/*
* Copyright (c) 2006, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.awt.geom;
import java.awt.Rectangle;
import java.awt.Shape;
import java.io.Serializable;
import java.io.StreamCorruptedException;
import java.util.Arrays;
import sun.awt.geom.Curve;
/**
* The {@code Path2D} class provides a simple, yet flexible
* shape which represents an arbitrary geometric path.
* It can fully represent any path which can be iterated by the
* {@link PathIterator} interface including all of its segment
* types and winding rules and it implements all of the
* basic hit testing methods of the {@link Shape} interface.
* <p>
* Use {@link Path2D.Float} when dealing with data that can be represented
* and used with floating point precision. Use {@link Path2D.Double}
* for data that requires the accuracy or range of double precision.
* <p>
* {@code Path2D} provides exactly those facilities required for
* basic construction and management of a geometric path and
* implementation of the above interfaces with little added
* interpretation.
* If it is useful to manipulate the interiors of closed
* geometric shapes beyond simple hit testing then the
* {@link Area} class provides additional capabilities
* specifically targeted at closed figures.
* While both classes nominally implement the {@code Shape}
* interface, they differ in purpose and together they provide
* two useful views of a geometric shape where {@code Path2D}
* deals primarily with a trajectory formed by path segments
* and {@code Area} deals more with interpretation and manipulation
* of enclosed regions of 2D geometric space.
* <p>
* The {@link PathIterator} interface has more detailed descriptions
* of the types of segments that make up a path and the winding rules
* that control how to determine which regions are inside or outside
* the path.
*
* @author Jim Graham
* @since 1.6
*/
public abstract class Path2D implements Shape, Cloneable {
/**
* An even-odd winding rule for determining the interior of
* a path.
*
* @see PathIterator#WIND_EVEN_ODD
* @since 1.6
*/
public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD;
/**
* A non-zero winding rule for determining the interior of a
* path.
*
* @see PathIterator#WIND_NON_ZERO
* @since 1.6
*/
public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO;
// For code simplicity, copy these constants to our namespace
// and cast them to byte constants for easy storage.
private static final byte SEG_MOVETO = (byte) PathIterator.SEG_MOVETO;
private static final byte SEG_LINETO = (byte) PathIterator.SEG_LINETO;
private static final byte SEG_QUADTO = (byte) PathIterator.SEG_QUADTO;
private static final byte SEG_CUBICTO = (byte) PathIterator.SEG_CUBICTO;
private static final byte SEG_CLOSE = (byte) PathIterator.SEG_CLOSE;
transient byte[] pointTypes;
transient int numTypes;
transient int numCoords;
transient int windingRule;
static final int INIT_SIZE = 20;
static final int EXPAND_MAX = 500;
static final int EXPAND_MAX_COORDS = EXPAND_MAX * 2;
static final int EXPAND_MIN = 10; // ensure > 6 (cubics)
/**
* Constructs a new empty {@code Path2D} object.
* It is assumed that the package sibling subclass that is
* defaulting to this constructor will fill in all values.
*
* @since 1.6
*/
/* private protected */
Path2D() {
}
/**
* Constructs a new {@code Path2D} object from the given
* specified initial values.
* This method is only intended for internal use and should
* not be made public if the other constructors for this class
* are ever exposed.
*
* @param rule the winding rule
* @param initialTypes the size to make the initial array to
* store the path segment types
* @since 1.6
*/
/* private protected */
Path2D(int rule, int initialTypes) {
setWindingRule(rule);
this.pointTypes = new byte[initialTypes];
}
abstract float[] cloneCoordsFloat(AffineTransform at);
abstract double[] cloneCoordsDouble(AffineTransform at);
abstract void append(float x, float y);
abstract void append(double x, double y);
abstract Point2D getPoint(int coordindex);
abstract void needRoom(boolean needMove, int newCoords);
abstract int pointCrossings(double px, double py);
abstract int rectCrossings(double rxmin, double rymin,
double rxmax, double rymax);
static byte[] expandPointTypes(byte[] oldPointTypes, int needed) {
final int oldSize = oldPointTypes.length;
final int newSizeMin = oldSize + needed;
if (newSizeMin < oldSize) {
// hard overflow failure - we can't even accommodate
// new items without overflowing
throw new ArrayIndexOutOfBoundsException(
"pointTypes exceeds maximum capacity !");
}
// growth algorithm computation
int grow = oldSize;
if (grow > EXPAND_MAX) {
grow = Math.max(EXPAND_MAX, oldSize >> 3); // 1/8th min
} else if (grow < EXPAND_MIN) {
grow = EXPAND_MIN;
}
assert grow > 0;
int newSize = oldSize + grow;
if (newSize < newSizeMin) {
// overflow in growth algorithm computation
newSize = Integer.MAX_VALUE;
}
while (true) {
try {
// try allocating the larger array
return Arrays.copyOf(oldPointTypes, newSize);
} catch (OutOfMemoryError oome) {
if (newSize == newSizeMin) {
throw oome;
}
}
newSize = newSizeMin + (newSize - newSizeMin) / 2;
}
}
/**
* The {@code Float} class defines a geometric path with
* coordinates stored in single precision floating point.
