JDK14/Java14源码在线阅读

/*
 * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.print;

import java.awt.Color;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.Polygon;
import java.awt.Rectangle;
import java.awt.Shape;

import java.awt.image.ImageObserver;

import java.text.AttributedCharacterIterator;

/**
 * Implements the Graphics API but does all
 * rendering through a second Graphics instance.
 * The primary use of this class is to provide
 * a Graphics instance without the 2D API to
 * an application, but to implement the rendering
 * with a Graphics2D instance.
 */
public class ProxyGraphics extends Graphics {

    /**
     * The Graphics instance that performs the
     * drawing for this Graphics.
     */
    private Graphics g;

    public ProxyGraphics(Graphics graphics) {
        g = graphics;
    }

    Graphics getGraphics() {
        return g;
    }

   /**
     * Creates a new {@code Graphics} object that is
     * a copy of this {@code Graphics} object.
     * @return     a new graphics context that is a copy of
     *                       this graphics context.
     */
    public Graphics create() {
        return new ProxyGraphics(g.create());
    }

    /**
     * Creates a new {@code Graphics} object based on this
     * {@code Graphics} object, but with a new translation and clip area.
     * The new {@code Graphics} object has its origin
     * translated to the specified point (<i>x</i>,&nbsp;<i>y</i>).
     * Its clip area is determined by the intersection of the original
     * clip area with the specified rectangle.  The arguments are all
     * interpreted in the coordinate system of the original
     * {@code Graphics} object. The new graphics context is
     * identical to the original, except in two respects:
     * <p>
     * <ul>
     * <li>
     * The new graphics context is translated by (<i>x</i>,&nbsp;<i>y</i>).
     * That is to say, the point ({@code 0},&nbsp;{@code 0}) in the
     * new graphics context is the same as (<i>x</i>,&nbsp;<i>y</i>) in
     * the original graphics context.
     * <li>
     * The new graphics context has an additional clipping rectangle, in
     * addition to whatever (translated) clipping rectangle it inherited
     * from the original graphics context. The origin of the new clipping
     * rectangle is at ({@code 0},&nbsp;{@code 0}), and its size
     * is specified by the {@code width} and {@code height}
     * arguments.
     * </ul>
     * <p>
     * @param      x   the <i>x</i> coordinate.
     * @param      y   the <i>y</i> coordinate.
     * @param      width   the width of the clipping rectangle.
     * @param      height   the height of the clipping rectangle.
     * @return     a new graphics context.
     * @see        java.awt.Graphics#translate
     * @see        java.awt.Graphics#clipRect
     */
    public Graphics create(int x, int y, int width, int height) {
        return new ProxyGraphics(g.create(x, y, width, height));
    }

    /**
     * Translates the origin of the graphics context to the point
     * (<i>x</i>,&nbsp;<i>y</i>) in the current coordinate system.
     * Modifies this graphics context so that its new origin corresponds
     * to the point (<i>x</i>,&nbsp;<i>y</i>) in this graphics context's
     * original coordinate system.  All coordinates used in subsequent
     * rendering operations on this graphics context will be relative
     * to this new origin.
     * @param  x   the <i>x</i> coordinate.
     * @param  y   the <i>y</i> coordinate.
     */
    public void translate(int x, int y) {
        g.translate(x, y);
    }

    /**
     * Gets this graphics context's current color.
     * @return    this graphics context's current color.
     * @see       java.awt.Color
     * @see       java.awt.Graphics#setColor
     */
    public Color getColor() {
        return g.getColor();
    }

    /**
     * Sets this graphics context's current color to the specified
     * color. All subsequent graphics operations using this graphics
     * context use this specified color.
     * @param     c   the new rendering color.
     * @see       java.awt.Color
     * @see       java.awt.Graphics#getColor
     */
    public void setColor(Color c) {
        g.setColor(c);
    }

    /**
     * Sets the paint mode of this graphics context to overwrite the
     * destination with this graphics context's current color.
     * This sets the logical pixel operation function to the paint or
     * overwrite mode.  All subsequent rendering operations will
     * overwrite the destination with the current color.
     */
    public void setPaintMode() {
        g.setPaintMode();
    }

    /**
     * Sets the paint mode of this graphics context to alternate between
     * this graphics context's current color and the new specified color.
     * This specifies that logical pixel operations are performed in the
     * XOR mode, which alternates pixels between the current color and
     * a specified XOR color.
     * <p>
     * When drawing operations are performed, pixels which are the
     * current color are changed to the specified color, and vice versa.
     * <p>
     * Pixels that are of colors other than those two colors are changed
     * in an unpredictable but reversible manner; if the same figure is
     * drawn twice, then all pixels are restored to their original values.
     * @param     c1 the XOR alternation color
     */
    public void setXORMode(Color c1) {
        g.setXORMode(c1);
    }

