/*
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.print;
import java.lang.ref.SoftReference;
import java.util.Hashtable;
import sun.font.CharToGlyphMapper;
import sun.font.CompositeFont;
import sun.font.Font2D;
import sun.font.Font2DHandle;
import sun.font.FontManager;
import sun.font.FontManagerFactory;
import sun.font.FontUtilities;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.Paint;
import java.awt.Polygon;
import java.awt.Shape;
import java.awt.geom.Path2D;
import java.text.AttributedCharacterIterator;
import java.awt.font.FontRenderContext;
import java.awt.font.GlyphVector;
import java.awt.font.TextAttribute;
import java.awt.font.TextLayout;
import java.awt.geom.AffineTransform;
import java.awt.geom.Arc2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.geom.PathIterator;
import java.awt.image.BufferedImage;
import java.awt.image.BufferedImageOp;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferInt;
import java.awt.image.ImageObserver;
import java.awt.image.IndexColorModel;
import java.awt.image.Raster;
import java.awt.image.RenderedImage;
import java.awt.image.SampleModel;
import java.awt.image.SinglePixelPackedSampleModel;
import java.awt.image.VolatileImage;
import sun.awt.image.ByteComponentRaster;
import sun.awt.image.ToolkitImage;
import sun.awt.image.SunWritableRaster;
import java.awt.print.PageFormat;
import java.awt.print.Printable;
import java.awt.print.PrinterException;
import java.awt.print.PrinterGraphics;
import java.awt.print.PrinterJob;
import java.util.Map;
public abstract class PathGraphics extends ProxyGraphics2D {
private Printable mPainter;
private PageFormat mPageFormat;
private int mPageIndex;
private boolean mCanRedraw;
protected boolean printingGlyphVector;
protected PathGraphics(Graphics2D graphics, PrinterJob printerJob,
Printable painter, PageFormat pageFormat,
int pageIndex, boolean canRedraw) {
super(graphics, printerJob);
mPainter = painter;
mPageFormat = pageFormat;
mPageIndex = pageIndex;
mCanRedraw = canRedraw;
}
/**
* Return the Printable instance responsible for drawing
* into this Graphics.
*/
protected Printable getPrintable() {
return mPainter;
}
/**
* Return the PageFormat associated with this page of
* Graphics.
*/
protected PageFormat getPageFormat() {
return mPageFormat;
}
/**
* Return the page index associated with this Graphics.
*/
protected int getPageIndex() {
return mPageIndex;
}
/**
* Return true if we are allowed to ask the application
* to redraw portions of the page. In general, with the
* PrinterJob API, the application can be asked to do a
* redraw. When PrinterJob is emulating PrintJob then we
* can not.
*/
public boolean canDoRedraws() {
return mCanRedraw;
}
/**
* Redraw a rectanglular area using a proxy graphics
*/
public abstract void redrawRegion(Rectangle2D region,
double scaleX, double scaleY,
Shape clip,
AffineTransform devTransform)
throws PrinterException ;
/**
* Draws a line, using the current color, between the points
* <code>(x1, y1)</code> and <code>(x2, y2)</code>
* in this graphics context's coordinate system.
* @param x1 the first point's <i>x</i> coordinate.
* @param y1 the first point's <i>y</i> coordinate.
* @param x2 the second point's <i>x</i> coordinate.
* @param y2 the second point's <i>y</i> coordinate.
*/
public void drawLine(int x1, int y1, int x2, int y2) {
Paint paint = getPaint();
try {
AffineTransform deviceTransform = getTransform();
if (getClip() != null) {
deviceClip(getClip().getPathIterator(deviceTransform));
}
deviceDrawLine(x1, y1, x2, y2, (Color) paint);
} catch (ClassCastException e) {
throw new IllegalArgumentException("Expected a Color instance");
}
}
/**
* Draws the outline of the specified rectangle.
* The left and right edges of the rectangle are at
* {@code x} and <code>x + width</code>.
* The top and bottom edges are at
* {@code y} and <code>y + height</code>.
* The rectangle is drawn using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be drawn.
* @param y the <i>y</i> coordinate
* of the rectangle to be drawn.
* @param width the width of the rectangle to be drawn.
* @param height the height of the rectangle to be drawn.
* @see java.awt.Graphics#fillRect
* @see java.awt.Graphics#clearRect
*/
public void drawRect(int x, int y, int width, int height) {
Paint paint = getPaint();
try {
AffineTransform deviceTransform = getTransform();
if (getClip() != null) {
deviceClip(getClip().getPathIterator(deviceTransform));
}
deviceFrameRect(x, y, width, height, (Color) paint);
} catch (ClassCastException e) {
throw new IllegalArgumentException("Expected a Color instance");
}
}
/**
* Fills the specified rectangle.
* The left and right edges of the rectangle are at
* {@code x} and <code>x + width - 1</code>.
* The top and bottom edges are at
* {@code y} and <code>y + height - 1</code>.
* The resulting rectangle covers an area
* {@code width} pixels wide by
* {@code height} pixels tall.
* The rectangle is filled using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be filled.
