/*
* Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
*
* (C) Copyright IBM Corp. 1998-2003 - All Rights Reserved
*/
package sun.font;
import java.awt.Font;
import java.awt.Graphics2D;
import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.font.FontRenderContext;
import java.awt.font.GlyphJustificationInfo;
import java.awt.font.GlyphMetrics;
import java.awt.font.LineMetrics;
import java.awt.font.TextAttribute;
import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.util.Map;
/**
* Default implementation of ExtendedTextLabel.
*/
// {jbr} I made this class package-private to keep the
// Decoration.Label API package-private.
/* public */
class ExtendedTextSourceLabel extends ExtendedTextLabel implements Decoration.Label {
TextSource source;
private Decoration decorator;
// caches
private Font font;
private AffineTransform baseTX;
private CoreMetrics cm;
Rectangle2D lb;
Rectangle2D ab;
Rectangle2D vb;
Rectangle2D ib;
StandardGlyphVector gv;
float[] charinfo;
/**
* Create from a TextSource.
*/
public ExtendedTextSourceLabel(TextSource source, Decoration decorator) {
this.source = source;
this.decorator = decorator;
finishInit();
}
/**
* Create from a TextSource, optionally using cached data from oldLabel starting at the offset.
* If present oldLabel must have been created from a run of text that includes the text used in
* the new label. Start in source corresponds to logical character offset in oldLabel.
*/
public ExtendedTextSourceLabel(TextSource source, ExtendedTextSourceLabel oldLabel, int offset) {
// currently no optimization.
this.source = source;
this.decorator = oldLabel.decorator;
finishInit();
}
private void finishInit() {
font = source.getFont();
Map<TextAttribute, ?> atts = font.getAttributes();
baseTX = AttributeValues.getBaselineTransform(atts);
if (baseTX == null){
cm = source.getCoreMetrics();
} else {
AffineTransform charTX = AttributeValues.getCharTransform(atts);
if (charTX == null) {
charTX = new AffineTransform();
}
font = font.deriveFont(charTX);
LineMetrics lm = font.getLineMetrics(source.getChars(), source.getStart(),
source.getStart() + source.getLength(), source.getFRC());
cm = CoreMetrics.get(lm);
}
}
// TextLabel API
public Rectangle2D getLogicalBounds() {
return getLogicalBounds(0, 0);
}
public Rectangle2D getLogicalBounds(float x, float y) {
if (lb == null) {
lb = createLogicalBounds();
}
return new Rectangle2D.Float((float)(lb.getX() + x),
(float)(lb.getY() + y),
(float)lb.getWidth(),
(float)lb.getHeight());
}
public float getAdvance() {
if (lb == null) {
lb = createLogicalBounds();
}
return (float)lb.getWidth();
}
public Rectangle2D getVisualBounds(float x, float y) {
if (vb == null) {
vb = decorator.getVisualBounds(this);
}
return new Rectangle2D.Float((float)(vb.getX() + x),
(float)(vb.getY() + y),
(float)vb.getWidth(),
(float)vb.getHeight());
}
public Rectangle2D getAlignBounds(float x, float y) {
if (ab == null) {
ab = createAlignBounds();
}
return new Rectangle2D.Float((float)(ab.getX() + x),
(float)(ab.getY() + y),
(float)ab.getWidth(),
(float)ab.getHeight());
}
public Rectangle2D getItalicBounds(float x, float y) {
if (ib == null) {
ib = createItalicBounds();
}
return new Rectangle2D.Float((float)(ib.getX() + x),
(float)(ib.getY() + y),
(float)ib.getWidth(),
(float)ib.getHeight());
}
public Rectangle getPixelBounds(FontRenderContext frc, float x, float y) {
return getGV().getPixelBounds(frc, x, y);
}
public boolean isSimple() {
return decorator == Decoration.getPlainDecoration() &&
baseTX == null;
}
public AffineTransform getBaselineTransform() {
return baseTX; // passing internal object, caller must not modify!