    /**
     * Gets the current font.
     * @return    this graphics context's current font.
     * @see       java.awt.Font
     * @see       java.awt.Graphics#setFont
     */
    public Font getFont() {
        return g.getFont();
    }

    /**
     * Sets this graphics context's font to the specified font.
     * All subsequent text operations using this graphics context
     * use this font.
     * @param  font   the font.
     * @see     java.awt.Graphics#getFont
     * @see     java.awt.Graphics#drawString(java.lang.String, int, int)
     * @see     java.awt.Graphics#drawBytes(byte[], int, int, int, int)
     * @see     java.awt.Graphics#drawChars(char[], int, int, int, int)
    */
    public void setFont(Font font) {
        g.setFont(font);
    }

    /**
     * Gets the font metrics of the current font.
     * @return    the font metrics of this graphics
     *                    context's current font.
     * @see       java.awt.Graphics#getFont
     * @see       java.awt.FontMetrics
     * @see       java.awt.Graphics#getFontMetrics(Font)
     */
    public FontMetrics getFontMetrics() {
        return g.getFontMetrics();
    }

    /**
     * Gets the font metrics for the specified font.
     * @return    the font metrics for the specified font.
     * @param     f the specified font
     * @see       java.awt.Graphics#getFont
     * @see       java.awt.FontMetrics
     * @see       java.awt.Graphics#getFontMetrics()
     */
    public FontMetrics getFontMetrics(Font f) {
        return g.getFontMetrics(f);
    }


    /**
     * Returns the bounding rectangle of the current clipping area.
     * This method refers to the user clip, which is independent of the
     * clipping associated with device bounds and window visibility.
     * If no clip has previously been set, or if the clip has been
     * cleared using {@code setClip(null)}, this method returns
     * {@code null}.
     * The coordinates in the rectangle are relative to the coordinate
     * system origin of this graphics context.
     * @return      the bounding rectangle of the current clipping area,
     *              or {@code null} if no clip is set.
     * @see         java.awt.Graphics#getClip
     * @see         java.awt.Graphics#clipRect
     * @see         java.awt.Graphics#setClip(int, int, int, int)
     * @see         java.awt.Graphics#setClip(Shape)
     * @since       1.1
     */
    public Rectangle getClipBounds() {
        return g.getClipBounds();
    }

    /**
     * Intersects the current clip with the specified rectangle.
     * The resulting clipping area is the intersection of the current
     * clipping area and the specified rectangle.  If there is no
     * current clipping area, either because the clip has never been
     * set, or the clip has been cleared using {@code setClip(null)},
     * the specified rectangle becomes the new clip.
     * This method sets the user clip, which is independent of the
     * clipping associated with device bounds and window visibility.
     * This method can only be used to make the current clip smaller.
     * To set the current clip larger, use any of the setClip methods.
     * Rendering operations have no effect outside of the clipping area.
     * @param x the x coordinate of the rectangle to intersect the clip with
     * @param y the y coordinate of the rectangle to intersect the clip with
     * @param width the width of the rectangle to intersect the clip with
     * @param height the height of the rectangle to intersect the clip with
     * @see #setClip(int, int, int, int)
     * @see #setClip(Shape)
     */
    public void clipRect(int x, int y, int width, int height) {
        g.clipRect(x, y, width, height);
    }

    /**
     * Sets the current clip to the rectangle specified by the given
     * coordinates.  This method sets the user clip, which is
     * independent of the clipping associated with device bounds
     * and window visibility.
     * Rendering operations have no effect outside of the clipping area.
     * @param       x the <i>x</i> coordinate of the new clip rectangle.
     * @param       y the <i>y</i> coordinate of the new clip rectangle.
     * @param       width the width of the new clip rectangle.
     * @param       height the height of the new clip rectangle.
     * @see         java.awt.Graphics#clipRect
     * @see         java.awt.Graphics#setClip(Shape)
     * @since       1.1
     */
    public void setClip(int x, int y, int width, int height) {
        g.setClip(x, y, width, height);
    }

    /**
     * Gets the current clipping area.
     * This method returns the user clip, which is independent of the
     * clipping associated with device bounds and window visibility.
     * If no clip has previously been set, or if the clip has been
     * cleared using {@code setClip(null)}, this method returns
     * {@code null}.
     * @return      a {@code Shape} object representing the
     *              current clipping area, or {@code null} if
     *              no clip is set.
     * @see         java.awt.Graphics#getClipBounds
     * @see         java.awt.Graphics#clipRect
     * @see         java.awt.Graphics#setClip(int, int, int, int)
     * @see         java.awt.Graphics#setClip(Shape)
     * @since       1.1
     */
    public Shape getClip() {
        return g.getClip();
    }