*
* @since 1.6
*/
public static class Float extends Path2D implements Serializable {
transient float[] floatCoords;
/**
* Constructs a new empty single precision {@code Path2D} object
* with a default winding rule of {@link #WIND_NON_ZERO}.
*
* @since 1.6
*/
public Float() {
this(WIND_NON_ZERO, INIT_SIZE);
}
/**
* Constructs a new empty single precision {@code Path2D} object
* with the specified winding rule to control operations that
* require the interior of the path to be defined.
*
* @param rule the winding rule
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @since 1.6
*/
public Float(int rule) {
this(rule, INIT_SIZE);
}
/**
* Constructs a new empty single precision {@code Path2D} object
* with the specified winding rule and the specified initial
* capacity to store path segments.
* This number is an initial guess as to how many path segments
* will be added to the path, but the storage is expanded as
* needed to store whatever path segments are added.
*
* @param rule the winding rule
* @param initialCapacity the estimate for the number of path segments
* in the path
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @since 1.6
*/
public Float(int rule, int initialCapacity) {
super(rule, initialCapacity);
floatCoords = new float[initialCapacity * 2];
}
/**
* Constructs a new single precision {@code Path2D} object
* from an arbitrary {@link Shape} object.
* All of the initial geometry and the winding rule for this path are
* taken from the specified {@code Shape} object.
*
* @param s the specified {@code Shape} object
* @since 1.6
*/
public Float(Shape s) {
this(s, null);
}
/**
* Constructs a new single precision {@code Path2D} object
* from an arbitrary {@link Shape} object, transformed by an
* {@link AffineTransform} object.
* All of the initial geometry and the winding rule for this path are
* taken from the specified {@code Shape} object and transformed
* by the specified {@code AffineTransform} object.
*
* @param s the specified {@code Shape} object
* @param at the specified {@code AffineTransform} object
* @since 1.6
*/
public Float(Shape s, AffineTransform at) {
if (s instanceof Path2D) {
Path2D p2d = (Path2D) s;
setWindingRule(p2d.windingRule);
this.numTypes = p2d.numTypes;
// trim arrays:
this.pointTypes = Arrays.copyOf(p2d.pointTypes, p2d.numTypes);
this.numCoords = p2d.numCoords;
this.floatCoords = p2d.cloneCoordsFloat(at);
} else {
PathIterator pi = s.getPathIterator(at);
setWindingRule(pi.getWindingRule());
this.pointTypes = new byte[INIT_SIZE];
this.floatCoords = new float[INIT_SIZE * 2];
append(pi, false);
}
}
@Override
public final void trimToSize() {
// trim arrays:
if (numTypes < pointTypes.length) {
this.pointTypes = Arrays.copyOf(pointTypes, numTypes);
}
if (numCoords < floatCoords.length) {
this.floatCoords = Arrays.copyOf(floatCoords, numCoords);
}
}
@Override
float[] cloneCoordsFloat(AffineTransform at) {
// trim arrays:
float[] ret;
if (at == null) {
ret = Arrays.copyOf(floatCoords, numCoords);
} else {
ret = new float[numCoords];
at.transform(floatCoords, 0, ret, 0, numCoords / 2);
}
return ret;
}
@Override
double[] cloneCoordsDouble(AffineTransform at) {
// trim arrays:
double[] ret = new double[numCoords];
if (at == null) {
for (int i = 0; i < numCoords; i++) {
ret[i] = floatCoords[i];
}
} else {
at.transform(floatCoords, 0, ret, 0, numCoords / 2);
}
return ret;
}
void append(float x, float y) {
floatCoords[numCoords++] = x;
floatCoords[numCoords++] = y;
}
void append(double x, double y) {
floatCoords[numCoords++] = (float) x;
floatCoords[numCoords++] = (float) y;
}
Point2D getPoint(int coordindex) {
return new Point2D.Float(floatCoords[coordindex],
floatCoords[coordindex+1]);
}
@Override
void needRoom(boolean needMove, int newCoords) {
if ((numTypes == 0) && needMove) {
throw new IllegalPathStateException("missing initial moveto "+
"in path definition");
}
if (numTypes >= pointTypes.length) {
pointTypes = expandPointTypes(pointTypes, 1);
}
if (numCoords > (floatCoords.length - newCoords)) {
floatCoords = expandCoords(floatCoords, newCoords);
}
}
static float[] expandCoords(float[] oldCoords, int needed) {
final int oldSize = oldCoords.length;
final int newSizeMin = oldSize + needed;
if (newSizeMin < oldSize) {
// hard overflow failure - we can't even accommodate
// new items without overflowing
throw new ArrayIndexOutOfBoundsException(
"coords exceeds maximum capacity !");