}
public Shape handleGetOutline(float x, float y) {
return getGV().getOutline(x, y);
}
public Shape getOutline(float x, float y) {
return decorator.getOutline(this, x, y);
}
public void handleDraw(Graphics2D g, float x, float y) {
g.drawGlyphVector(getGV(), x, y);
}
public void draw(Graphics2D g, float x, float y) {
decorator.drawTextAndDecorations(this, g, x, y);
}
/**
* The logical bounds extends from the origin of the glyphvector to the
* position at which a following glyphvector's origin should be placed.
* We always assume glyph vectors are rendered from left to right, so
* the origin is always to the left.
* <p> On a left-to-right run, combining marks and 'ligatured away'
* characters are to the right of their base characters. The charinfo
* array will record the character positions for these 'missing' characters
* as being at the origin+advance of the base glyph, with zero advance.
* (This is not necessarily the same as the glyph position, for example,
* an umlaut glyph may have a position to the left of this point, it depends
* on whether the font was designed so that such glyphs overhang to the left
* of their origin, or whether it presumes some kind of kerning to position
* the glyphs). Anyway, the left of the bounds is the origin of the first
* logical (leftmost) character, and the right is the origin + advance of the
* last logical (rightmost) character.
* <p> On a right-to-left run, these special characters are to the left
* of their base characters. Again, since 'glyph position' has been abstracted
* away, we can use the origin of the leftmost character, and the origin +
* advance of the rightmost character.
* <p> On a mixed run (hindi) we can't rely on the first logical character
* being the leftmost character. However we can again rely on the leftmost
* character origin and the rightmost character + advance.
*/
protected Rectangle2D createLogicalBounds() {
return getGV().getLogicalBounds();
}
public Rectangle2D handleGetVisualBounds() {
return getGV().getVisualBounds();
}
/**
* Like createLogicalBounds except ignore leading and logically trailing white space.
* this assumes logically trailing whitespace is also visually trailing.
* Whitespace is anything that has a zero visual width, regardless of its advance.
* <p> We make the same simplifying assumptions as in createLogicalBounds, namely
* that we can rely on the charinfo to shield us from any glyph positioning oddities
* in the font that place the glyph for a character at other than the pos + advance
* of the character to its left. So we no longer need to skip chars with zero
* advance, as their bounds (right and left) are already correct.
*/
protected Rectangle2D createAlignBounds() {
float[] info = getCharinfo();
float al = 0f;
float at = -cm.ascent;
float aw = 0f;
float ah = cm.ascent + cm.descent;
if (charinfo == null || charinfo.length == 0) {
return new Rectangle2D.Float(al, at, aw, ah);
}
boolean lineIsLTR = (source.getLayoutFlags() & 0x8) == 0;
int rn = info.length - numvals;
if (lineIsLTR) {
while (rn > 0 && info[rn+visw] == 0) {
rn -= numvals;
}
}
if (rn >= 0) {
int ln = 0;
while (ln < rn && ((info[ln+advx] == 0) || (!lineIsLTR && info[ln+visw] == 0))) {
ln += numvals;
}
al = Math.max(0f, info[ln+posx]);
aw = info[rn+posx] + info[rn+advx] - al;
}
/*
boolean lineIsLTR = source.lineIsLTR();
int rn = info.length - numvals;
while (rn > 0 && ((info[rn+advx] == 0) || (lineIsLTR && info[rn+visw] == 0))) {
rn -= numvals;
}
if (rn >= 0) {
int ln = 0;
while (ln < rn && ((info[ln+advx] == 0) || (!lineIsLTR && info[ln+visw] == 0))) {
ln += numvals;
}
al = Math.max(0f, info[ln+posx]);
aw = info[rn+posx] + info[rn+advx] - al;
}
*/
return new Rectangle2D.Float(al, at, aw, ah);
}
public Rectangle2D createItalicBounds() {
float ia = cm.italicAngle;
Rectangle2D lb = getLogicalBounds();
float l = (float)lb.getMinX();
float t = -cm.ascent;
float r = (float)lb.getMaxX();
float b = cm.descent;
if (ia != 0) {
if (ia > 0) {
l -= ia * (b - cm.ssOffset);
r -= ia * (t - cm.ssOffset);
} else {
l -= ia * (t - cm.ssOffset);
r -= ia * (b - cm.ssOffset);
}
}
return new Rectangle2D.Float(l, t, r - l, b - t);
}
private StandardGlyphVector getGV() {
if (gv == null) {
gv = createGV();
}
return gv;
}
protected StandardGlyphVector createGV() {
FontRenderContext frc = source.getFRC();
int flags = source.getLayoutFlags();
