/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.java2d.marlin;
import java.awt.BasicStroke;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.Path2D;
import java.awt.geom.PathIterator;
import java.security.AccessController;
import java.util.Arrays;
import static sun.java2d.marlin.MarlinUtils.logInfo;
import sun.awt.geom.PathConsumer2D;
import sun.java2d.ReentrantContextProvider;
import sun.java2d.ReentrantContextProviderCLQ;
import sun.java2d.ReentrantContextProviderTL;
import sun.java2d.pipe.AATileGenerator;
import sun.java2d.pipe.Region;
import sun.java2d.pipe.RenderingEngine;
import sun.security.action.GetPropertyAction;
/**
* Marlin RendererEngine implementation (derived from Pisces)
*/
public final class MarlinRenderingEngine extends RenderingEngine
implements MarlinConst
{
// slightly slower ~2% if enabled stroker clipping (lines) but skipping cap / join handling is few percents faster in specific cases
static final boolean DISABLE_2ND_STROKER_CLIPPING = true;
static final boolean DO_TRACE_PATH = false;
static final boolean DO_CLIP = MarlinProperties.isDoClip();
static final boolean DO_CLIP_FILL = true;
static final boolean DO_CLIP_RUNTIME_ENABLE = MarlinProperties.isDoClipRuntimeFlag();
private static final float MIN_PEN_SIZE = 1.0f / MIN_SUBPIXELS;
static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
static final float LOWER_BND = -UPPER_BND;
private enum NormMode {
ON_WITH_AA {
@Override
PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
final PathIterator src)
{
// NormalizingPathIterator NearestPixelCenter:
return rdrCtx.nPCPathIterator.init(src);
}
},
ON_NO_AA{
@Override
PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
final PathIterator src)
{
// NearestPixel NormalizingPathIterator:
return rdrCtx.nPQPathIterator.init(src);
}
},
OFF{
@Override
PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
final PathIterator src)
{
// return original path iterator if normalization is disabled:
return src;
}
};
abstract PathIterator getNormalizingPathIterator(RendererContext rdrCtx,
PathIterator src);
}
/**
* Public constructor
*/
public MarlinRenderingEngine() {
super();
logSettings(MarlinRenderingEngine.class.getName());
}
/**
* Create a widened path as specified by the parameters.
* <p>
* The specified {@code src} {@link Shape} is widened according
* to the specified attribute parameters as per the
* {@link BasicStroke} specification.
*
* @param src the source path to be widened
* @param width the width of the widened path as per {@code BasicStroke}
* @param caps the end cap decorations as per {@code BasicStroke}
* @param join the segment join decorations as per {@code BasicStroke}
* @param miterlimit the miter limit as per {@code BasicStroke}
* @param dashes the dash length array as per {@code BasicStroke}
* @param dashphase the initial dash phase as per {@code BasicStroke}
* @return the widened path stored in a new {@code Shape} object
* @since 1.7
*/
@Override
public Shape createStrokedShape(Shape src,
float width,
int caps,
int join,
float miterlimit,
float[] dashes,
float dashphase)
{
final RendererContext rdrCtx = getRendererContext();
try {
// initialize a large copyable Path2D to avoid a lot of array growing:
final Path2D.Float p2d = rdrCtx.getPath2D();
strokeTo(rdrCtx,
src,
null,
width,
NormMode.OFF,
caps,
join,
miterlimit,
dashes,
dashphase,
rdrCtx.transformerPC2D.wrapPath2D(p2d)
);
// Use Path2D copy constructor (trim)
return new Path2D.Float(p2d);
} finally {
// recycle the RendererContext instance
returnRendererContext(rdrCtx);
}
}
/**
* Sends the geometry for a widened path as specified by the parameters
* to the specified consumer.
* <p>
* The specified {@code src} {@link Shape} is widened according
* to the parameters specified by the {@link BasicStroke} object.
* Adjustments are made to the path as appropriate for the
* {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
* {@code normalize} boolean parameter is true.
* Adjustments are made to the path as appropriate for the
* {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
* {@code antialias} boolean parameter is true.
* <p>
* The geometry of the widened path is forwarded to the indicated
* {@link PathConsumer2D} object as it is calculated.