}
// growth algorithm computation
int grow = oldSize;
if (grow > EXPAND_MAX_COORDS) {
grow = Math.max(EXPAND_MAX_COORDS, oldSize >> 3); // 1/8th min
} else if (grow < EXPAND_MIN) {
grow = EXPAND_MIN;
}
assert grow > needed;
int newSize = oldSize + grow;
if (newSize < newSizeMin) {
// overflow in growth algorithm computation
newSize = Integer.MAX_VALUE;
}
while (true) {
try {
// try allocating the larger array
return Arrays.copyOf(oldCoords, newSize);
} catch (OutOfMemoryError oome) {
if (newSize == newSizeMin) {
throw oome;
}
}
newSize = newSizeMin + (newSize - newSizeMin) / 2;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void moveTo(double x, double y) {
if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) {
floatCoords[numCoords-2] = (float) x;
floatCoords[numCoords-1] = (float) y;
} else {
needRoom(false, 2);
pointTypes[numTypes++] = SEG_MOVETO;
floatCoords[numCoords++] = (float) x;
floatCoords[numCoords++] = (float) y;
}
}
/**
* Adds a point to the path by moving to the specified
* coordinates specified in float precision.
* <p>
* This method provides a single precision variant of
* the double precision {@code moveTo()} method on the
* base {@code Path2D} class.
*
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @see Path2D#moveTo
* @since 1.6
*/
public final synchronized void moveTo(float x, float y) {
if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) {
floatCoords[numCoords-2] = x;
floatCoords[numCoords-1] = y;
} else {
needRoom(false, 2);
pointTypes[numTypes++] = SEG_MOVETO;
floatCoords[numCoords++] = x;
floatCoords[numCoords++] = y;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void lineTo(double x, double y) {
needRoom(true, 2);
pointTypes[numTypes++] = SEG_LINETO;
floatCoords[numCoords++] = (float) x;
floatCoords[numCoords++] = (float) y;
}
/**
* Adds a point to the path by drawing a straight line from the
* current coordinates to the new specified coordinates
* specified in float precision.
* <p>
* This method provides a single precision variant of
* the double precision {@code lineTo()} method on the
* base {@code Path2D} class.
*
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @see Path2D#lineTo
* @since 1.6
*/
public final synchronized void lineTo(float x, float y) {
needRoom(true, 2);
pointTypes[numTypes++] = SEG_LINETO;
floatCoords[numCoords++] = x;
floatCoords[numCoords++] = y;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void quadTo(double x1, double y1,
double x2, double y2)
{
needRoom(true, 4);
pointTypes[numTypes++] = SEG_QUADTO;
floatCoords[numCoords++] = (float) x1;
floatCoords[numCoords++] = (float) y1;
floatCoords[numCoords++] = (float) x2;
floatCoords[numCoords++] = (float) y2;
}
/**
* Adds a curved segment, defined by two new points, to the path by
* drawing a Quadratic curve that intersects both the current
* coordinates and the specified coordinates {@code (x2,y2)},
* using the specified point {@code (x1,y1)} as a quadratic
* parametric control point.
* All coordinates are specified in float precision.
* <p>
* This method provides a single precision variant of
* the double precision {@code quadTo()} method on the
* base {@code Path2D} class.
*
* @param x1 the X coordinate of the quadratic control point
* @param y1 the Y coordinate of the quadratic control point
* @param x2 the X coordinate of the final end point
* @param y2 the Y coordinate of the final end point
* @see Path2D#quadTo
* @since 1.6
*/
public final synchronized void quadTo(float x1, float y1,
float x2, float y2)
{
needRoom(true, 4);
pointTypes[numTypes++] = SEG_QUADTO;
floatCoords[numCoords++] = x1;
floatCoords[numCoords++] = y1;
floatCoords[numCoords++] = x2;
floatCoords[numCoords++] = y2;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void curveTo(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
needRoom(true, 6);
pointTypes[numTypes++] = SEG_CUBICTO;
floatCoords[numCoords++] = (float) x1;
floatCoords[numCoords++] = (float) y1;
floatCoords[numCoords++] = (float) x2;
floatCoords[numCoords++] = (float) y2;
floatCoords[numCoords++] = (float) x3;
floatCoords[numCoords++] = (float) y3;
}
/**
* Adds a curved segment, defined by three new points, to the path by
* drawing a Bézier curve that intersects both the current
* coordinates and the specified coordinates {@code (x3,y3)},
* using the specified points {@code (x1,y1)} and {@code (x2,y2)} as
* Bézier control points.