    /**
     * Sets the current clipping area to an arbitrary clip shape.
     * Not all objects that implement the {@code Shape}
     * interface can be used to set the clip.  The only
     * {@code Shape} objects that are guaranteed to be
     * supported are {@code Shape} objects that are
     * obtained via the {@code getClip} method and via
     * {@code Rectangle} objects.  This method sets the
     * user clip, which is independent of the clipping associated
     * with device bounds and window visibility.
     * @param clip the {@code Shape} to use to set the clip
     * @see         java.awt.Graphics#getClip()
     * @see         java.awt.Graphics#clipRect
     * @see         java.awt.Graphics#setClip(int, int, int, int)
     * @since       1.1
     */
    public void setClip(Shape clip) {
        g.setClip(clip);
    }

    /**
     * Copies an area of the component by a distance specified by
     * {@code dx} and {@code dy}. From the point specified
     * by {@code x} and {@code y}, this method
     * copies downwards and to the right.  To copy an area of the
     * component to the left or upwards, specify a negative value for
     * {@code dx} or {@code dy}.
     * If a portion of the source rectangle lies outside the bounds
     * of the component, or is obscured by another window or component,
     * {@code copyArea} will be unable to copy the associated
     * pixels. The area that is omitted can be refreshed by calling
     * the component's {@code paint} method.
     * @param       x the <i>x</i> coordinate of the source rectangle.
     * @param       y the <i>y</i> coordinate of the source rectangle.
     * @param       width the width of the source rectangle.
     * @param       height the height of the source rectangle.
     * @param       dx the horizontal distance to copy the pixels.
     * @param       dy the vertical distance to copy the pixels.
     */
    public void copyArea(int x, int y, int width, int height,
                                  int dx, int dy) {
        g.copyArea(x, y, width, height, dx, dy);
    }

    /**
     * Draws a line, using the current color, between the points
     * <code>(x1,&nbsp;y1)</code> and <code>(x2,&nbsp;y2)</code>
     * in this graphics context's coordinate system.
     * @param   x1  the first point's <i>x</i> coordinate.
     * @param   y1  the first point's <i>y</i> coordinate.
     * @param   x2  the second point's <i>x</i> coordinate.
     * @param   y2  the second point's <i>y</i> coordinate.
     */
    public void drawLine(int x1, int y1, int x2, int y2) {
        g.drawLine(x1, y1, x2, y2);
    }

    /**
     * Fills the specified rectangle.
     * The left and right edges of the rectangle are at
     * {@code x} and <code>x&nbsp;+&nbsp;width&nbsp;-&nbsp;1</code>.
     * The top and bottom edges are at
     * {@code y} and <code>y&nbsp;+&nbsp;height&nbsp;-&nbsp;1</code>.
     * The resulting rectangle covers an area
     * {@code width} pixels wide by
     * {@code height} pixels tall.
     * The rectangle is filled using the graphics context's current color.
     * @param         x   the <i>x</i> coordinate
     *                         of the rectangle to be filled.
     * @param         y   the <i>y</i> coordinate
     *                         of the rectangle to be filled.
     * @param         width   the width of the rectangle to be filled.
     * @param         height   the height of the rectangle to be filled.
     * @see           java.awt.Graphics#clearRect
     * @see           java.awt.Graphics#drawRect
     */
    public void fillRect(int x, int y, int width, int height) {
        g.fillRect(x, y, width, height);
    }

    /**
     * Draws the outline of the specified rectangle.
     * The left and right edges of the rectangle are at
     * {@code x} and <code>x&nbsp;+&nbsp;width</code>.
     * The top and bottom edges are at
     * {@code y} and <code>y&nbsp;+&nbsp;height</code>.
     * The rectangle is drawn using the graphics context's current color.
     * @param         x   the <i>x</i> coordinate
     *                         of the rectangle to be drawn.
     * @param         y   the <i>y</i> coordinate
     *                         of the rectangle to be drawn.
     * @param         width   the width of the rectangle to be drawn.
     * @param         height   the height of the rectangle to be drawn.
     * @see          java.awt.Graphics#fillRect
     * @see          java.awt.Graphics#clearRect
     */
    public void drawRect(int x, int y, int width, int height) {
        g.drawRect(x, y, width, height);
    }

    /**
     * Clears the specified rectangle by filling it with the background
     * color of the current drawing surface. This operation does not
     * use the current paint mode.
     * <p>
     * Beginning with Java&nbsp;1.1, the background color
     * of offscreen images may be system dependent. Applications should
     * use {@code setColor} followed by {@code fillRect} to
     * ensure that an offscreen image is cleared to a specific color.
     * @param       x the <i>x</i> coordinate of the rectangle to clear.
     * @param       y the <i>y</i> coordinate of the rectangle to clear.
     * @param       width the width of the rectangle to clear.
     * @param       height the height of the rectangle to clear.
     * @see         java.awt.Graphics#fillRect(int, int, int, int)
     * @see         java.awt.Graphics#drawRect
     * @see         java.awt.Graphics#setColor(java.awt.Color)
     * @see         java.awt.Graphics#setPaintMode
     * @see         java.awt.Graphics#setXORMode(java.awt.Color)
     */
    public void clearRect(int x, int y, int width, int height) {
        g.clearRect(x, y, width, height);
    }