*
* @param src the source path to be widened
* @param bs the {@code BasicSroke} object specifying the
* decorations to be applied to the widened path
* @param normalize indicates whether stroke normalization should
* be applied
* @param antialias indicates whether or not adjustments appropriate
* to antialiased rendering should be applied
* @param consumer the {@code PathConsumer2D} instance to forward
* the widened geometry to
* @since 1.7
*/
@Override
public void strokeTo(Shape src,
AffineTransform at,
BasicStroke bs,
boolean thin,
boolean normalize,
boolean antialias,
final PathConsumer2D consumer)
{
final NormMode norm = (normalize) ?
((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
: NormMode.OFF;
final RendererContext rdrCtx = getRendererContext();
try {
strokeTo(rdrCtx, src, at, bs, thin, norm, antialias, consumer);
} finally {
// recycle the RendererContext instance
returnRendererContext(rdrCtx);
}
}
void strokeTo(final RendererContext rdrCtx,
Shape src,
AffineTransform at,
BasicStroke bs,
boolean thin,
NormMode normalize,
boolean antialias,
PathConsumer2D pc2d)
{
float lw;
if (thin) {
if (antialias) {
lw = userSpaceLineWidth(at, MIN_PEN_SIZE);
} else {
lw = userSpaceLineWidth(at, 1.0f);
}
} else {
lw = bs.getLineWidth();
}
strokeTo(rdrCtx,
src,
at,
lw,
normalize,
bs.getEndCap(),
bs.getLineJoin(),
bs.getMiterLimit(),
bs.getDashArray(),
bs.getDashPhase(),
pc2d);
}
private float userSpaceLineWidth(AffineTransform at, float lw) {
float widthScale;
if (at == null) {
widthScale = 1.0f;
} else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
// Determinant may be negative (flip), use its absolute value:
widthScale = (float)Math.sqrt(Math.abs(at.getDeterminant()));
} else {
// First calculate the "maximum scale" of this transform.
double A = at.getScaleX(); // m00
double C = at.getShearX(); // m01
double B = at.getShearY(); // m10
double D = at.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2.0d * (A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
// sqrt omitted, compare to squared limits below.
double widthsquared = ((EA + EC + hypot) / 2.0d);
widthScale = (float)Math.sqrt(widthsquared);
}
return (lw / widthScale);
}
void strokeTo(final RendererContext rdrCtx,
Shape src,
AffineTransform at,
float width,
NormMode norm,
int caps,
int join,
float miterlimit,
float[] dashes,
float dashphase,
PathConsumer2D pc2d)
{
// We use strokerat so that in Stroker and Dasher we can work only
// with the pre-transformation coordinates. This will repeat a lot of
// computations done in the path iterator, but the alternative is to
// work with transformed paths and compute untransformed coordinates
// as needed. This would be faster but I do not think the complexity
// of working with both untransformed and transformed coordinates in
// the same code is worth it.
// However, if a path's width is constant after a transformation,
// we can skip all this untransforming.
// As pathTo() will check transformed coordinates for invalid values
// (NaN / Infinity) to ignore such points, it is necessary to apply the
// transformation before the path processing.
AffineTransform strokerat = null;
int dashLen = -1;
boolean recycleDashes = false;
if (at != null && !at.isIdentity()) {
final double a = at.getScaleX();
final double b = at.getShearX();
final double c = at.getShearY();
final double d = at.getScaleY();
final double det = a * d - c * b;
if (Math.abs(det) <= (2.0f * Float.MIN_VALUE)) {
// this rendering engine takes one dimensional curves and turns
// them into 2D shapes by giving them width.
// However, if everything is to be passed through a singular
// transformation, these 2D shapes will be squashed down to 1D
// again so, nothing can be drawn.