char[] context = source.getChars();
int start = source.getStart();
int length = source.getLength();
GlyphLayout gl = GlyphLayout.get(null); // !!! no custom layout engines
gv = gl.layout(font, frc, context, start, length, flags, null); // ??? use textsource
GlyphLayout.done(gl);
return gv;
}
// ExtendedTextLabel API
private static final int posx = 0,
posy = 1,
advx = 2,
advy = 3,
visx = 4,
visy = 5,
visw = 6,
vish = 7;
private static final int numvals = 8;
public int getNumCharacters() {
return source.getLength();
}
public CoreMetrics getCoreMetrics() {
return cm;
}
public float getCharX(int index) {
validate(index);
float[] charinfo = getCharinfo();
int idx = l2v(index) * numvals + posx;
if (charinfo == null || idx >= charinfo.length) {
return 0f;
} else {
return charinfo[idx];
}
}
public float getCharY(int index) {
validate(index);
float[] charinfo = getCharinfo();
int idx = l2v(index) * numvals + posy;
if (charinfo == null || idx >= charinfo.length) {
return 0f;
} else {
return charinfo[idx];
}
}
public float getCharAdvance(int index) {
validate(index);
float[] charinfo = getCharinfo();
int idx = l2v(index) * numvals + advx;
if (charinfo == null || idx >= charinfo.length) {
return 0f;
} else {
return charinfo[idx];
}
}
public Rectangle2D handleGetCharVisualBounds(int index) {
validate(index);
float[] charinfo = getCharinfo();
index = l2v(index) * numvals;
if (charinfo == null || (index+vish) >= charinfo.length) {
return new Rectangle2D.Float();
}
return new Rectangle2D.Float(
charinfo[index + visx],
charinfo[index + visy],
charinfo[index + visw],
charinfo[index + vish]);
}
public Rectangle2D getCharVisualBounds(int index, float x, float y) {
Rectangle2D bounds = decorator.getCharVisualBounds(this, index);
if (x != 0 || y != 0) {
bounds.setRect(bounds.getX()+x,
bounds.getY()+y,
bounds.getWidth(),
bounds.getHeight());
}
return bounds;
}
private void validate(int index) {
if (index < 0) {
throw new IllegalArgumentException("index " + index + " < 0");
} else if (index >= source.getLength()) {
throw new IllegalArgumentException("index " + index + " < " + source.getLength());
}
}
/*
public int hitTestChar(float x, float y) {
// !!! return index of char hit, for swing
// result is negative for trailing-edge hits
// no italics so no problem at margins.
// for now, ignore y since we assume horizontal text
// find non-combining char origin to right of x
float[] charinfo = getCharinfo();
int n = 0;
int e = source.getLength();
while (n < e && charinfo[n + advx] != 0 && charinfo[n + posx] > x) {
n += numvals;
}
float rightx = n < e ? charinfo[n+posx] : charinfo[e - numvals + posx] + charinfo[e - numvals + advx];
// find non-combining char to left of that char
n -= numvals;
while (n >= 0 && charinfo[n+advx] == 0) {
n -= numvals;
}
float leftx = n >= 0 ? charinfo[n+posx] : 0;
float lefta = n >= 0 ? charinfo[n+advx] : 0;
n /= numvals;
boolean left = true;
if (x < leftx + lefta / 2f) {
// left of prev char
} else if (x < (leftx + lefta + rightx) / 2f) {
// right of prev char
left = false;
} else {
// left of follow char
n += 1;
}
if ((source.getLayoutFlags() & 0x1) != 0) {
n = getNumCharacters() - 1 - n;
left = !left;
}
return left ? n : -n;
}
*/
public int logicalToVisual(int logicalIndex) {
validate(logicalIndex);
return l2v(logicalIndex);
}
public int visualToLogical(int visualIndex) {
validate(visualIndex);
return v2l(visualIndex);
}
public int getLineBreakIndex(int start, float width) {
float[] charinfo = getCharinfo();
int length = source.getLength();
--start;
while (width >= 0 && ++start < length) {
int cidx = l2v(start) * numvals + advx;
if (cidx >= charinfo.length) {
break; // layout bailed for some reason
}
float adv = charinfo[cidx];
width -= adv;
}
return start;
}
public float getAdvanceBetween(int start, int limit) {
float a = 0f;
float[] charinfo = getCharinfo();
--start;
while (++start < limit) {
int cidx = l2v(start) * numvals + advx;
if (cidx >= charinfo.length) {
break; // layout bailed for some reason
}
a += charinfo[cidx];
}
return a;
}
public boolean caretAtOffsetIsValid(int offset) {
// REMIND: improve this implementation
// Ligature formation can either be done in logical order,
// with the ligature glyph logically preceding the null
// chars; or in visual order, with the ligature glyph to
// the left of the null chars. This method's implementation
// must reflect which strategy is used.