* All coordinates are specified in float precision.
* <p>
* This method provides a single precision variant of
* the double precision {@code curveTo()} method on the
* base {@code Path2D} class.
*
* @param x1 the X coordinate of the first Bézier control point
* @param y1 the Y coordinate of the first Bézier control point
* @param x2 the X coordinate of the second Bézier control point
* @param y2 the Y coordinate of the second Bézier control point
* @param x3 the X coordinate of the final end point
* @param y3 the Y coordinate of the final end point
* @see Path2D#curveTo
* @since 1.6
*/
public final synchronized void curveTo(float x1, float y1,
float x2, float y2,
float x3, float y3)
{
needRoom(true, 6);
pointTypes[numTypes++] = SEG_CUBICTO;
floatCoords[numCoords++] = x1;
floatCoords[numCoords++] = y1;
floatCoords[numCoords++] = x2;
floatCoords[numCoords++] = y2;
floatCoords[numCoords++] = x3;
floatCoords[numCoords++] = y3;
}
int pointCrossings(double px, double py) {
if (numTypes == 0) {
return 0;
}
double movx, movy, curx, cury, endx, endy;
float[] coords = floatCoords;
curx = movx = coords[0];
cury = movy = coords[1];
int crossings = 0;
int ci = 2;
for (int i = 1; i < numTypes; i++) {
switch (pointTypes[i]) {
case PathIterator.SEG_MOVETO:
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
movx = curx = coords[ci++];
movy = cury = coords[ci++];
break;
case PathIterator.SEG_LINETO:
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
endx = coords[ci++],
endy = coords[ci++]);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_QUADTO:
crossings +=
Curve.pointCrossingsForQuad(px, py,
curx, cury,
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CUBICTO:
crossings +=
Curve.pointCrossingsForCubic(px, py,
curx, cury,
coords[ci++],
coords[ci++],
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CLOSE:
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
curx = movx;
cury = movy;
break;
}
}
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
return crossings;
}
int rectCrossings(double rxmin, double rymin,
double rxmax, double rymax)
{
if (numTypes == 0) {
return 0;
}
float[] coords = floatCoords;
double curx, cury, movx, movy, endx, endy;
curx = movx = coords[0];
cury = movy = coords[1];
int crossings = 0;
int ci = 2;
for (int i = 1;
crossings != Curve.RECT_INTERSECTS && i < numTypes;
i++)
{
switch (pointTypes[i]) {
case PathIterator.SEG_MOVETO:
if (curx != movx || cury != movy) {
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
movx = curx = coords[ci++];
movy = cury = coords[ci++];
break;
case PathIterator.SEG_LINETO:
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
endx = coords[ci++],
endy = coords[ci++]);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_QUADTO:
crossings =
Curve.rectCrossingsForQuad(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CUBICTO:
crossings =
Curve.rectCrossingsForCubic(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
coords[ci++],
coords[ci++],
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CLOSE:
if (curx != movx || cury != movy) {
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
curx = movx;
cury = movy;
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
break;
}
}
if (crossings != Curve.RECT_INTERSECTS &&
(curx != movx || cury != movy))
{
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
return crossings;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final void append(PathIterator pi, boolean connect) {
float[] coords = new float[6];
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case SEG_MOVETO:
if (!connect || numTypes < 1 || numCoords < 1) {
moveTo(coords[0], coords[1]);
break;
}
if (pointTypes[numTypes - 1] != SEG_CLOSE &&
floatCoords[numCoords-2] == coords[0] &&
floatCoords[numCoords-1] == coords[1])
{
// Collapse out initial moveto/lineto
break;
}
lineTo(coords[0], coords[1]);
break;
case SEG_LINETO:
lineTo(coords[0], coords[1]);
break;
case SEG_QUADTO:
quadTo(coords[0], coords[1],
coords[2], coords[3]);
break;
case SEG_CUBICTO:
curveTo(coords[0], coords[1],
coords[2], coords[3],
coords[4], coords[5]);
break;
case SEG_CLOSE:
closePath();
break;
}
pi.next();
connect = false;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final void transform(AffineTransform at) {
at.transform(floatCoords, 0, floatCoords, 0, numCoords / 2);
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized Rectangle2D getBounds2D() {
float x1, y1, x2, y2;
int i = numCoords;
if (i > 0) {
y1 = y2 = floatCoords[--i];
x1 = x2 = floatCoords[--i];
while (i > 0) {
float y = floatCoords[--i];
float x = floatCoords[--i];
if (x < x1) x1 = x;
if (y < y1) y1 = y;
if (x > x2) x2 = x;
if (y > y2) y2 = y;
}
} else {
x1 = y1 = x2 = y2 = 0.0f;
}
return new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1);
}
/**
* {@inheritDoc}
* <p>
* The iterator for this class is not multi-threaded safe,
* which means that the {@code Path2D} class does not
* guarantee that modifications to the geometry of this
* {@code Path2D} object do not affect any iterations of
* that geometry that are already in process.