// Every path needs an initial moveTo and a pathDone. If these
// are not there this causes a SIGSEGV in libawt.so (at the time
// of writing of this comment (September 16, 2010)). Actually,
// I am not sure if the moveTo is necessary to avoid the SIGSEGV
// but the pathDone is definitely needed.
pc2d.moveTo(0.0f, 0.0f);
pc2d.pathDone();
return;
}
// If the transform is a constant multiple of an orthogonal transformation
// then every length is just multiplied by a constant, so we just
// need to transform input paths to stroker and tell stroker
// the scaled width. This condition is satisfied if
// a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
// leave a bit of room for error.
if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) {
final float scale = (float) Math.sqrt(a*a + c*c);
if (dashes != null) {
recycleDashes = true;
dashLen = dashes.length;
dashes = rdrCtx.dasher.copyDashArray(dashes);
for (int i = 0; i < dashLen; i++) {
dashes[i] *= scale;
}
dashphase *= scale;
}
width *= scale;
// by now strokerat == null. Input paths to
// stroker (and maybe dasher) will have the full transform at
// applied to them and nothing will happen to the output paths.
} else {
strokerat = at;
// by now strokerat == at. Input paths to
// stroker (and maybe dasher) will have the full transform at
// applied to them, then they will be normalized, and then
// the inverse of *only the non translation part of at* will
// be applied to the normalized paths. This won't cause problems
// in stroker, because, suppose at = T*A, where T is just the
// translation part of at, and A is the rest. T*A has already
// been applied to Stroker/Dasher's input. Then Ainv will be
// applied. Ainv*T*A is not equal to T, but it is a translation,
// which means that none of stroker's assumptions about its
// input will be violated. After all this, A will be applied
// to stroker's output.
}
} else {
// either at is null or it's the identity. In either case
// we don't transform the path.
at = null;
}
final TransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D;
if (DO_TRACE_PATH) {
// trace Stroker:
pc2d = transformerPC2D.traceStroker(pc2d);
}
if (USE_SIMPLIFIER) {
// Use simplifier after stroker before Renderer
// to remove collinear segments (notably due to cap square)
pc2d = rdrCtx.simplifier.init(pc2d);
}
// deltaTransformConsumer may adjust the clip rectangle:
pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat);
// stroker will adjust the clip rectangle (width / miter limit):
pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit,
(dashes == null));
// Curve Monotizer:
rdrCtx.monotonizer.init(width);
if (dashes != null) {
if (!recycleDashes) {
dashLen = dashes.length;
}
if (DO_TRACE_PATH) {
pc2d = transformerPC2D.traceDasher(pc2d);
}
pc2d = rdrCtx.dasher.init(pc2d, dashes, dashLen, dashphase,
recycleDashes);
if (DISABLE_2ND_STROKER_CLIPPING) {
// disable stoker clipping
rdrCtx.stroker.disableClipping();
}
} else if (rdrCtx.doClip && (caps != Stroker.CAP_BUTT)) {
if (DO_TRACE_PATH) {
pc2d = transformerPC2D.traceClosedPathDetector(pc2d);
}
// If no dash and clip is enabled:
// detect closedPaths (polygons) for caps
pc2d = transformerPC2D.detectClosedPath(pc2d);
}
pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat);
if (DO_TRACE_PATH) {
// trace Input:
pc2d = transformerPC2D.traceInput(pc2d);
}
final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
src.getPathIterator(at));
pathTo(rdrCtx, pi, pc2d);
/*
* Pipeline seems to be:
* shape.getPathIterator(at)
* -> (NormalizingPathIterator)
* -> (inverseDeltaTransformConsumer)
* -> (Dasher)
* -> Stroker
* -> (deltaTransformConsumer)
*
* -> (CollinearSimplifier) to remove redundant segments
*
* -> pc2d = Renderer (bounding box)
*/
}
private static boolean nearZero(final double num) {
return Math.abs(num) < 2.0d * Math.ulp(num);
}
abstract static class NormalizingPathIterator implements PathIterator {
private PathIterator src;
// the adjustment applied to the current position.
private float curx_adjust, cury_adjust;
// the adjustment applied to the last moveTo position.