    /**
     * Draws an outlined round-cornered rectangle using this graphics
     * context's current color. The left and right edges of the rectangle
     * are at {@code x} and <code>x&nbsp;+&nbsp;width</code>,
     * respectively. The top and bottom edges of the rectangle are at
     * {@code y} and <code>y&nbsp;+&nbsp;height</code>.
     * @param      x the <i>x</i> coordinate of the rectangle to be drawn.
     * @param      y the <i>y</i> coordinate of the rectangle to be drawn.
     * @param      width the width of the rectangle to be drawn.
     * @param      height the height of the rectangle to be drawn.
     * @param      arcWidth the horizontal diameter of the arc
     *                    at the four corners.
     * @param      arcHeight the vertical diameter of the arc
     *                    at the four corners.
     * @see        java.awt.Graphics#fillRoundRect
     */
    public void drawRoundRect(int x, int y, int width, int height,
                                       int arcWidth, int arcHeight) {
        g.drawRoundRect(x, y, width, height, arcWidth, arcHeight);
    }

    /**
     * Fills the specified rounded corner rectangle with the current color.
     * The left and right edges of the rectangle
     * are at {@code x} and <code>x&nbsp;+&nbsp;width&nbsp;-&nbsp;1</code>,
     * respectively. The top and bottom edges of the rectangle are at
     * {@code y} and <code>y&nbsp;+&nbsp;height&nbsp;-&nbsp;1</code>.
     * @param       x the <i>x</i> coordinate of the rectangle to be filled.
     * @param       y the <i>y</i> coordinate of the rectangle to be filled.
     * @param       width the width of the rectangle to be filled.
     * @param       height the height of the rectangle to be filled.
     * @param       arcWidth the horizontal diameter
     *                     of the arc at the four corners.
     * @param       arcHeight the vertical diameter
     *                     of the arc at the four corners.
     * @see         java.awt.Graphics#drawRoundRect
     */
    public void fillRoundRect(int x, int y, int width, int height,
                                       int arcWidth, int arcHeight) {
        g.fillRoundRect(x, y, width, height, arcWidth, arcHeight);
    }

    /**
     * Draws a 3-D highlighted outline of the specified rectangle.
     * The edges of the rectangle are highlighted so that they
     * appear to be beveled and lit from the upper left corner.
     * <p>
     * The colors used for the highlighting effect are determined
     * based on the current color.
     * The resulting rectangle covers an area that is
     * <code>width&nbsp;+&nbsp;1</code> pixels wide
     * by <code>height&nbsp;+&nbsp;1</code> pixels tall.
     * @param       x the <i>x</i> coordinate of the rectangle to be drawn.
     * @param       y the <i>y</i> coordinate of the rectangle to be drawn.
     * @param       width the width of the rectangle to be drawn.
     * @param       height the height of the rectangle to be drawn.
     * @param       raised a boolean that determines whether the rectangle
     *                      appears to be raised above the surface
     *                      or sunk into the surface.
     * @see         java.awt.Graphics#fill3DRect
     */
    public void draw3DRect(int x, int y, int width, int height,
                           boolean raised) {
        g.draw3DRect(x, y, width, height, raised);
    }

    /**
     * Paints a 3-D highlighted rectangle filled with the current color.
     * The edges of the rectangle will be highlighted so that it appears
     * as if the edges were beveled and lit from the upper left corner.
     * The colors used for the highlighting effect will be determined from
     * the current color.
     * @param       x the <i>x</i> coordinate of the rectangle to be filled.
     * @param       y the <i>y</i> coordinate of the rectangle to be filled.
     * @param       width the width of the rectangle to be filled.
     * @param       height the height of the rectangle to be filled.
     * @param       raised a boolean value that determines whether the
     *                      rectangle appears to be raised above the surface
     *                      or etched into the surface.
     * @see         java.awt.Graphics#draw3DRect
     */
    public void fill3DRect(int x, int y, int width, int height,
                           boolean raised) {
        g.fill3DRect(x, y, width, height, raised);
    }

    /**
     * Draws the outline of an oval.
     * The result is a circle or ellipse that fits within the
     * rectangle specified by the {@code x}, {@code y},
     * {@code width}, and {@code height} arguments.
     * <p>
     * The oval covers an area that is
     * <code>width&nbsp;+&nbsp;1</code> pixels wide
     * and <code>height&nbsp;+&nbsp;1</code> pixels tall.
     * @param       x the <i>x</i> coordinate of the upper left
     *                     corner of the oval to be drawn.
     * @param       y the <i>y</i> coordinate of the upper left
     *                     corner of the oval to be drawn.
     * @param       width the width of the oval to be drawn.
     * @param       height the height of the oval to be drawn.
     * @see         java.awt.Graphics#fillOval
     */
    public void drawOval(int x, int y, int width, int height) {
        g.drawOval(x, y, width, height);
    }