if (offset == 0 || offset == source.getLength()) {
return true;
}
char c = source.getChars()[source.getStart() + offset];
if (c == '\t' || c == '\n' || c == '\r') { // hack
return true;
}
int v = l2v(offset);
// If ligatures are always to the left, do this stuff:
//if (!(source.getLayoutFlags() & 0x1) == 0) {
// v += 1;
// if (v == source.getLength()) {
// return true;
// }
//}
int idx = v * numvals + advx;
float[] charinfo = getCharinfo();
if (charinfo == null || idx >= charinfo.length) {
return false;
} else {
return charinfo[idx] != 0;
}
}
private float[] getCharinfo() {
if (charinfo == null) {
charinfo = createCharinfo();
}
return charinfo;
}
private static final boolean DEBUG = FontUtilities.debugFonts();
/*
* This takes the glyph info record obtained from the glyph vector and converts it into a similar record
* adjusted to represent character data instead. For economy we don't use glyph info records in this processing.
*
* Here are some constraints:
* - there can be more glyphs than characters (glyph insertion, perhaps based on normalization, has taken place)
* - there can be fewer glyphs than characters
* Some layout engines may insert 0xffff glyphs for characters ligaturized away, but
* not all do, and it cannot be relied upon.
* - each glyph maps to a single character, when multiple glyphs exist for a character they all map to it, but
* no two characters map to the same glyph
* - multiple glyphs mapping to the same character need not be in sequence (thai, tamil have split characters)
* - glyphs may be arbitrarily reordered (Indic reorders glyphs)
* - all glyphs share the same bidi level
* - all glyphs share the same horizontal (or vertical) baseline
* - combining marks visually follow their base character in the glyph array-- i.e. in an rtl gv they are
* to the left of their base character-- and have zero advance.
*
* The output maps this to character positions, and therefore caret positions, via the following assumptions:
* - zero-advance glyphs do not contribute to the advance of their character (i.e. position is ignored), conversely
* if a glyph is to contribute to the advance of its character it must have a non-zero (float) advance
* - no carets can appear between a zero width character and its preceding character, where 'preceding' is
* defined logically.
* - no carets can appear within a split character
* - no carets can appear within a local reordering (i.e. Indic reordering, or non-adjacent split characters)
* - all characters lie on the same baseline, and it is either horizontal or vertical
* - the charinfo is in uniform ltr or rtl order (visual order), since local reorderings and split characters are removed
*
* The algorithm works in the following way:
* 1) we scan the glyphs ltr or rtl based on the bidi run direction
* 2) Since the may be fewer glyphs than chars we cannot work in place.
* A new array is allocated for output.