private float movx_adjust, movy_adjust;
private final float[] tmp;
NormalizingPathIterator(final float[] tmp) {
this.tmp = tmp;
}
final NormalizingPathIterator init(final PathIterator src) {
this.src = src;
return this; // fluent API
}
/**
* Disposes this path iterator:
* clean up before reusing this instance
*/
final void dispose() {
// free source PathIterator:
this.src = null;
}
@Override
public final int currentSegment(final float[] coords) {
int lastCoord;
final int type = src.currentSegment(coords);
switch(type) {
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
lastCoord = 0;
break;
case PathIterator.SEG_QUADTO:
lastCoord = 2;
break;
case PathIterator.SEG_CUBICTO:
lastCoord = 4;
break;
case PathIterator.SEG_CLOSE:
// we don't want to deal with this case later. We just exit now
curx_adjust = movx_adjust;
cury_adjust = movy_adjust;
return type;
default:
throw new InternalError("Unrecognized curve type");
}
// normalize endpoint
float coord, x_adjust, y_adjust;
coord = coords[lastCoord];
x_adjust = normCoord(coord); // new coord
coords[lastCoord] = x_adjust;
x_adjust -= coord;
coord = coords[lastCoord + 1];
y_adjust = normCoord(coord); // new coord
coords[lastCoord + 1] = y_adjust;
y_adjust -= coord;
// now that the end points are done, normalize the control points
switch(type) {
case PathIterator.SEG_MOVETO:
movx_adjust = x_adjust;
movy_adjust = y_adjust;
break;
case PathIterator.SEG_LINETO:
break;
case PathIterator.SEG_QUADTO:
coords[0] += (curx_adjust + x_adjust) / 2.0f;
coords[1] += (cury_adjust + y_adjust) / 2.0f;
break;
case PathIterator.SEG_CUBICTO:
coords[0] += curx_adjust;
coords[1] += cury_adjust;
coords[2] += x_adjust;
coords[3] += y_adjust;
break;
case PathIterator.SEG_CLOSE:
// handled earlier
default:
}
curx_adjust = x_adjust;
cury_adjust = y_adjust;
return type;
}
abstract float normCoord(final float coord);
@Override
public final int currentSegment(final double[] coords) {
final float[] _tmp = tmp; // dirty
int type = this.currentSegment(_tmp);
for (int i = 0; i < 6; i++) {
coords[i] = _tmp[i];
}
return type;
}
@Override
public final int getWindingRule() {
return src.getWindingRule();
}
@Override
public final boolean isDone() {
if (src.isDone()) {
// Dispose this instance:
dispose();
return true;
}
return false;
}
@Override
public final void next() {
src.next();
}
static final class NearestPixelCenter
extends NormalizingPathIterator
{
NearestPixelCenter(final float[] tmp) {
super(tmp);
}
@Override
float normCoord(final float coord) {
// round to nearest pixel center
return FloatMath.floor_f(coord) + 0.5f;
}
}
static final class NearestPixelQuarter
extends NormalizingPathIterator
{
NearestPixelQuarter(final float[] tmp) {
super(tmp);
}
@Override
float normCoord(final float coord) {
// round to nearest (0.25, 0.25) pixel quarter
return FloatMath.floor_f(coord + 0.25f) + 0.25f;
}
}
}
private static void pathTo(final RendererContext rdrCtx, final PathIterator pi,
PathConsumer2D pc2d)
{
if (USE_PATH_SIMPLIFIER) {
// Use path simplifier at the first step
// to remove useless points
pc2d = rdrCtx.pathSimplifier.init(pc2d);
}
// mark context as DIRTY:
rdrCtx.dirty = true;
pathToLoop(rdrCtx.float6, pi, pc2d);
// mark context as CLEAN:
rdrCtx.dirty = false;
}
private static void pathToLoop(final float[] coords, final PathIterator pi,
final PathConsumer2D pc2d)
{
// ported from DuctusRenderingEngine.feedConsumer() but simplified:
// - removed skip flag = !subpathStarted
// - removed pathClosed (ie subpathStarted not set to false)
boolean subpathStarted = false;
for (; !pi.isDone(); pi.next()) {
switch (pi.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
/* Checking SEG_MOVETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Skipping next path segment in case of
* invalid data.
*/
if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
coords[1] < UPPER_BND && coords[1] > LOWER_BND)
{
pc2d.moveTo(coords[0], coords[1]);
subpathStarted = true;
}
break;
case PathIterator.SEG_LINETO:
/* Checking SEG_LINETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid data. If segment is skipped its endpoint
* (if valid) is used to begin new subpath.