    /**
     * Fills an oval bounded by the specified rectangle with the
     * current color.
     * @param       x the <i>x</i> coordinate of the upper left corner
     *                     of the oval to be filled.
     * @param       y the <i>y</i> coordinate of the upper left corner
     *                     of the oval to be filled.
     * @param       width the width of the oval to be filled.
     * @param       height the height of the oval to be filled.
     * @see         java.awt.Graphics#drawOval
     */
    public void fillOval(int x, int y, int width, int height) {
        g.fillOval(x, y, width, height);
    }

    /**
     * Draws the outline of a circular or elliptical arc
     * covering the specified rectangle.
     * <p>
     * The resulting arc begins at {@code startAngle} and extends
     * for {@code arcAngle} degrees, using the current color.
     * Angles are interpreted such that 0&nbsp;degrees
     * is at the 3&nbsp;o'clock position.
     * A positive value indicates a counter-clockwise rotation
     * while a negative value indicates a clockwise rotation.
     * <p>
     * The center of the arc is the center of the rectangle whose origin
     * is (<i>x</i>,&nbsp;<i>y</i>) and whose size is specified by the
     * {@code width} and {@code height} arguments.
     * <p>
     * The resulting arc covers an area
     * <code>width&nbsp;+&nbsp;1</code> pixels wide
     * by <code>height&nbsp;+&nbsp;1</code> pixels tall.
     * <p>
     * The angles are specified relative to the non-square extents of
     * the bounding rectangle such that 45 degrees always falls on the
     * line from the center of the ellipse to the upper right corner of
     * the bounding rectangle. As a result, if the bounding rectangle is
     * noticeably longer in one axis than the other, the angles to the
     * start and end of the arc segment will be skewed farther along the
     * longer axis of the bounds.
     * @param        x the <i>x</i> coordinate of the
     *                    upper-left corner of the arc to be drawn.
     * @param        y the <i>y</i>  coordinate of the
     *                    upper-left corner of the arc to be drawn.
     * @param        width the width of the arc to be drawn.
     * @param        height the height of the arc to be drawn.
     * @param        startAngle the beginning angle.
     * @param        arcAngle the angular extent of the arc,
     *                    relative to the start angle.
     * @see         java.awt.Graphics#fillArc
     */
    public void drawArc(int x, int y, int width, int height,
                                 int startAngle, int arcAngle) {
        g.drawArc(x, y, width, height, startAngle, arcAngle);
    }

    /**
     * Fills a circular or elliptical arc covering the specified rectangle.
     * <p>
     * The resulting arc begins at {@code startAngle} and extends
     * for {@code arcAngle} degrees.
     * Angles are interpreted such that 0&nbsp;degrees
     * is at the 3&nbsp;o'clock position.
     * A positive value indicates a counter-clockwise rotation
     * while a negative value indicates a clockwise rotation.
     * <p>
     * The center of the arc is the center of the rectangle whose origin
     * is (<i>x</i>,&nbsp;<i>y</i>) and whose size is specified by the
     * {@code width} and {@code height} arguments.
     * <p>
     * The resulting arc covers an area
     * <code>width&nbsp;+&nbsp;1</code> pixels wide
     * by <code>height&nbsp;+&nbsp;1</code> pixels tall.
     * <p>
     * The angles are specified relative to the non-square extents of
     * the bounding rectangle such that 45 degrees always falls on the
     * line from the center of the ellipse to the upper right corner of
     * the bounding rectangle. As a result, if the bounding rectangle is
     * noticeably longer in one axis than the other, the angles to the
     * start and end of the arc segment will be skewed farther along the
     * longer axis of the bounds.
     * @param        x the <i>x</i> coordinate of the
     *                    upper-left corner of the arc to be filled.
     * @param        y the <i>y</i>  coordinate of the
     *                    upper-left corner of the arc to be filled.
     * @param        width the width of the arc to be filled.
     * @param        height the height of the arc to be filled.
     * @param        startAngle the beginning angle.
     * @param        arcAngle the angular extent of the arc,
     *                    relative to the start angle.
     * @see         java.awt.Graphics#drawArc
     */
    public void fillArc(int x, int y, int width, int height,
                                 int startAngle, int arcAngle) {

        g.fillArc(x, y, width, height, startAngle, arcAngle);
    }

    /**
     * Draws a sequence of connected lines defined by
     * arrays of <i>x</i> and <i>y</i> coordinates.
     * Each pair of (<i>x</i>,&nbsp;<i>y</i>) coordinates defines a point.
     * The figure is not closed if the first point
     * differs from the last point.
     * @param       xPoints an array of <i>x</i> points
     * @param       yPoints an array of <i>y</i> points
     * @param       nPoints the total number of points
     * @see         java.awt.Graphics#drawPolygon(int[], int[], int)
     * @since       1.1
     */
    public void drawPolyline(int[] xPoints, int[] yPoints,
                                      int nPoints) {
        g.drawPolyline(xPoints, yPoints, nPoints);
    }