* @param y the <i>y</i> coordinate
* of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @see java.awt.Graphics#clearRect
* @see java.awt.Graphics#drawRect
*/
public void fillRect(int x, int y, int width, int height){
Paint paint = getPaint();
try {
AffineTransform deviceTransform = getTransform();
if (getClip() != null) {
deviceClip(getClip().getPathIterator(deviceTransform));
}
deviceFillRect(x, y, width, height, (Color) paint);
} catch (ClassCastException e) {
throw new IllegalArgumentException("Expected a Color instance");
}
}
/**
* Clears the specified rectangle by filling it with the background
* color of the current drawing surface. This operation does not
* use the current paint mode.
* <p>
* Beginning with Java 1.1, the background color
* of offscreen images may be system dependent. Applications should
* use {@code setColor} followed by {@code fillRect} to
* ensure that an offscreen image is cleared to a specific color.
* @param x the <i>x</i> coordinate of the rectangle to clear.
* @param y the <i>y</i> coordinate of the rectangle to clear.
* @param width the width of the rectangle to clear.
* @param height the height of the rectangle to clear.
* @see java.awt.Graphics#fillRect(int, int, int, int)
* @see java.awt.Graphics#drawRect
* @see java.awt.Graphics#setColor(java.awt.Color)
* @see java.awt.Graphics#setPaintMode
* @see java.awt.Graphics#setXORMode(java.awt.Color)
*/
public void clearRect(int x, int y, int width, int height) {
fill(new Rectangle2D.Float(x, y, width, height), getBackground());
}
/**
* Draws an outlined round-cornered rectangle using this graphics
* context's current color. The left and right edges of the rectangle
* are at {@code x} and <code>x + width</code>,
* respectively. The top and bottom edges of the rectangle are at
* {@code y} and <code>y + height</code>.
* @param x the <i>x</i> coordinate of the rectangle to be drawn.
* @param y the <i>y</i> coordinate of the rectangle to be drawn.
* @param width the width of the rectangle to be drawn.
* @param height the height of the rectangle to be drawn.
* @param arcWidth the horizontal diameter of the arc
* at the four corners.
* @param arcHeight the vertical diameter of the arc
* at the four corners.
* @see java.awt.Graphics#fillRoundRect
*/
public void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight) {
draw(new RoundRectangle2D.Float(x, y,
width, height,
arcWidth, arcHeight));
}
/**
* Fills the specified rounded corner rectangle with the current color.
* The left and right edges of the rectangle
* are at {@code x} and <code>x + width - 1</code>,
* respectively. The top and bottom edges of the rectangle are at
* {@code y} and <code>y + height - 1</code>.
* @param x the <i>x</i> coordinate of the rectangle to be filled.
* @param y the <i>y</i> coordinate of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @param arcWidth the horizontal diameter
* of the arc at the four corners.
* @param arcHeight the vertical diameter
* of the arc at the four corners.
* @see java.awt.Graphics#drawRoundRect
*/
public void fillRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight) {
fill(new RoundRectangle2D.Float(x, y,
width, height,
arcWidth, arcHeight));
}
/**
* Draws the outline of an oval.
* The result is a circle or ellipse that fits within the
* rectangle specified by the {@code x}, {@code y},
* {@code width}, and {@code height} arguments.
* <p>
* The oval covers an area that is
* <code>width + 1</code> pixels wide
* and <code>height + 1</code> pixels tall.
* @param x the <i>x</i> coordinate of the upper left
* corner of the oval to be drawn.
* @param y the <i>y</i> coordinate of the upper left
* corner of the oval to be drawn.
* @param width the width of the oval to be drawn.
* @param height the height of the oval to be drawn.
* @see java.awt.Graphics#fillOval
* @since 1.0
*/
public void drawOval(int x, int y, int width, int height) {
draw(new Ellipse2D.Float(x, y, width, height));
}
/**
* Fills an oval bounded by the specified rectangle with the
* current color.
* @param x the <i>x</i> coordinate of the upper left corner
* of the oval to be filled.
* @param y the <i>y</i> coordinate of the upper left corner
* of the oval to be filled.
* @param width the width of the oval to be filled.
* @param height the height of the oval to be filled.
* @see java.awt.Graphics#drawOval
*/
public void fillOval(int x, int y, int width, int height){
fill(new Ellipse2D.Float(x, y, width, height));
}
/**
* Draws the outline of a circular or elliptical arc
* covering the specified rectangle.
* <p>
* The resulting arc begins at {@code startAngle} and extends
* for {@code arcAngle} degrees, using the current color.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
* {@code width} and {@code height} arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
* The angles are specified relative to the non-square extents of
* the bounding rectangle such that 45 degrees always falls on the
* line from the center of the ellipse to the upper right corner of
* the bounding rectangle. As a result, if the bounding rectangle is
* noticeably longer in one axis than the other, the angles to the
* start and end of the arc segment will be skewed farther along the
* longer axis of the bounds.
* @param x the <i>x</i> coordinate of the
* upper-left corner of the arc to be drawn.
* @param y the <i>y</i> coordinate of the
* upper-left corner of the arc to be drawn.
* @param width the width of the arc to be drawn.
* @param height the height of the arc to be drawn.
* @param startAngle the beginning angle.
* @param arcAngle the angular extent of the arc,
* relative to the start angle.
* @see java.awt.Graphics#fillArc
*/
public void drawArc(int x, int y, int width, int height,
int startAngle, int arcAngle) {
draw(new Arc2D.Float(x, y, width, height,
startAngle, arcAngle,
Arc2D.OPEN));
}
/**
* Fills a circular or elliptical arc covering the specified rectangle.
