeviceLink);
cmsDeleteTransform(xform);
return 1;
}
// Builds a ASCII string containing colorant list in 0..1.0 range
static
void BuildColorantList(char *Colorant, cmsUInt32Number nColorant, cmsUInt16Number Out[])
{
char Buff[32];
cmsUInt32Number j;
Colorant[0] = 0;
if (nColorant > cmsMAXCHANNELS)
nColorant = cmsMAXCHANNELS;
for (j = 0; j < nColorant; j++) {
snprintf(Buff, 31, "%.3f", Out[j] / 65535.0);
Buff[31] = 0;
strcat(Colorant, Buff);
if (j < nColorant - 1)
strcat(Colorant, " ");
}
}
// Creates a PostScript color list from a named profile data.
// This is a HP extension.
static
int WriteNamedColorCRD(cmsIOHANDLER* m, cmsHPROFILE hNamedColor, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{
cmsHTRANSFORM xform;
cmsUInt32Number i, nColors, nColorant;
cmsUInt32Number OutputFormat;
char ColorName[cmsMAX_PATH];
char Colorant[128];
cmsNAMEDCOLORLIST* NamedColorList;
OutputFormat = cmsFormatterForColorspaceOfProfile(hNamedColor, 2, FALSE);
nColorant = T_CHANNELS(OutputFormat);
/**代码未完, 请加载全部代码(NowJava.com).**/