*
* @since 1.6
*/
public final PathIterator getPathIterator(AffineTransform at) {
if (at == null) {
return new CopyIterator(this);
} else {
return new TxIterator(this, at);
}
}
/**
* Creates a new object of the same class as this object.
*
* @return a clone of this instance.
* @exception OutOfMemoryError if there is not enough memory.
* @see java.lang.Cloneable
* @since 1.6
*/
public final Object clone() {
// Note: It would be nice to have this return Path2D
// but one of our subclasses (GeneralPath) needs to
// offer "public Object clone()" for backwards
// compatibility so we cannot restrict it further.
// REMIND: Can we do both somehow?
if (this instanceof GeneralPath) {
return new GeneralPath(this);
} else {
return new Path2D.Float(this);
}
}
/*
* JDK 1.6 serialVersionUID
*/
private static final long serialVersionUID = 6990832515060788886L;
/**
* Writes the default serializable fields to the
* {@code ObjectOutputStream} followed by an explicit
* serialization of the path segments stored in this
* path.
*
* @serialData
* <ol>
* <li>The default serializable fields.
* There are no default serializable fields as of 1.6.
* <li>followed by
* a byte indicating the storage type of the original object
* as a hint (SERIAL_STORAGE_FLT_ARRAY)
* <li>followed by
* an integer indicating the number of path segments to follow (NP)
* or -1 to indicate an unknown number of path segments follows
* <li>followed by
* an integer indicating the total number of coordinates to follow (NC)
* or -1 to indicate an unknown number of coordinates follows
* (NC should always be even since coordinates always appear in pairs
* representing an x,y pair)
* <li>followed by
* a byte indicating the winding rule
* ({@link #WIND_EVEN_ODD WIND_EVEN_ODD} or
* {@link #WIND_NON_ZERO WIND_NON_ZERO})
* <li>followed by
* {@code NP} (or unlimited if {@code NP < 0}) sets of values consisting of
* a single byte indicating a path segment type
* followed by one or more pairs of float or double
* values representing the coordinates of the path segment
* <li>followed by
* a byte indicating the end of the path (SERIAL_PATH_END).
* </ol>
* <p>
* The following byte value constants are used in the serialized form
* of {@code Path2D} objects:
*
* <table class="striped">
* <caption>Constants</caption>
* <thead>
* <tr>
* <th scope="col">Constant Name</th>
* <th scope="col">Byte Value</th>
* <th scope="col">Followed by</th>
* <th scope="col">Description</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <th scope="row">{@code SERIAL_STORAGE_FLT_ARRAY}</th>
* <td>0x30</td>
* <td></td>
* <td>A hint that the original {@code Path2D} object stored
* the coordinates in a Java array of floats.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_STORAGE_DBL_ARRAY}</th>
* <td>0x31</td>
* <td></td>
* <td>A hint that the original {@code Path2D} object stored
* the coordinates in a Java array of doubles.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_MOVETO}</th>
* <td>0x40</td>
* <td>2 floats</td>
* <td>A {@link #moveTo moveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_LINETO}</th>
* <td>0x41</td>
* <td>2 floats</td>
* <td>A {@link #lineTo lineTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_QUADTO}</th>
* <td>0x42</td>
* <td>4 floats</td>
* <td>A {@link #quadTo quadTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_CUBICTO}</th>
* <td>0x43</td>
* <td>6 floats</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_MOVETO}</th>
* <td>0x50</td>
* <td>2 doubles</td>
* <td>A {@link #moveTo moveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_LINETO}</th>
* <td>0x51</td>
* <td>2 doubles</td>
* <td>A {@link #lineTo lineTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_QUADTO}</th>
* <td>0x52</td>
* <td>4 doubles</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_CUBICTO}</th>
* <td>0x53</td>
* <td>6 doubles</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_CLOSE}</th>
* <td>0x60</td>
* <td></td>
* <td>A {@link #closePath closePath} path segment.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_PATH_END}</th>
* <td>0x61</td>
* <td></td>
* <td>There are no more path segments following.</td>
* </tbody>
* </table>
*
* @since 1.6
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException
{
super.writeObject(s, false);
}
/**
* Reads the default serializable fields from the
* {@code ObjectInputStream} followed by an explicit
* serialization of the path segments stored in this
* path.