* <p>
* The resulting arc begins at {@code startAngle} and extends
* for {@code arcAngle} degrees.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
* {@code width} and {@code height} arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
* The angles are specified relative to the non-square extents of
* the bounding rectangle such that 45 degrees always falls on the
* line from the center of the ellipse to the upper right corner of
* the bounding rectangle. As a result, if the bounding rectangle is
* noticeably longer in one axis than the other, the angles to the
* start and end of the arc segment will be skewed farther along the
* longer axis of the bounds.
* @param x the <i>x</i> coordinate of the
* upper-left corner of the arc to be filled.
* @param y the <i>y</i> coordinate of the
* upper-left corner of the arc to be filled.
* @param width the width of the arc to be filled.
* @param height the height of the arc to be filled.
* @param startAngle the beginning angle.
* @param arcAngle the angular extent of the arc,
* relative to the start angle.
* @see java.awt.Graphics#drawArc
*/
public void fillArc(int x, int y, int width, int height,
int startAngle, int arcAngle) {
fill(new Arc2D.Float(x, y, width, height,
startAngle, arcAngle,
Arc2D.PIE));
}
/**
* Draws a sequence of connected lines defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point.
* The figure is not closed if the first point
* differs from the last point.
* @param xPoints an array of <i>x</i> points
* @param yPoints an array of <i>y</i> points
* @param nPoints the total number of points
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
* @since 1.1
*/
public void drawPolyline(int[] xPoints, int[] yPoints,
int nPoints) {
if (nPoints == 2) {
draw(new Line2D.Float(xPoints[0], yPoints[0],
xPoints[1], yPoints[1]));
} else if (nPoints > 2) {
Path2D path = new Path2D.Float(Path2D.WIND_EVEN_ODD, nPoints);
path.moveTo(xPoints[0], yPoints[0]);
for(int i = 1; i < nPoints; i++) {
path.lineTo(xPoints[i], yPoints[i]);
}
draw(path);
}
}
/**
* Draws a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point.
* <p>
* This method draws the polygon defined by {@code nPoint} line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
* 1 ≤ <i>i</i> ≤ {@code nPoints}.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
* @param xPoints a an array of {@code x} coordinates.
* @param yPoints a an array of {@code y} coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(int[] xPoints, int[] yPoints,
int nPoints) {
draw(new Polygon(xPoints, yPoints, nPoints));
}
/**
* Draws the outline of a polygon defined by the specified
* {@code Polygon} object.
* @param p the polygon to draw.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(Polygon p) {
draw(p);
}
/**
* Fills a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* <p>
* This method draws the polygon defined by {@code nPoint} line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
* 1 ≤ <i>i</i> ≤ {@code nPoints}.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
* <p>
* The area inside the polygon is defined using an
* even-odd fill rule, also known as the alternating rule.
* @param xPoints a an array of {@code x} coordinates.
* @param yPoints a an array of {@code y} coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
*/
public void fillPolygon(int[] xPoints, int[] yPoints,
int nPoints) {
fill(new Polygon(xPoints, yPoints, nPoints));
}
/**
* Fills the polygon defined by the specified Polygon object with
* the graphics context's current color.
* <p>
* The area inside the polygon is defined using an
* even-odd fill rule, also known as the alternating rule.
* @param p the polygon to fill.
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
*/
public void fillPolygon(Polygon p) {
fill(p);
}
/**
* Draws the text given by the specified string, using this
* graphics context's current font and color. The baseline of the
* first character is at position (<i>x</i>, <i>y</i>) in this
* graphics context's coordinate system.
* @param str the string to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @see java.awt.Graphics#drawBytes
* @see java.awt.Graphics#drawChars
* @since 1.0
*/
public void drawString(String str, int x, int y) {
drawString(str, (float) x, (float) y);
}
public void drawString(String str, float x, float y) {
if (str.length() == 0) {
return;
}
TextLayout layout =
new TextLayout(str, getFont(), getFontRenderContext());
layout.draw(this, x, y);
}
protected void drawString(String str, float x, float y,
Font font, FontRenderContext frc, float w) {
TextLayout layout =
new TextLayout(str, font, frc);
Shape textShape =
layout.getOutline(AffineTransform.getTranslateInstance(x, y));
fill(textShape);
}
/**
* Draws the text given by the specified iterator, using this
* graphics context's current color. The iterator has to specify a font
* for each character. The baseline of the
* first character is at position (<i>x</i>, <i>y</i>) in this
* graphics context's coordinate system.
* @param iterator the iterator whose text is to be drawn
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @see java.awt.Graphics#drawBytes
* @see java.awt.Graphics#drawChars
*/
public void drawString(AttributedCharacterIterator iterator,
int x, int y) {
drawString(iterator, (float) x, (float) y);
}
public void drawString(AttributedCharacterIterator iterator,
float x, float y) {
if (iterator == null) {
throw
new NullPointerException("attributedcharacteriterator is null");
}
TextLayout layout =
new TextLayout(iterator, getFontRenderContext());
layout.draw(this, x, y);
}
/**
* Draws a GlyphVector.
* The rendering attributes applied include the clip, transform,
* paint or color, and composite attributes. The GlyphVector specifies
* individual glyphs from a Font.
* @param g The GlyphVector to be drawn.
* @param x,y The coordinates where the glyphs should be drawn.