    /**
     * Draws a closed polygon defined by
     * arrays of <i>x</i> and <i>y</i> coordinates.
     * Each pair of (<i>x</i>,&nbsp;<i>y</i>) coordinates defines a point.
     * <p>
     * This method draws the polygon defined by {@code nPoint} line
     * segments, where the first <code>nPoint&nbsp;-&nbsp;1</code>
     * line segments are line segments from
     * <code>(xPoints[i&nbsp;-&nbsp;1],&nbsp;yPoints[i&nbsp;-&nbsp;1])</code>
     * to <code>(xPoints[i],&nbsp;yPoints[i])</code>, for
     * 1&nbsp;&le;&nbsp;<i>i</i>&nbsp;&le;&nbsp;{@code nPoints}.
     * The figure is automatically closed by drawing a line connecting
     * the final point to the first point, if those points are different.
     * @param        xPoints   a an array of {@code x} coordinates.
     * @param        yPoints   a an array of {@code y} coordinates.
     * @param        nPoints   a the total number of points.
     * @see          java.awt.Graphics#fillPolygon
     * @see          java.awt.Graphics#drawPolyline
     */
    public void drawPolygon(int[] xPoints, int[] yPoints,
                                     int nPoints) {
        g.drawPolygon(xPoints, yPoints, nPoints);
    }

    /**
     * Draws the outline of a polygon defined by the specified
     * {@code Polygon} object.
     * @param        p the polygon to draw.
     * @see          java.awt.Graphics#fillPolygon
     * @see          java.awt.Graphics#drawPolyline
     */
    public void drawPolygon(Polygon p) {
        g.drawPolygon(p);
    }

    /**
     * Fills a closed polygon defined by
     * arrays of <i>x</i> and <i>y</i> coordinates.
     * <p>
     * This method draws the polygon defined by {@code nPoint} line
     * segments, where the first <code>nPoint&nbsp;-&nbsp;1</code>
     * line segments are line segments from
     * <code>(xPoints[i&nbsp;-&nbsp;1],&nbsp;yPoints[i&nbsp;-&nbsp;1])</code>
     * to <code>(xPoints[i],&nbsp;yPoints[i])</code>, for
     * 1&nbsp;&le;&nbsp;<i>i</i>&nbsp;&le;&nbsp;{@code nPoints}.
     * The figure is automatically closed by drawing a line connecting
     * the final point to the first point, if those points are different.
     * <p>
     * The area inside the polygon is defined using an
     * even-odd fill rule, also known as the alternating rule.
     * @param        xPoints   a an array of {@code x} coordinates.
     * @param        yPoints   a an array of {@code y} coordinates.
     * @param        nPoints   a the total number of points.
     * @see          java.awt.Graphics#drawPolygon(int[], int[], int)
     */
    public void fillPolygon(int[] xPoints, int[] yPoints,
                                     int nPoints) {
        g.fillPolygon(xPoints, yPoints, nPoints);
    }

    /**
     * Fills the polygon defined by the specified Polygon object with
     * the graphics context's current color.
     * <p>
     * The area inside the polygon is defined using an
     * even-odd fill rule, also known as the alternating rule.
     * @param        p the polygon to fill.
     * @see          java.awt.Graphics#drawPolygon(int[], int[], int)
     */
    public void fillPolygon(Polygon p) {
        g.fillPolygon(p);
    }

    /**
     * Draws the text given by the specified string, using this
     * graphics context's current font and color. The baseline of the
     * leftmost character is at position (<i>x</i>,&nbsp;<i>y</i>) in this
     * graphics context's coordinate system.
     * @param       str      the string to be drawn.
     * @param       x        the <i>x</i> coordinate.
     * @param       y        the <i>y</i> coordinate.
     * @see         java.awt.Graphics#drawBytes
     * @see         java.awt.Graphics#drawChars
     */
    public void drawString(String str, int x, int y) {
        g.drawString(str, x, y);
    }

    /**
     * Draws the text given by the specified iterator, using this
     * graphics context's current color. The iterator has to specify a font
     * for each character. The baseline of the
     * leftmost character is at position (<i>x</i>,&nbsp;<i>y</i>) in this
     * graphics context's coordinate system.
     * @param       iterator the iterator whose text is to be drawn
     * @param       x        the <i>x</i> coordinate.
     * @param       y        the <i>y</i> coordinate.
     * @see         java.awt.Graphics#drawBytes
     * @see         java.awt.Graphics#drawChars
     */
   public void drawString(AttributedCharacterIterator iterator,
                                    int x, int y) {
        g.drawString(iterator, x, y);
    }