* a) if the line is ltr, we start writing at position 0 until we finish, there may be leftver space
* b) if the line is rtl and 1-1, we start writing at position numChars/glyphs - 1 until we finish at 0
* c) otherwise if we don't finish at 0, we have to copy the data down
* 3) we consume clusters in the following way:
* a) the first element is always consumed
* b) subsequent elements are consumed if:
* i) their advance is zero
* ii) their character index <= the character index of any character seen in this cluster
* iii) the minimum character index seen in this cluster isn't adjacent to the previous cluster
* c) character data is written as follows for horizontal lines (x/y and w/h are exchanged on vertical lines)
* i) the x position is the position of the leftmost glyph whose advance is not zero
* ii)the y position is the baseline
* iii) the x advance is the distance to the maximum x + adv of all glyphs whose advance is not zero
* iv) the y advance is the baseline
* v) vis x,y,w,h tightly encloses the vis x,y,w,h of all the glyphs with nonzero w and h
* 4) In the future, we can make some simple optimizations to avoid copying if we know some things:
* a) if the mapping is 1-1, unidirectional, and there are no zero-adv glyphs, we just return the glyphinfo
* b) if the mapping is 1-1, unidirectional, we just adjust the remaining glyphs to originate at right/left of the base
* c) if the mapping is 1-1, we compute the base position and advance as we go, then go back to adjust the remaining glyphs
* d) otherwise we keep separate track of the write position as we do (c) since no glyph in the cluster may be in the
* position we are writing.
* e) most clusters are simply the single base glyph in the same position as its character, so we try to avoid
* copying its data unnecessarily.
* 5) the glyph vector ought to provide access to these 'global' attributes to enable these optimizations. A single
* int with flags set is probably ok, we could also provide accessors for each attribute. This doesn't map to
* the GlyphMetrics flags very well, so I won't attempt to keep them similar. It might be useful to add those
* in addition to these.
* int FLAG_HAS_ZERO_ADVANCE_GLYPHS = 1; // set if there are zero-advance glyphs
* int FLAG_HAS_NONUNIFORM_ORDER = 2; // set if some glyphs are rearranged out of character visual order
* int FLAG_HAS_SPLIT_CHARACTERS = 4; // set if multiple glyphs per character
* int getDescriptionFlags(); // return an int containing the above flags
* boolean hasZeroAdvanceGlyphs();
* boolean hasNonuniformOrder();
* boolean hasSplitCharacters();
* The optimized cases in (4) correspond to values 0, 1, 3, and 7 returned by getDescriptionFlags().
*/
protected float[] createCharinfo() {
StandardGlyphVector gv = getGV();
float[] glyphinfo = null;
try {
glyphinfo = gv.getGlyphInfo();
}
catch (Exception e) {
if (DEBUG) {
System.err.println(source);
e.printStackTrace();
}
glyphinfo = new float[gv.getNumGlyphs() * numvals];
}
int numGlyphs = gv.getNumGlyphs();
if (numGlyphs == 0) {
return glyphinfo;
}
int[] indices = gv.getGlyphCharIndices(0, numGlyphs, null);
float[] charInfo = new float[source.getLength() * numvals];
if (DEBUG) {
System.err.println("number of glyphs: " + numGlyphs);
System.err.println("glyphinfo.len: " + glyphinfo.length);
System.err.println("indices.len: " + indices.length);
for (int i = 0; i < numGlyphs; ++i) {
System.err.println("g: " + i +
" v: " + gv.getGlyphCode(i) +
", x: " + glyphinfo[i*numvals+posx] +
", a: " + glyphinfo[i*numvals+advx] +
", n: " + indices[i]);
}
}
int minIndex = indices[0]; // smallest index seen this cluster
int maxIndex = minIndex; // largest index seen this cluster