* <p>
* There are no default serializable fields as of 1.6.
* <p>
* The serial data for this object is described in the
* writeObject method.
*
* @since 1.6
*/
private void readObject(java.io.ObjectInputStream s)
throws java.lang.ClassNotFoundException, java.io.IOException
{
super.readObject(s, false);
}
static class CopyIterator extends Path2D.Iterator {
float[] floatCoords;
CopyIterator(Path2D.Float p2df) {
super(p2df);
this.floatCoords = p2df.floatCoords;
}
public int currentSegment(float[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
System.arraycopy(floatCoords, pointIdx,
coords, 0, numCoords);
}
return type;
}
public int currentSegment(double[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
for (int i = 0; i < numCoords; i++) {
coords[i] = floatCoords[pointIdx + i];
}
}
return type;
}
}
static class TxIterator extends Path2D.Iterator {
float[] floatCoords;
AffineTransform affine;
TxIterator(Path2D.Float p2df, AffineTransform at) {
super(p2df);
this.floatCoords = p2df.floatCoords;
this.affine = at;
}
public int currentSegment(float[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
affine.transform(floatCoords, pointIdx,
coords, 0, numCoords / 2);
}
return type;
}
public int currentSegment(double[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
affine.transform(floatCoords, pointIdx,
coords, 0, numCoords / 2);
}
return type;
}
}
}
/**
* The {@code Double} class defines a geometric path with
* coordinates stored in double precision floating point.
*
* @since 1.6
*/
public static class Double extends Path2D implements Serializable {
transient double[] doubleCoords;
/**
* Constructs a new empty double precision {@code Path2D} object
* with a default winding rule of {@link #WIND_NON_ZERO}.
*
* @since 1.6
*/
public Double() {
this(WIND_NON_ZERO, INIT_SIZE);
}
/**
* Constructs a new empty double precision {@code Path2D} object
* with the specified winding rule to control operations that
* require the interior of the path to be defined.
*
* @param rule the winding rule
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @since 1.6
*/
public Double(int rule) {
this(rule, INIT_SIZE);
}
/**
* Constructs a new empty double precision {@code Path2D} object
* with the specified winding rule and the specified initial
* capacity to store path segments.
* This number is an initial guess as to how many path segments
* are in the path, but the storage is expanded as needed to store
* whatever path segments are added to this path.
*
* @param rule the winding rule
* @param initialCapacity the estimate for the number of path segments
* in the path
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @since 1.6
*/
public Double(int rule, int initialCapacity) {
super(rule, initialCapacity);
doubleCoords = new double[initialCapacity * 2];
}
/**
* Constructs a new double precision {@code Path2D} object
* from an arbitrary {@link Shape} object.
* All of the initial geometry and the winding rule for this path are
* taken from the specified {@code Shape} object.
*
* @param s the specified {@code Shape} object
* @since 1.6
*/
public Double(Shape s) {
this(s, null);
}
/**
* Constructs a new double precision {@code Path2D} object
* from an arbitrary {@link Shape} object, transformed by an
* {@link AffineTransform} object.
* All of the initial geometry and the winding rule for this path are
* taken from the specified {@code Shape} object and transformed
* by the specified {@code AffineTransform} object.
*
* @param s the specified {@code Shape} object
* @param at the specified {@code AffineTransform} object
* @since 1.6
*/
public Double(Shape s, AffineTransform at) {
if (s instanceof Path2D) {
Path2D p2d = (Path2D) s;
setWindingRule(p2d.windingRule);
this.numTypes = p2d.numTypes;
// trim arrays:
this.pointTypes = Arrays.copyOf(p2d.pointTypes, p2d.numTypes);
this.numCoords = p2d.numCoords;
this.doubleCoords = p2d.cloneCoordsDouble(at);
} else {
PathIterator pi = s.getPathIterator(at);
setWindingRule(pi.getWindingRule());
this.pointTypes = new byte[INIT_SIZE];
this.doubleCoords = new double[INIT_SIZE * 2];
append(pi, false);
}
}
@Override
public final void trimToSize() {
// trim arrays:
if (numTypes < pointTypes.length) {
this.pointTypes = Arrays.copyOf(pointTypes, numTypes);
}
if (numCoords < doubleCoords.length) {
this.doubleCoords = Arrays.copyOf(doubleCoords, numCoords);
}
}
@Override
float[] cloneCoordsFloat(AffineTransform at) {
// trim arrays:
float[] ret = new float[numCoords];