    /**
     * Draws the text given by the specified character array, using this
     * graphics context's current font and color. The baseline of the
     * first character is at position (<i>x</i>,&nbsp;<i>y</i>) in this
     * graphics context's coordinate system.
     * @param data the array of characters to be drawn
     * @param offset the start offset in the data
     * @param length the number of characters to be drawn
     * @param x the <i>x</i> coordinate of the baseline of the text
     * @param y the <i>y</i> coordinate of the baseline of the text
     * @see         java.awt.Graphics#drawBytes
     * @see         java.awt.Graphics#drawString
     */
    public void drawChars(char[] data, int offset, int length, int x, int y) {
        g.drawChars(data, offset, length, x, y);
    }

    /**
     * Draws the text given by the specified byte array, using this
     * graphics context's current font and color. The baseline of the
     * first character is at position (<i>x</i>,&nbsp;<i>y</i>) in this
     * graphics context's coordinate system.
     * @param data the data to be drawn
     * @param offset the start offset in the data
     * @param length the number of bytes that are drawn
     * @param x the <i>x</i> coordinate of the baseline of the text
     * @param y the <i>y</i> coordinate of the baseline of the text
     * @see         java.awt.Graphics#drawChars
     * @see         java.awt.Graphics#drawString
     */
    public void drawBytes(byte[] data, int offset, int length, int x, int y) {
        g.drawBytes(data, offset, length, x, y);
    }

    /**
     * Draws as much of the specified image as is currently available.
     * The image is drawn with its top-left corner at
     * (<i>x</i>,&nbsp;<i>y</i>) in this graphics context's coordinate
     * space. Transparent pixels in the image do not affect whatever
     * pixels are already there.
     * <p>
     * This method returns immediately in all cases, even if the
     * complete image has not yet been loaded, and it has not been dithered
     * and converted for the current output device.
     * <p>
     * If the image has not yet been completely loaded, then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * @param    img the specified image to be drawn.
     * @param    x   the <i>x</i> coordinate.
     * @param    y   the <i>y</i> coordinate.
     * @param    observer    object to be notified as more of
     *                          the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y,
                                      ImageObserver observer) {
        return g.drawImage(img, x, y, observer);
    }

    /**
     * Draws as much of the specified image as has already been scaled
     * to fit inside the specified rectangle.
     * <p>
     * The image is drawn inside the specified rectangle of this
     * graphics context's coordinate space, and is scaled if
     * necessary. Transparent pixels do not affect whatever pixels
     * are already there.
     * <p>
     * This method returns immediately in all cases, even if the
     * entire image has not yet been scaled, dithered, and converted
     * for the current output device.
     * If the current output representation is not yet complete, then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the image observer by calling its {@code imageUpdate} method.
     * <p>
     * A scaled version of an image will not necessarily be
     * available immediately just because an unscaled version of the
     * image has been constructed for this output device.  Each size of
     * the image may be cached separately and generated from the original
     * data in a separate image production sequence.
     * @param    img    the specified image to be drawn.
     * @param    x      the <i>x</i> coordinate.
     * @param    y      the <i>y</i> coordinate.
     * @param    width  the width of the rectangle.
     * @param    height the height of the rectangle.
     * @param    observer    object to be notified as more of
     *                          the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y,
                                      int width, int height,
                                      ImageObserver observer) {
        return g.drawImage(img, x, y, width, height, observer);
    }

    /**
     * Draws as much of the specified image as is currently available.
     * The image is drawn with its top-left corner at
     * (<i>x</i>,&nbsp;<i>y</i>) in this graphics context's coordinate
     * space.  Transparent pixels are drawn in the specified
     * background color.
     * <p>
     * This operation is equivalent to filling a rectangle of the
     * width and height of the specified image with the given color and then
     * drawing the image on top of it, but possibly more efficient.
     * <p>
     * This method returns immediately in all cases, even if the
     * complete image has not yet been loaded, and it has not been dithered
     * and converted for the current output device.
     * <p>
     * If the image has not yet been completely loaded, then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * @param    img    the specified image to be drawn.
     * @param    x      the <i>x</i> coordinate.
     * @param    y      the <i>y</i> coordinate.
     * @param    bgcolor the background color to paint under the
     *                         non-opaque portions of the image.
     * @param    observer    object to be notified as more of
     *                          the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y,
                                      Color bgcolor,
                                      ImageObserver observer) {
        return g.drawImage(img, x, y, bgcolor, observer);
    }