*/
if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
coords[1] < UPPER_BND && coords[1] > LOWER_BND)
{
if (subpathStarted) {
pc2d.lineTo(coords[0], coords[1]);
} else {
pc2d.moveTo(coords[0], coords[1]);
subpathStarted = true;
}
}
break;
case PathIterator.SEG_QUADTO:
// Quadratic curves take two points
/* Checking SEG_QUADTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid endpoints's data. Equivalent to the SEG_LINETO
* if endpoint coordinates are valid but there are invalid data
* among other coordinates
*/
if (coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
coords[3] < UPPER_BND && coords[3] > LOWER_BND)
{
if (subpathStarted) {
if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
coords[1] < UPPER_BND && coords[1] > LOWER_BND)
{
pc2d.quadTo(coords[0], coords[1],
coords[2], coords[3]);
} else {
pc2d.lineTo(coords[2], coords[3]);
}
} else {
pc2d.moveTo(coords[2], coords[3]);
subpathStarted = true;
}
}
break;
case PathIterator.SEG_CUBICTO:
// Cubic curves take three points
/* Checking SEG_CUBICTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid endpoints's data. Equivalent to the SEG_LINETO
* if endpoint coordinates are valid but there are invalid data
* among other coordinates
*/
if (coords[4] < UPPER_BND && coords[4] > LOWER_BND &&
coords[5] < UPPER_BND && coords[5] > LOWER_BND)
{
if (subpathStarted) {
if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
coords[1] < UPPER_BND && coords[1] > LOWER_BND &&
coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
coords[3] < UPPER_BND && coords[3] > LOWER_BND)
{
pc2d.curveTo(coords[0], coords[1],
coords[2], coords[3],
coords[4], coords[5]);
} else {
pc2d.lineTo(coords[4], coords[5]);
}
} else {
pc2d.moveTo(coords[4], coords[5]);
subpathStarted = true;
}
}
break;
case PathIterator.SEG_CLOSE:
if (subpathStarted) {
pc2d.closePath();
// do not set subpathStarted to false
// in case of missing moveTo() after close()
}
break;
default:
}
}
pc2d.pathDone();
}
/**
* Construct an antialiased tile generator for the given shape with
* the given rendering attributes and store the bounds of the tile
* iteration in the bbox parameter.
* The {@code at} parameter specifies a transform that should affect
* both the shape and the {@code BasicStroke} attributes.
* The {@code clip} parameter specifies the current clip in effect
* in device coordinates and can be used to prune the data for the
* operation, but the renderer is not required to perform any
* clipping.
* If the {@code BasicStroke} parameter is null then the shape
* should be filled as is, otherwise the attributes of the
* {@code BasicStroke} should be used to specify a draw operation.
* The {@code thin} parameter indicates whether or not the
* transformed {@code BasicStroke} represents coordinates smaller
* than the minimum resolution of the antialiasing rasterizer as
* specified by the {@code getMinimumAAPenWidth()} method.
* <p>
* Upon returning, this method will fill the {@code bbox} parameter
* with 4 values indicating the bounds of the iteration of the
* tile generator.
* The iteration order of the tiles will be as specified by the
* pseudo-code:
* <pre>
* for (y = bbox[1]; y < bbox[3]; y += tileheight) {
* for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
* }
* }
* </pre>
* If there is no output to be rendered, this method may return
* null.