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void drawGlyphVector(GlyphVector g,
float x,
float y) {
/* We should not reach here if printingGlyphVector is already true.
* Add an assert so this can be tested if need be.
* But also ensure that we do at least render properly by filling
* the outline.
*/
if (printingGlyphVector) {
assert !printingGlyphVector; // ie false.
fill(g.getOutline(x, y));
return;
}
try {
printingGlyphVector = true;
if (RasterPrinterJob.shapeTextProp ||
!printedSimpleGlyphVector(g, x, y)) {
fill(g.getOutline(x, y));
}
} finally {
printingGlyphVector = false;
}
}
protected static SoftReference<Hashtable<Font2DHandle,Object>>
fontMapRef = new SoftReference<Hashtable<Font2DHandle,Object>>(null);
protected int platformFontCount(Font font, String str) {
return 0;
}
/**
* Default implementation returns false.
* Callers of this method must always be prepared for this,
* and delegate to outlines or some other solution.
*/
protected boolean printGlyphVector(GlyphVector gv, float x, float y) {
return false;
}
/* GlyphVectors are usually encountered because TextLayout is in use.
* Some times TextLayout is needed to handle complex text or some
* rendering attributes trigger it.
* We try to print GlyphVectors by reconstituting into a String,
* as that is most recoverable for applications that export to formats
* such as Postscript or PDF. In some cases (eg where its not complex
* text and its just that positions aren't what we'd expect) we print
* one character at a time. positioning individually.
* Failing that, if we can directly send glyph codes to the printer
* then we do that (printGlyphVector).
* As a last resort we return false and let the caller print as filled
* shapes.
*/
boolean printedSimpleGlyphVector(GlyphVector g, float x, float y) {
int flags = g.getLayoutFlags();
/* We can't handle RTL, re-ordering, complex glyphs etc by
* reconstituting glyphs into a String. So if any flags besides
* position adjustments are set, see if we can directly
* print the GlyphVector as glyph codes, using the positions
* layout has assigned. If that fails return false;
*/
if (flags != 0 && flags != GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS) {
return printGlyphVector(g, x, y);
}
Font font = g.getFont();
Font2D font2D = FontUtilities.getFont2D(font);
if (font2D.handle.font2D != font2D) {
/* suspicious, may be a bad font. lets bail */
return false;
}
Hashtable<Font2DHandle,Object> fontMap;
synchronized (PathGraphics.class) {
fontMap = fontMapRef.get();
if (fontMap == null) {
fontMap = new Hashtable<Font2DHandle,Object>();
fontMapRef =
new SoftReference<Hashtable<Font2DHandle,Object>>(fontMap);
}
}
int numGlyphs = g.getNumGlyphs();
int[] glyphCodes = g.getGlyphCodes(0, numGlyphs, null);
char[] glyphToCharMap = null;
char[][] mapArray = null;
CompositeFont cf = null;
/* Build the needed maps for this font in a synchronized block */
synchronized (fontMap) {
if (font2D instanceof CompositeFont) {
cf = (CompositeFont)font2D;
int numSlots = cf.getNumSlots();
mapArray = (char[][])fontMap.get(font2D.handle);
if (mapArray == null) {
mapArray = new char[numSlots][];
fontMap.put(font2D.handle, mapArray);
}
for (int i=0; i<numGlyphs;i++) {
int slot = glyphCodes[i] >>> 24;
if (slot >= numSlots) { /* shouldn't happen */
return false;
}
if (mapArray[slot] == null) {
Font2D slotFont = cf.getSlotFont(slot);
char[] map = (char[])fontMap.get(slotFont.handle);
if (map == null) {
map = getGlyphToCharMapForFont(slotFont);
}
mapArray[slot] = map;
}
}
} else {
glyphToCharMap = (char[])fontMap.get(font2D.handle);
if (glyphToCharMap == null) {
glyphToCharMap = getGlyphToCharMapForFont(font2D);
fontMap.put(font2D.handle, glyphToCharMap);
}
}
}
char[] chars = new char[numGlyphs];
if (cf != null) {
for (int i=0; i<numGlyphs; i++) {
int gc = glyphCodes[i];
char[] map = mapArray[gc >>> 24];
gc = gc & 0xffffff;
if (map == null) {
return false;
}
/* X11 symbol & dingbats fonts used only for global metrics,
* so the glyph codes we have really refer to Lucida Sans
* Regular.
* So its possible the glyph code may appear out of range.
* Note that later on we double-check the glyph codes that
* we get from re-creating the GV from the string are the
* same as those we started with.
*
* If the glyphcode is INVISIBLE_GLYPH_ID then this may
* be \t, \n or \r which are mapped to that by layout.
* This is a case we can handle. It doesn't matter what
* character we use (we use \n) so long as layout maps it
* back to this in the verification, since the invisible
* glyph isn't visible :)
*/
char ch;
if (gc == CharToGlyphMapper.INVISIBLE_GLYPH_ID) {
ch = '\n';
} else if (gc < 0 || gc >= map.length) {
return false;
} else {
ch = map[gc];
}
if (ch != CharToGlyphMapper.INVISIBLE_GLYPH_ID) {
chars[i] = ch;
} else {
return false;
}
}
} else {
for (int i=0; i<numGlyphs; i++) {
int gc = glyphCodes[i];
char ch;
if (gc == CharToGlyphMapper.INVISIBLE_GLYPH_ID) {
ch = '\n';
} else if (gc < 0 || gc >= glyphToCharMap.length) {
return false;
} else {
ch = glyphToCharMap[gc];
}
if (ch != CharToGlyphMapper.INVISIBLE_GLYPH_ID) {
chars[i] = ch;
} else {
return false;
}
}
}
FontRenderContext gvFrc = g.getFontRenderContext();
GlyphVector gv2 = font.createGlyphVector(gvFrc, chars);
if (gv2.getNumGlyphs() != numGlyphs) {
return printGlyphVector(g, x, y);
}
int[] glyphCodes2 = gv2.getGlyphCodes(0, numGlyphs, null);
/*
* Needed to double-check remapping of X11 symbol & dingbats.