    /**
     * Draws as much of the specified image as has already been scaled
     * to fit inside the specified rectangle.
     * <p>
     * The image is drawn inside the specified rectangle of this
     * graphics context's coordinate space, and is scaled if
     * necessary. Transparent pixels are drawn in the specified
     * background color.
     * This operation is equivalent to filling a rectangle of the
     * width and height of the specified image with the given color and then
     * drawing the image on top of it, but possibly more efficient.
     * <p>
     * This method returns immediately in all cases, even if the
     * entire image has not yet been scaled, dithered, and converted
     * for the current output device.
     * If the current output representation is not yet complete then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * <p>
     * A scaled version of an image will not necessarily be
     * available immediately just because an unscaled version of the
     * image has been constructed for this output device.  Each size of
     * the image may be cached separately and generated from the original
     * data in a separate image production sequence.
     * @param    img       the specified image to be drawn.
     * @param    x         the <i>x</i> coordinate.
     * @param    y         the <i>y</i> coordinate.
     * @param    width     the width of the rectangle.
     * @param    height    the height of the rectangle.
     * @param    bgcolor   the background color to paint under the
     *                         non-opaque portions of the image.
     * @param    observer    object to be notified as more of
     *                          the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y,
                                      int width, int height,
                                      Color bgcolor,
                                      ImageObserver observer) {

        return g.drawImage(img, x, y, width, height, bgcolor, observer);
    }

    /**
     * Draws as much of the specified area of the specified image as is
     * currently available, scaling it on the fly to fit inside the
     * specified area of the destination drawable surface. Transparent pixels
     * do not affect whatever pixels are already there.
     * <p>
     * This method returns immediately in all cases, even if the
     * image area to be drawn has not yet been scaled, dithered, and converted
     * for the current output device.
     * If the current output representation is not yet complete then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * <p>
     * This method always uses the unscaled version of the image
     * to render the scaled rectangle and performs the required
     * scaling on the fly. It does not use a cached, scaled version
     * of the image for this operation. Scaling of the image from source
     * to destination is performed such that the first coordinate
     * of the source rectangle is mapped to the first coordinate of
     * the destination rectangle, and the second source coordinate is
     * mapped to the second destination coordinate. The subimage is
     * scaled and flipped as needed to preserve those mappings.
     * @param       img the specified image to be drawn
     * @param       dx1 the <i>x</i> coordinate of the first corner of the
     *                    destination rectangle.
     * @param       dy1 the <i>y</i> coordinate of the first corner of the
     *                    destination rectangle.
     * @param       dx2 the <i>x</i> coordinate of the second corner of the
     *                    destination rectangle.
     * @param       dy2 the <i>y</i> coordinate of the second corner of the
     *                    destination rectangle.
     * @param       sx1 the <i>x</i> coordinate of the first corner of the
     *                    source rectangle.
     * @param       sy1 the <i>y</i> coordinate of the first corner of the
     *                    source rectangle.
     * @param       sx2 the <i>x</i> coordinate of the second corner of the
     *                    source rectangle.
     * @param       sy2 the <i>y</i> coordinate of the second corner of the
     *                    source rectangle.
     * @param       observer object to be notified as more of the image is
     *                    scaled and converted.
     * @see         java.awt.Image
     * @see         java.awt.image.ImageObserver
     * @see         java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     * @since       1.1
     */
    public boolean drawImage(Image img,
                                      int dx1, int dy1, int dx2, int dy2,
                                      int sx1, int sy1, int sx2, int sy2,
                                      ImageObserver observer) {

        return g.drawImage(img, dx1, dy1, dx2, dy2,
                                  sx1, sy1, sx2, sy2,
                                  observer);
    }

    /**
     * Draws as much of the specified area of the specified image as is
     * currently available, scaling it on the fly to fit inside the
     * specified area of the destination drawable surface.
     * <p>
     * Transparent pixels are drawn in the specified background color.
     * This operation is equivalent to filling a rectangle of the
     * width and height of the specified image with the given color and then
     * drawing the image on top of it, but possibly more efficient.
     * <p>
     * This method returns immediately in all cases, even if the
     * image area to be drawn has not yet been scaled, dithered, and converted
     * for the current output device.
     * If the current output representation is not yet complete then
     * {@code drawImage} returns {@code false}. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * <p>
     * This method always uses the unscaled version of the image
     * to render the scaled rectangle and performs the required
     * scaling on the fly. It does not use a cached, scaled version
     * of the image for this operation. Scaling of the image from source
     * to destination is performed such that the first coordinate
     * of the source rectangle is mapped to the first coordinate of
     * the destination rectangle, and the second source coordinate is
     * mapped to the second destination coordinate. The subimage is
     * scaled and flipped as needed to preserve those mappings.
     * @param       img the specified image to be drawn
     * @param       dx1 the <i>x</i> coordinate of the first corner of the
     *                    destination rectangle.
     * @param       dy1 the <i>y</i> coordinate of the first corner of the
     *                    destination rectangle.
     * @param       dx2 the <i>x</i> coordinate of the second corner of the
     *                    destination rectangle.

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java