*
* @param s the shape to be rendered (fill or draw)
* @param at the transform to be applied to the shape and the
* stroke attributes
* @param clip the current clip in effect in device coordinates
* @param bs if non-null, a {@code BasicStroke} whose attributes
* should be applied to this operation
* @param thin true if the transformed stroke attributes are smaller
* than the minimum dropout pen width
* @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
* {@code RenderingHint} is in effect
* @param bbox returns the bounds of the iteration
* @return the {@code AATileGenerator} instance to be consulted
* for tile coverages, or null if there is no output to render
* @since 1.7
*/
@Override
public AATileGenerator getAATileGenerator(Shape s,
AffineTransform at,
Region clip,
BasicStroke bs,
boolean thin,
boolean normalize,
int[] bbox)
{
MarlinTileGenerator ptg = null;
Renderer r = null;
final RendererContext rdrCtx = getRendererContext();
try {
if (DO_CLIP || (DO_CLIP_RUNTIME_ENABLE && MarlinProperties.isDoClipAtRuntime())) {
// Define the initial clip bounds:
final float[] clipRect = rdrCtx.clipRect;
// Adjust the clipping rectangle with the renderer offsets
final float rdrOffX = Renderer.RDR_OFFSET_X;
final float rdrOffY = Renderer.RDR_OFFSET_Y;
// add a small rounding error:
final float margin = 1e-3f;
clipRect[0] = clip.getLoY()
- margin + rdrOffY;
clipRect[1] = clip.getLoY() + clip.getHeight()
+ margin + rdrOffY;
clipRect[2] = clip.getLoX()
- margin + rdrOffX;
clipRect[3] = clip.getLoX() + clip.getWidth()
+ margin + rdrOffX;
if (MarlinConst.DO_LOG_CLIP) {
MarlinUtils.logInfo("clipRect (clip): "
+ Arrays.toString(rdrCtx.clipRect));
}
// Enable clipping:
rdrCtx.doClip = true;
}
// Test if at is identity:
final AffineTransform _at = (at != null && !at.isIdentity()) ? at
: null;
final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
if (bs == null) {
// fill shape:
final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
s.getPathIterator(_at));
// note: Winding rule may be EvenOdd ONLY for fill operations !
r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
clip.getWidth(), clip.getHeight(),
pi.getWindingRule());
PathConsumer2D pc2d = r;
if (DO_CLIP_FILL && rdrCtx.doClip) {
if (DO_TRACE_PATH) {
// trace Filler:
pc2d = rdrCtx.transformerPC2D.traceFiller(pc2d);
}
pc2d = rdrCtx.transformerPC2D.pathClipper(pc2d);
}
if (DO_TRACE_PATH) {
// trace Input:
pc2d = rdrCtx.transformerPC2D.traceInput(pc2d);
}
pathTo(rdrCtx, pi, pc2d);
} else {
// draw shape with given stroke:
r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
clip.getWidth(), clip.getHeight(),
WIND_NON_ZERO);
strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r);
}
if (r.endRendering()) {
ptg = rdrCtx.ptg.init();
ptg.getBbox(bbox);
// note: do not returnRendererContext(rdrCtx)
// as it will be called later by MarlinTileGenerator.dispose()
r = null;
}
} finally {
if (r != null) {
// dispose renderer and recycle the RendererContext instance:
r.dispose();
}
}
// Return null to cancel AA tile generation (nothing to render)
return ptg;
}
@Override
public AATileGenerator getAATileGenerator(double x, double y,
double dx1, double dy1,
double dx2, double dy2,
double lw1, double lw2,
Region clip,
int[] bbox)
{
// REMIND: Deal with large coordinates!
double ldx1, ldy1, ldx2, ldy2;
boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d);
if (innerpgram) {
ldx1 = dx1 * lw1;
ldy1 = dy1 * lw1;
ldx2 = dx2 * lw2;
ldy2 = dy2 * lw2;
x -= (ldx1 + ldx2) / 2.0d;
y -= (ldy1 + ldy2) / 2.0d;
dx1 += ldx1;
dy1 += ldy1;
dx2 += ldx2;
dy2 += ldy2;
if (lw1 > 1.0d && lw2 > 1.0d) {
// Inner parallelogram was entirely consumed by stroke...