*/
for (int i=0; i<numGlyphs; i++) {
if (glyphCodes[i] != glyphCodes2[i]) {
return printGlyphVector(g, x, y);
}
}
FontRenderContext g2dFrc = getFontRenderContext();
boolean compatibleFRC = gvFrc.equals(g2dFrc);
/* If differ only in specifying A-A or a translation, these are
* also compatible FRC's, and we can do one drawString call.
*/
if (!compatibleFRC &&
gvFrc.usesFractionalMetrics() == g2dFrc.usesFractionalMetrics()) {
AffineTransform gvAT = gvFrc.getTransform();
AffineTransform g2dAT = getTransform();
double[] gvMatrix = new double[4];
double[] g2dMatrix = new double[4];
gvAT.getMatrix(gvMatrix);
g2dAT.getMatrix(g2dMatrix);
compatibleFRC = true;
for (int i=0;i<4;i++) {
if (gvMatrix[i] != g2dMatrix[i]) {
compatibleFRC = false;
break;
}
}
}
String str = new String(chars, 0, numGlyphs);
int numFonts = platformFontCount(font, str);
if (numFonts == 0) {
return false;
}
float[] positions = g.getGlyphPositions(0, numGlyphs, null);
boolean noPositionAdjustments =
((flags & GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS) == 0) ||
samePositions(gv2, glyphCodes2, glyphCodes, positions);
/* We have to consider that the application may be directly
* creating a GlyphVector, rather than one being created by
* TextLayout or indirectly from drawString. In such a case, if the
* font has layout attributes, the text may measure differently
* when we reconstitute it into a String and ask for the length that
* drawString would use. For example, KERNING will be applied in such
* a case but that Font attribute is not applied when the application
* directly created a GlyphVector. So in this case we need to verify
* that the text measures the same in both cases - ie that the
* layout attribute has no effect. If it does we can't always
* use the drawString call unless we can coerce the drawString call
* into measuring and displaying the string to the same length.
* That is the case where there is only one font used and we can
* specify the overall advance of the string. (See below).
*/
Point2D gvAdvancePt = g.getGlyphPosition(numGlyphs);
float gvAdvanceX = (float)gvAdvancePt.getX();
boolean layoutAffectsAdvance = false;
if (font.hasLayoutAttributes() && printingGlyphVector &&
noPositionAdjustments) {
/* If TRACKING is in use then the glyph vector will report
* position adjustments, then that ought to be sufficient to
* tell us we can't just ask native to do "drawString". But layout
* always sets the position adjustment flag, so we don't believe
* it and verify the positions are really different than
* createGlyphVector() (with no layout) would create. However
* inconsistently, TRACKING is applied when creating a GlyphVector,
* since it doesn't actually require "layout" (even though its
* considered a layout attribute), it just requires a fractional
* tweak to the[default]advances. So we need to specifically
* check for tracking until such time as we can trust
* the GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS bit.
*/
Map<TextAttribute, ?> map = font.getAttributes();
Object o = map.get(TextAttribute.TRACKING);
boolean tracking = o != null && (o instanceof Number) &&
(((Number)o).floatValue() != 0f);
if (tracking) {
noPositionAdjustments = false;
} else {
Rectangle2D bounds = font.getStringBounds(str, gvFrc);
float strAdvanceX = (float)bounds.getWidth();
if (Math.abs(strAdvanceX - gvAdvanceX) > 0.00001) {
layoutAffectsAdvance = true;
}
}
}
if (compatibleFRC && noPositionAdjustments && !layoutAffectsAdvance) {
drawString(str, x, y, font, gvFrc, 0f);
return true;
}
/* If positions have not been explicitly assigned, we can
* ask the string to be drawn adjusted to this width.
* This call is supported only in the PS generator.
* GDI has API to specify the advance for each glyph in a
* string which could be used here too, but that is not yet
* implemented, and we'd need to update the signature of the
* drawString method to take the advances (ie relative positions)
* and use that instead of the width.
*/
if (numFonts == 1 && canDrawStringToWidth() && noPositionAdjustments) {
drawString(str, x, y, font, gvFrc, gvAdvanceX);
return true;
}
/* In some scripts chars drawn individually do not have the
* same representation (glyphs) as when combined with other chars.
* The logic here is erring on the side of caution, in particular
* in including supplementary characters.
*/
if (FontUtilities.isComplexText(chars, 0, chars.length)) {
return printGlyphVector(g, x, y);
}
/* If we reach here we have mapped all the glyphs back
* one-to-one to simple unicode chars that we know are in the font.
* We can call "drawChars" on each one of them in turn, setting
* the position based on the glyph positions.