int cp = 0; // character position
int cc = 0;
int gp = 0; // glyph position
int gx = 0; // glyph index (visual)
int gxlimit = numGlyphs; // limit of gx, when we reach this we're done
int pdelta = numvals; // delta for incrementing positions
int xdelta = 1; // delta for incrementing indices
boolean rtl = (source.getLayoutFlags() & 0x1) == 1;
if (rtl) {
minIndex = indices[numGlyphs - 1];
maxIndex = minIndex;
cp = charInfo.length - numvals;
gp = glyphinfo.length - numvals;
gx = numGlyphs - 1;
gxlimit = -1;
pdelta = -numvals;
xdelta = -1;
}
/*
// to support vertical, use 'ixxxx' indices and swap horiz and vertical components
if (source.isVertical()) {
iposx = posy;
iposy = posx;
iadvx = advy;
iadvy = advx;
ivisx = visy;
ivisy = visx;
ivish = visw;
ivisw = vish;
} else {
// use standard values
}
*/
// use intermediates to reduce array access when we need to
float cposl = 0, cposr = 0, cvisl = 0, cvist = 0, cvisr = 0, cvisb = 0;
float baseline = 0;
while (gx != gxlimit) {
// start of new cluster
int clusterExtraGlyphs = 0;
minIndex = indices[gx];
maxIndex = minIndex;
cposl = glyphinfo[gp + posx];
cposr = cposl + glyphinfo[gp + advx];
cvisl = glyphinfo[gp + visx];
cvist = glyphinfo[gp + visy];
cvisr = cvisl + glyphinfo[gp + visw];
cvisb = cvist + glyphinfo[gp + vish];
// advance to next glyph
gx += xdelta;
gp += pdelta;
while (gx != gxlimit &&
((glyphinfo[gp + advx] == 0) ||
(indices[gx] <= maxIndex) ||
(maxIndex - minIndex > clusterExtraGlyphs))) {
++clusterExtraGlyphs; // have an extra glyph in this cluster
if (DEBUG) {
System.err.println("gp=" +gp +" adv=" + glyphinfo[gp + advx] +
" gx="+ gx+ " i[gx]="+indices[gx] +
" clusterExtraGlyphs="+clusterExtraGlyphs);
}
// adjust advance only if new glyph has non-zero advance
float radvx = glyphinfo[gp + advx];
if (radvx != 0) {
float rposx = glyphinfo[gp + posx];
cposl = Math.min(cposl, rposx);
cposr = Math.max(cposr, rposx + radvx);
}
// adjust visible bounds only if new glyph has non-empty bounds
float rvisw = glyphinfo[gp + visw];
if (rvisw != 0) {
float rvisx = glyphinfo[gp + visx];
float rvisy = glyphinfo[gp + visy];
cvisl = Math.min(cvisl, rvisx);
cvist = Math.min(cvist, rvisy);
cvisr = Math.max(cvisr, rvisx + rvisw);
cvisb = Math.max(cvisb, rvisy + glyphinfo[gp + vish]);
}
// adjust min, max index
minIndex = Math.min(minIndex, indices[gx]);
maxIndex = Math.max(maxIndex, indices[gx]);
// get ready to examine next glyph
gx += xdelta;
gp += pdelta;
}
// done with cluster, gx and gp are set for next glyph
if (DEBUG) {
System.err.println("minIndex = " + minIndex + ", maxIndex = " + maxIndex);
}
// save adjustments to the base character and do common adjustments.
charInfo[cp + posx] = cposl;
charInfo[cp + posy] = baseline;
charInfo[cp + advx] = cposr - cposl;
charInfo[cp + advy] = 0;
charInfo[cp + visx] = cvisl;
charInfo[cp + visy] = cvist;
charInfo[cp + visw] = cvisr - cvisl;
charInfo[cp + vish] = cvisb - cvist;
cc++;
/* We may have consumed multiple glyphs for this char position.
* Map those extra consumed glyphs to char positions that would follow
* up to the index prior to that which begins the next cluster.
* If we have reached the last glyph (reached gxlimit) then we need to
* map remaining unmapped chars to the same location as the last one.
*/
int tgt;
if (gx == gxlimit) {
tgt = charInfo.length / numvals;
} else {
tgt = indices[gx];
}
if (DEBUG) {
System.err.println("gx=" + gx + " gxlimit=" + gxlimit +
" charInfo.len=" + charInfo.length +
" tgt=" + tgt + " cc=" + cc + " cp=" + cp);
}
while (cc < tgt) {
if (rtl) {
// if rtl, characters to left of base, else to right. reuse cposr.
cposr = cposl;
}
cvisr -= cvisl; // reuse, convert to deltas.