if (at == null) {
for (int i = 0; i < numCoords; i++) {
ret[i] = (float) doubleCoords[i];
}
} else {
at.transform(doubleCoords, 0, ret, 0, numCoords / 2);
}
return ret;
}
@Override
double[] cloneCoordsDouble(AffineTransform at) {
// trim arrays:
double[] ret;
if (at == null) {
ret = Arrays.copyOf(doubleCoords, numCoords);
} else {
ret = new double[numCoords];
at.transform(doubleCoords, 0, ret, 0, numCoords / 2);
}
return ret;
}
void append(float x, float y) {
doubleCoords[numCoords++] = x;
doubleCoords[numCoords++] = y;
}
void append(double x, double y) {
doubleCoords[numCoords++] = x;
doubleCoords[numCoords++] = y;
}
Point2D getPoint(int coordindex) {
return new Point2D.Double(doubleCoords[coordindex],
doubleCoords[coordindex+1]);
}
@Override
void needRoom(boolean needMove, int newCoords) {
if ((numTypes == 0) && needMove) {
throw new IllegalPathStateException("missing initial moveto "+
"in path definition");
}
if (numTypes >= pointTypes.length) {
pointTypes = expandPointTypes(pointTypes, 1);
}
if (numCoords > (doubleCoords.length - newCoords)) {
doubleCoords = expandCoords(doubleCoords, newCoords);
}
}
static double[] expandCoords(double[] oldCoords, int needed) {
final int oldSize = oldCoords.length;
final int newSizeMin = oldSize + needed;
if (newSizeMin < oldSize) {
// hard overflow failure - we can't even accommodate
// new items without overflowing
throw new ArrayIndexOutOfBoundsException(
"coords exceeds maximum capacity !");
}
// growth algorithm computation
int grow = oldSize;
if (grow > EXPAND_MAX_COORDS) {
grow = Math.max(EXPAND_MAX_COORDS, oldSize >> 3); // 1/8th min
} else if (grow < EXPAND_MIN) {
grow = EXPAND_MIN;
}
assert grow > needed;
int newSize = oldSize + grow;
if (newSize < newSizeMin) {
// overflow in growth algorithm computation
newSize = Integer.MAX_VALUE;
}
while (true) {
try {
// try allocating the larger array
return Arrays.copyOf(oldCoords, newSize);
} catch (OutOfMemoryError oome) {
if (newSize == newSizeMin) {
throw oome;
}
}
newSize = newSizeMin + (newSize - newSizeMin) / 2;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void moveTo(double x, double y) {
if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) {
doubleCoords[numCoords-2] = x;
doubleCoords[numCoords-1] = y;
} else {
needRoom(false, 2);
pointTypes[numTypes++] = SEG_MOVETO;
doubleCoords[numCoords++] = x;
doubleCoords[numCoords++] = y;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void lineTo(double x, double y) {
needRoom(true, 2);
pointTypes[numTypes++] = SEG_LINETO;
doubleCoords[numCoords++] = x;
doubleCoords[numCoords++] = y;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void quadTo(double x1, double y1,
double x2, double y2)
{
needRoom(true, 4);
pointTypes[numTypes++] = SEG_QUADTO;
doubleCoords[numCoords++] = x1;
doubleCoords[numCoords++] = y1;
doubleCoords[numCoords++] = x2;
doubleCoords[numCoords++] = y2;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized void curveTo(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
needRoom(true, 6);
pointTypes[numTypes++] = SEG_CUBICTO;
doubleCoords[numCoords++] = x1;
doubleCoords[numCoords++] = y1;
doubleCoords[numCoords++] = x2;
doubleCoords[numCoords++] = y2;
doubleCoords[numCoords++] = x3;
doubleCoords[numCoords++] = y3;
}
int pointCrossings(double px, double py) {
if (numTypes == 0) {
return 0;
}
double movx, movy, curx, cury, endx, endy;
double[] coords = doubleCoords;
curx = movx = coords[0];
cury = movy = coords[1];
int crossings = 0;
int ci = 2;
for (int i = 1; i < numTypes; i++) {
switch (pointTypes[i]) {
case PathIterator.SEG_MOVETO:
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
movx = curx = coords[ci++];
movy = cury = coords[ci++];
break;
case PathIterator.SEG_LINETO:
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
endx = coords[ci++],
endy = coords[ci++]);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_QUADTO:
crossings +=
Curve.pointCrossingsForQuad(px, py,
curx, cury,
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CUBICTO:
crossings +=
Curve.pointCrossingsForCubic(px, py,
curx, cury,
coords[ci++],
coords[ci++],
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CLOSE:
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
curx = movx;
cury = movy;
break;
}
}
if (cury != movy) {
crossings +=
Curve.pointCrossingsForLine(px, py,
curx, cury,
movx, movy);
}
return crossings;
}
int rectCrossings(double rxmin, double rymin,
double rxmax, double rymax)
{
if (numTypes == 0) {