innerpgram = false;
}
} else {
ldx1 = ldy1 = ldx2 = ldy2 = 0.0d;
}
MarlinTileGenerator ptg = null;
Renderer r = null;
final RendererContext rdrCtx = getRendererContext();
try {
r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
clip.getWidth(), clip.getHeight(),
WIND_EVEN_ODD);
r.moveTo((float) x, (float) y);
r.lineTo((float) (x+dx1), (float) (y+dy1));
r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
r.lineTo((float) (x+dx2), (float) (y+dy2));
r.closePath();
if (innerpgram) {
x += ldx1 + ldx2;
y += ldy1 + ldy2;
dx1 -= 2.0d * ldx1;
dy1 -= 2.0d * ldy1;
dx2 -= 2.0d * ldx2;
dy2 -= 2.0d * ldy2;
r.moveTo((float) x, (float) y);
r.lineTo((float) (x+dx1), (float) (y+dy1));
r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
r.lineTo((float) (x+dx2), (float) (y+dy2));
r.closePath();
}
r.pathDone();
if (r.endRendering()) {
ptg = rdrCtx.ptg.init();
ptg.getBbox(bbox);
// note: do not returnRendererContext(rdrCtx)
// as it will be called later by MarlinTileGenerator.dispose()
r = null;
}
} finally {
if (r != null) {
// dispose renderer and recycle the RendererContext instance:
r.dispose();
}
}
// Return null to cancel AA tile generation (nothing to render)
return ptg;
}
/**
* Returns the minimum pen width that the antialiasing rasterizer
* can represent without dropouts occuring.
* @since 1.7
*/
@Override
public float getMinimumAAPenSize() {
return MIN_PEN_SIZE;
}
static {
if (PathIterator.WIND_NON_ZERO != WIND_NON_ZERO ||
PathIterator.WIND_EVEN_ODD != WIND_EVEN_ODD ||
BasicStroke.JOIN_MITER != JOIN_MITER ||
BasicStroke.JOIN_ROUND != JOIN_ROUND ||
BasicStroke.JOIN_BEVEL != JOIN_BEVEL ||
BasicStroke.CAP_BUTT != CAP_BUTT ||
BasicStroke.CAP_ROUND != CAP_ROUND ||
BasicStroke.CAP_SQUARE != CAP_SQUARE)
{
throw new InternalError("mismatched renderer constants");
}
}
// --- RendererContext handling ---
// use ThreadLocal or ConcurrentLinkedQueue to get one RendererContext
private static final boolean USE_THREAD_LOCAL;
// reference type stored in either TL or CLQ
static final int REF_TYPE;
// Per-thread RendererContext
private static final ReentrantContextProvider<RendererContext> RDR_CTX_PROVIDER;
// Static initializer to use TL or CLQ mode
static {
USE_THREAD_LOCAL = MarlinProperties.isUseThreadLocal();
// Soft reference by default:
final String refType = AccessController.doPrivileged(
new GetPropertyAction("sun.java2d.renderer.useRef",
"soft"));
switch (refType) {
default:
case "soft":
REF_TYPE = ReentrantContextProvider.REF_SOFT;
break;
case "weak":
REF_TYPE = ReentrantContextProvider.REF_WEAK;
break;
case "hard":
REF_TYPE = ReentrantContextProvider.REF_HARD;
break;
}
if (USE_THREAD_LOCAL) {
RDR_CTX_PROVIDER = new ReentrantContextProviderTL<RendererContext>(REF_TYPE)
{
@Override
protected RendererContext newContext() {
return RendererContext.createContext();
}
};
} else {
RDR_CTX_PROVIDER = new ReentrantContextProviderCLQ<RendererContext>(REF_TYPE)
{
@Override
protected RendererContext newContext() {
return RendererContext.createContext();
}
};
}
}
private static boolean SETTINGS_LOGGED = !ENABLE_LOGS;
private static void logSettings(final String reClass) {
// log information at startup
if (SETTINGS_LOGGED) {
return;
}
SETTINGS_LOGGED = true;
String refType;
switch (REF_TYPE) {
default:
case ReentrantContextProvider.REF_HARD:
refType = "hard";
break;
case ReentrantContextProvider.REF_SOFT:
refType = "soft";
break;
case ReentrantContextProvider.REF_WEAK:
refType = "weak";
break;
}
logInfo("=========================================================="
+ "=====================");
logInfo("Marlin software rasterizer = ENABLED");
logInfo("Version = ["
+ Version.getVersion() + "]");
logInfo("sun.java2d.renderer = "
+ reClass);
logInfo("sun.java2d.renderer.useThreadLocal = "
+ USE_THREAD_LOCAL);
logInfo("sun.java2d.renderer.useRef = "
+ refType);
/**代码未完, 请加载全部代码(NowJava.com).**/