cvisb -= cvist;
cp += pdelta;
if (cp < 0 || cp >= charInfo.length) {
if (DEBUG) {
System.err.println("Error : cp=" + cp +
" charInfo.length=" + charInfo.length);
}
break;
}
if (DEBUG) {
System.err.println("Insert charIndex " + cc + " at pos="+cp);
}
charInfo[cp + posx] = cposr;
charInfo[cp + posy] = baseline;
charInfo[cp + advx] = 0;
charInfo[cp + advy] = 0;
charInfo[cp + visx] = cvisl;
charInfo[cp + visy] = cvist;
charInfo[cp + visw] = cvisr;
charInfo[cp + vish] = cvisb;
cc++;
}
cp += pdelta; // reset for new cluster
}
if (DEBUG) {
char[] chars = source.getChars();
int start = source.getStart();
int length = source.getLength();
System.err.println("char info for " + length + " characters");
for (int i = 0; i < length * numvals;) {
System.err.println(" ch: " + Integer.toHexString(chars[start + v2l(i / numvals)]) +
" x: " + charInfo[i++] +
" y: " + charInfo[i++] +
" xa: " + charInfo[i++] +
" ya: " + charInfo[i++] +
" l: " + charInfo[i++] +
" t: " + charInfo[i++] +
" w: " + charInfo[i++] +
" h: " + charInfo[i++]);
}
}
return charInfo;
}
/**
* Map logical character index to visual character index.
* <p>
* This ignores hindi reordering. @see createCharinfo
*/
protected int l2v(int index) {
return (source.getLayoutFlags() & 0x1) == 0 ? index : source.getLength() - 1 - index;
}
/**
* Map visual character index to logical character index.
* <p>
* This ignores hindi reordering. @see createCharinfo
*/
protected int v2l(int index) {
return (source.getLayoutFlags() & 0x1) == 0 ? index : source.getLength() - 1 - index;
}
public TextLineComponent getSubset(int start, int limit, int dir) {
return new ExtendedTextSourceLabel(source.getSubSource(start, limit-start, dir), decorator);
}
public String toString() {
if (true) {
return source.toString(TextSource.WITHOUT_CONTEXT);
}
StringBuilder sb = new StringBuilder();
sb.append(super.toString());
sb.append("[source:");
sb.append(source.toString(TextSource.WITHOUT_CONTEXT));
sb.append(", lb:");
sb.append(lb);
sb.append(", ab:");
sb.append(ab);
sb.append(", vb:");
sb.append(vb);
sb.append(", gv:");
sb.append(gv);
sb.append(", ci: ");
if (charinfo == null) {
sb.append("null");
} else {
sb.append(charinfo[0]);
for (int i = 1; i < charinfo.length;) {
sb.append(i % numvals == 0 ? "; " : ", ");
sb.append(charinfo[i]);
}
}
sb.append("]");
return sb.toString();
}
//public static ExtendedTextLabel create(TextSource source) {
// return new ExtendedTextSourceLabel(source);
//}
public int getNumJustificationInfos() {
return getGV().getNumGlyphs();
}
public void getJustificationInfos(GlyphJustificationInfo[] infos, int infoStart, int charStart, int charLimit) {
// This simple implementation only uses spaces for justification.
// Since regular characters aren't justified, we don't need to deal with
// special infos for combining marks or ligature substitution glyphs.
// added character justification for kanjii only 2/22/98
StandardGlyphVector gv = getGV();
float[] charinfo = getCharinfo();
float size = gv.getFont().getSize2D();
GlyphJustificationInfo nullInfo =
new GlyphJustificationInfo(0,
false, GlyphJustificationInfo.PRIORITY_NONE, 0, 0,
false, GlyphJustificationInfo.PRIORITY_NONE, 0, 0);
GlyphJustificationInfo spaceInfo =
new GlyphJustificationInfo(size,
true, GlyphJustificationInfo.PRIORITY_WHITESPACE, 0, size,
true, GlyphJustificationInfo.PRIORITY_WHITESPACE, 0, size / 4f);
GlyphJustificationInfo kanjiInfo =
new GlyphJustificationInfo(size,
true, GlyphJustificationInfo.PRIORITY_INTERCHAR, size, size,
false, GlyphJustificationInfo.PRIORITY_NONE, 0, 0);
char[] chars = source.getChars();
int offset = source.getStart();
// assume data is 1-1 and either all rtl or all ltr, for now
int numGlyphs = gv.getNumGlyphs();
int minGlyph = 0;
int maxGlyph = numGlyphs;
boolean ltr = (source.getLayoutFlags() & 0x1) == 0;
/**代码未完, 请加载全部代码(NowJava.com).**/