* There's typically overhead in this. If numGlyphs is 'large',
* it may even be better to try printGlyphVector() in this case.
* This may be less recoverable for apps, but sophisticated apps
* should be able to recover the text from simple glyph vectors
* and we can avoid penalising the more common case - although
* this is already a minority case.
*/
if (numGlyphs > 10 && printGlyphVector(g, x, y)) {
return true;
}
for (int i=0; i<numGlyphs; i++) {
String s = new String(chars, i, 1);
drawString(s, x+positions[i*2], y+positions[i*2+1],
font, gvFrc, 0f);
}
return true;
}
/* The same codes must be in the same positions for this to return true.
* This would look cleaner if it took the original GV as a parameter but
* we already have the codes and will need to get the positions array
* too in most cases anyway. So its cheaper to pass them in.
* This call wouldn't be necessary if layout didn't always set the
* FLAG_HAS_POSITION_ADJUSTMENTS even if the default advances are used
* and there was no re-ordering (this should be fixed some day).
*/
private boolean samePositions(GlyphVector gv, int[] gvcodes,
int[] origCodes, float[] origPositions) {
int numGlyphs = gv.getNumGlyphs();
float[] gvpos = gv.getGlyphPositions(0, numGlyphs, null);
/* this shouldn't happen here, but just in case */
if (numGlyphs != gvcodes.length || /* real paranoia here */
origCodes.length != gvcodes.length ||
origPositions.length != gvpos.length) {
return false;
}
for (int i=0; i<numGlyphs; i++) {
if (gvcodes[i] != origCodes[i] || gvpos[i] != origPositions[i]) {
return false;
}
}
return true;
}
protected boolean canDrawStringToWidth() {
return false;
}
/* return an array which can map glyphs back to char codes.
* Glyphs which aren't mapped from a simple unicode code point
* will have no mapping in this array, and will be assumed to be
* because of some substitution that we can't handle.
*/
private static char[] getGlyphToCharMapForFont(Font2D font2D) {
/* NB Composites report the number of glyphs in slot 0.
* So if a string uses a char from a later slot, or a fallback slot,
* it will not be able to use this faster path.
*/
int numGlyphs = font2D.getNumGlyphs();
int missingGlyph = font2D.getMissingGlyphCode();
char[] glyphToCharMap = new char[numGlyphs];
int glyph;
for (int i=0;i<numGlyphs; i++) {
glyphToCharMap[i] = CharToGlyphMapper.INVISIBLE_GLYPH_ID;
}
/* Consider refining the ranges to try to map by asking the font
* what ranges it supports.
* Since a glyph may be mapped by multiple code points, and this
* code can't handle that, we always prefer the earlier code point.
*/
for (char c=0; c<0xFFFF; c++) {
if (c >= CharToGlyphMapper.HI_SURROGATE_START &&
c <= CharToGlyphMapper.LO_SURROGATE_END) {
continue;
}
glyph = font2D.charToGlyph(c);
if (glyph != missingGlyph &&
glyph >= 0 && glyph < numGlyphs &&
(glyphToCharMap[glyph] ==
CharToGlyphMapper.INVISIBLE_GLYPH_ID)) {
glyphToCharMap[glyph] = c;
}
}
return glyphToCharMap;
}
/**
* Strokes the outline of a Shape using the settings of the current
* graphics state. The rendering attributes applied include the
* clip, transform, paint or color, composite and stroke attributes.
* @param s The shape to be drawn.
* @see #setStroke
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #clip
* @see #setClip
* @see #setComposite
*/
public void draw(Shape s) {
fill(getStroke().createStrokedShape(s));
}
/**
* Fills the interior of a Shape using the settings of the current
* graphics state. The rendering attributes applied include the
* clip, transform, paint or color, and composite.
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void fill(Shape s) {
Paint paint = getPaint();
try {
fill(s, (Color) paint);
/* The PathGraphics class only supports filling with
* solid colors and so we do not expect the cast of Paint
* to Color to fail. If it does fail then something went
* wrong, like the app draw a page with a solid color but
* then redrew it with a Gradient.
*/
} catch (ClassCastException e) {
throw new IllegalArgumentException("Expected a Color instance");
}
}
public void fill(Shape s, Color color) {
AffineTransform deviceTransform = getTransform();
if (getClip() != null) {
deviceClip(getClip().getPathIterator(deviceTransform));
}
deviceFill(s.getPathIterator(deviceTransform), color);
}
/**
* Fill the path defined by {@code pathIter}
* with the specified color.
* The path is provided in device coordinates.
*/
protected abstract void deviceFill(PathIterator pathIter, Color color);
/*
* Set the clipping path to that defined by
* the passed in {@code PathIterator}.
*/
protected abstract void deviceClip(PathIterator pathIter);
/*
* Draw the outline of the rectangle without using path
* if supported by platform.
*/
protected abstract void deviceFrameRect(int x, int y,
int width, int height,
Color color);
/*
* Draw a line without using path if supported by platform.
*/
protected abstract void deviceDrawLine(int xBegin, int yBegin,
int xEnd, int yEnd, Color color);
/*
* Fill a rectangle using specified color.
*/
protected abstract void deviceFillRect(int x, int y,
int width, int height, Color color);
/* Obtain a BI from known implementations of java.awt.Image
*/
protected BufferedImage getBufferedImage(Image img) {
if (img instanceof BufferedImage) {
// Otherwise we expect a BufferedImage to behave as a standard BI
return (BufferedImage)img;
} else if (img instanceof ToolkitImage) {
// This can be null if the image isn't loaded yet.
// This is fine as in that case our caller will return
// as it will only draw a fully loaded image
return ((ToolkitImage)img).getBufferedImage();
} else if (img instanceof VolatileImage) {
// VI needs to make a new BI: this is unavoidable but
// I don't expect VI's to be "huge" in any case.
return ((VolatileImage)img).getSnapshot();
} else {
// may be null or may be some non-standard Image which
// shouldn't happen as Image is implemented by the platform
// not by applications
// If you add a new Image implementation to the platform you
// will need to support it here similarly to VI.
return null;
}
}
/**
* Return true if the BufferedImage argument has non-opaque
* bits in it and therefore can not be directly rendered by
* GDI. Return false if the image is opaque. If this function
* can not tell for sure whether the image has transparent
* pixels then it assumes that it does.
*/
protected boolean hasTransparentPixels(BufferedImage bufferedImage) {
ColorModel colorModel = bufferedImage.getColorModel();
boolean hasTransparency = colorModel == null
? true
: colorModel.getTransparency() != ColorModel.OPAQUE;
/*
* For the default INT ARGB check the image to see if any pixels are
* really transparent. If there are no transparent pixels then the
* transparency of the color model can be ignored.
* We assume that IndexColorModel images have already been
* checked for transparency and will be OPAQUE unless they actually
* have transparent pixels present.
*/
if (hasTransparency && bufferedImage != null) {
if (bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB ||
bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB_PRE) {
DataBuffer db = bufferedImage.getRaster().getDataBuffer();
SampleModel sm = bufferedImage.getRaster().getSampleModel();
if (db instanceof DataBufferInt &&
sm instanceof SinglePixelPackedSampleModel) {
SinglePixelPackedSampleModel psm =
(SinglePixelPackedSampleModel)sm;
// Stealing the data array for reading only...
int[] int_data =
SunWritableRaster.stealData((DataBufferInt) db, 0);
int x = bufferedImage.getMinX();
int y = bufferedImage.getMinY();
int w = bufferedImage.getWidth();
int h = bufferedImage.getHeight();
int stride = psm.getScanlineStride();
boolean hastranspixel = false;
for (int j = y; j < y+h; j++) {
int yoff = j * stride;
for (int i = x; i < x+w; i++) {
if ((int_data[yoff+i] & 0xff000000)!=0xff000000 ) {
hastranspixel = true;
break;
}
}
if (hastranspixel) {
break;
}
}
if (hastranspixel == false) {
hasTransparency = false;
}
}
}
}
return hasTransparency;
}
protected boolean isBitmaskTransparency(BufferedImage bufferedImage) {
ColorModel colorModel = bufferedImage.getColorModel();
return (colorModel != null &&
colorModel.getTransparency() == ColorModel.BITMASK);
}
/* An optimisation for the special case of ICM images which have
* bitmask transparency.
*/
protected boolean drawBitmaskImage(BufferedImage bufferedImage,
AffineTransform xform,
Color bgcolor,
int srcX, int srcY,
int srcWidth, int srcHeight) {
ColorModel colorModel = bufferedImage.getColorModel();
IndexColorModel icm;
int [] pixels;
if (!(colorModel instanceof IndexColorModel)) {
return false;
} else {
icm = (IndexColorModel)colorModel;
}
if (colorModel.getTransparency() != ColorModel.BITMASK) {
return false;
}
// to be compatible with 1.1 printing which treated b/g colors
// with alpha 128 as opaque
if (bgcolor != null && bgcolor.getAlpha() < 128) {
return false;
}
if ((xform.getType()
& ~( AffineTransform.TYPE_UNIFORM_SCALE
| AffineTransform.TYPE_TRANSLATION
| AffineTransform.TYPE_QUADRANT_ROTATION
)) != 0) {
return false;
}
if ((getTransform().getType()
& ~( AffineTransform.TYPE_UNIFORM_SCALE
| AffineTransform.TYPE_TRANSLATION
| AffineTransform.TYPE_QUADRANT_ROTATION
)) != 0) {
return false;
}
BufferedImage subImage = null;
Raster raster = bufferedImage.getRaster();
int transpixel = icm.getTransparentPixel();
byte[] alphas = new byte[icm.getMapSize()];
icm.getAlphas(alphas);
if (transpixel >= 0) {
alphas[transpixel] = 0;
}
/* don't just use srcWidth & srcHeight from application - they
* may exceed the extent of the image - may need to clip.
* The image xform will ensure that points are still mapped properly.
*/
int rw = raster.getWidth();
int rh = raster.getHeight();
if (srcX > rw || srcY > rh) {
return false;
}
int right, bottom, wid, hgt;
if (srcX+srcWidth > rw) {
right = rw;
wid = right - srcX;
} else {
right = srcX+srcWidth;
wid = srcWidth;
}
if (srcY+srcHeight > rh) {
bottom = rh;
hgt = bottom - srcY;
} else {
bottom = srcY+srcHeight;
hgt = srcHeight;
}
pixels = new int[wid];
for (int j=srcY; j<bottom; j++) {
int startx = -1;
raster.getPixels(srcX, j, wid, 1, pixels);
for (int i=srcX; i<right; i++) {
if (alphas[pixels[i-srcX]] == 0) {
if (startx >=0) {
subImage = bufferedImage.getSubimage(startx, j,
i-startx, 1);
xform.translate(startx, j);
drawImageToPlatform(subImage, xform, bgcolor,
0, 0, i-startx, 1, true);
xform.translate(-startx, -j);
startx = -1;
}
} else if (startx < 0) {
startx = i;
}
}
if (startx >= 0) {
subImage = bufferedImage.getSubimage(startx, j,
right - startx, 1);
xform.translate(startx, j);
drawImageToPlatform(subImage, xform, bgcolor,
0, 0, right - startx, 1, true);
xform.translate(-startx, -j);
}
}
return true;
}
/**
* The various {@code drawImage()} methods for
* {@code PathGraphics} are all decomposed
* into an invocation of {@code drawImageToPlatform}.
* The portion of the passed in image defined by
* {@code srcX, srcY, srcWidth, and srcHeight}
* is transformed by the supplied AffineTransform and
* drawn using PS to the printer context.
*
* @param img The image to be drawn.
* This method does nothing if {@code img} is null.
* @param xform Used to transform the image before drawing.
* This can be null.
* @param bgcolor This color is drawn where the image has transparent
* pixels. If this parameter is null then the
* pixels already in the destination should show
* through.
* @param srcX With srcY this defines the upper-left corner
* of the portion of the image to be drawn.
*
* @param srcY With srcX this defines the upper-left corner
* of the portion of the image to be drawn.
* @param srcWidth The width of the portion of the image to
* be drawn.
* @param srcHeight The height of the portion of the image to
* be drawn.
* @param handlingTransparency if being recursively called to
* print opaque region of transparent image
*/
protected abstract boolean
drawImageToPlatform(Image img, AffineTransform xform,
Color bgcolor,
int srcX, int srcY,
int srcWidth, int srcHeight,
boolean handlingTransparency);
/**
* Draws as much of the specified image as is currently available.
* The image is drawn with its top-left corner at
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
* space. Transparent pixels in the image do not affect whatever
* pixels are already there.
* <p>
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since 1.0
*/
public boolean drawImage(Image img, int x, int y,
ImageObserver observer) {
return drawImage(img, x, y, null, observer);
}
/**
* Draws as much of the specified image as has already been scaled
* to fit inside the specified rectangle.
* <p>
* The image is drawn inside the specified rectangle of this
* graphics context's coordinate space, and is scaled if
* necessary. Transparent pixels do not affect whatever pixels
* are already there.
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete, then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the image observer by calling its {@code imageUpdate} method.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since 1.0
*/
public boolean drawImage(Image img, int x, int y,
int width, int height,
ImageObserver observer) {
return drawImage(img, x, y, width, height, null, observer);
}
/*
* Draws as much of the specified image as is currently available.
* The image is drawn with its top-left corner at
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
* space. Transparent pixels are drawn in the specified
* background color.
* <p>
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* This method does nothing if {@code img} is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* In this WPathGraphics implementation,
* this parameter can be null in which
* case that background is made a transparent
* white.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since 1.0
*/
public boolean drawImage(Image img, int x, int y,
Color bgcolor,
ImageObserver observer) {
if (img == null) {
return true;
}
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
result = drawImage(img, x, y, srcWidth, srcHeight, bgcolor, observer);
}
return result;
}
/**
* Draws as much of the specified image as has already been scaled
* to fit inside the specified rectangle.
* <p>
* The image is drawn inside the specified rectangle of this
* graphics context's coordinate space, and is scaled if
* necessary. Transparent pixels are drawn in the specified
* background color.
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
* This method does nothing if {@code img} is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since 1.0
*/
public boolean drawImage(Image img, int x, int y,
int width, int height,
Color bgcolor,
ImageObserver observer) {
if (img == null) {
return true;
}
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
result = drawImage(img,
x, y, x + width, y + height,
0, 0, srcWidth, srcHeight,
observer);
}
return result;
}
/**
* Draws as much of the specified area of the specified image as is
* currently available, scaling it on the fly to fit inside the
* specified area of the destination drawable surface. Transparent pixels
* do not affect whatever pixels are already there.
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
* scaling on the fly. It does not use a cached, scaled version
* of the image for this operation. Scaling of the image from source
* to destination is performed such that the first coordinate
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
* destination rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the
* destination rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the
* source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the
* source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the
* source rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the
* source rectangle.
* @param observer object to be notified as more of the image is
* scaled and converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since 1.1
*/
public boolean drawImage(Image img,
int dx1, int dy1, int dx2, int dy2,
int sx1, int sy1, int sx2, int sy2,
ImageObserver observer) {
return drawImage(img,
dx1, dy1, dx2, dy2,
sx1, sy1, sx2, sy2,
null, observer);
}
/**
* Draws as much of the specified area of the specified image as is
* currently available, scaling it on the fly to fit inside the
* specified area of the destination drawable surface.
* <p>
* Transparent pixels are drawn in the specified background color.
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
* scaling on the fly. It does not use a cached, scaled version
* of the image for this operation. Scaling of the image from source
* to destination is performed such that the first coordinate
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
* This method does nothing if {@code img} is null.
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
* destination rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the
* destination rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the
* source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the
* source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the
* source rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the
* source rectangle.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
/**代码未完, 请加载全部代码(NowJava.com).**/