return 0;
}
double[] coords = doubleCoords;
double curx, cury, movx, movy, endx, endy;
curx = movx = coords[0];
cury = movy = coords[1];
int crossings = 0;
int ci = 2;
for (int i = 1;
crossings != Curve.RECT_INTERSECTS && i < numTypes;
i++)
{
switch (pointTypes[i]) {
case PathIterator.SEG_MOVETO:
if (curx != movx || cury != movy) {
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
movx = curx = coords[ci++];
movy = cury = coords[ci++];
break;
case PathIterator.SEG_LINETO:
endx = coords[ci++];
endy = coords[ci++];
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
endx, endy);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_QUADTO:
crossings =
Curve.rectCrossingsForQuad(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CUBICTO:
crossings =
Curve.rectCrossingsForCubic(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
coords[ci++],
coords[ci++],
coords[ci++],
coords[ci++],
endx = coords[ci++],
endy = coords[ci++],
0);
curx = endx;
cury = endy;
break;
case PathIterator.SEG_CLOSE:
if (curx != movx || cury != movy) {
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
curx = movx;
cury = movy;
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
break;
}
}
if (crossings != Curve.RECT_INTERSECTS &&
(curx != movx || cury != movy))
{
crossings =
Curve.rectCrossingsForLine(crossings,
rxmin, rymin,
rxmax, rymax,
curx, cury,
movx, movy);
}
// Count should always be a multiple of 2 here.
// assert((crossings & 1) != 0);
return crossings;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final void append(PathIterator pi, boolean connect) {
double[] coords = new double[6];
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case SEG_MOVETO:
if (!connect || numTypes < 1 || numCoords < 1) {
moveTo(coords[0], coords[1]);
break;
}
if (pointTypes[numTypes - 1] != SEG_CLOSE &&
doubleCoords[numCoords-2] == coords[0] &&
doubleCoords[numCoords-1] == coords[1])
{
// Collapse out initial moveto/lineto
break;
}
lineTo(coords[0], coords[1]);
break;
case SEG_LINETO:
lineTo(coords[0], coords[1]);
break;
case SEG_QUADTO:
quadTo(coords[0], coords[1],
coords[2], coords[3]);
break;
case SEG_CUBICTO:
curveTo(coords[0], coords[1],
coords[2], coords[3],
coords[4], coords[5]);
break;
case SEG_CLOSE:
closePath();
break;
}
pi.next();
connect = false;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final void transform(AffineTransform at) {
at.transform(doubleCoords, 0, doubleCoords, 0, numCoords / 2);
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final synchronized Rectangle2D getBounds2D() {
double x1, y1, x2, y2;
int i = numCoords;
if (i > 0) {
y1 = y2 = doubleCoords[--i];
x1 = x2 = doubleCoords[--i];
while (i > 0) {
double y = doubleCoords[--i];
double x = doubleCoords[--i];
if (x < x1) x1 = x;
if (y < y1) y1 = y;
if (x > x2) x2 = x;
if (y > y2) y2 = y;
}
} else {
x1 = y1 = x2 = y2 = 0.0;
}
return new Rectangle2D.Double(x1, y1, x2 - x1, y2 - y1);
}
/**
* {@inheritDoc}
* <p>
* The iterator for this class is not multi-threaded safe,
* which means that the {@code Path2D} class does not
* guarantee that modifications to the geometry of this
* {@code Path2D} object do not affect any iterations of
* that geometry that are already in process.
*
* @param at an {@code AffineTransform}
* @return a new {@code PathIterator} that iterates along the boundary
* of this {@code Shape} and provides access to the geometry
* of this {@code Shape}'s outline
* @since 1.6
*/
public final PathIterator getPathIterator(AffineTransform at) {
if (at == null) {
return new CopyIterator(this);
} else {
return new TxIterator(this, at);
}
}
/**
* Creates a new object of the same class as this object.
*
* @return a clone of this instance.
* @exception OutOfMemoryError if there is not enough memory.
* @see java.lang.Cloneable
* @since 1.6
*/
public final Object clone() {
// Note: It would be nice to have this return Path2D
// but one of our subclasses (GeneralPath) needs to
// offer "public Object clone()" for backwards
// compatibility so we cannot restrict it further.
// REMIND: Can we do both somehow?
return new Path2D.Double(this);
}
/*
* JDK 1.6 serialVersionUID
*/
private static final long serialVersionUID = 1826762518450014216L;
/**
* Writes the default serializable fields to the
* {@code ObjectOutputStream} followed by an explicit
* serialization of the path segments stored in this
* path.
*
* @serialData
* <ol>
* <li>The default serializable fields.
* There are no default serializable fields as of 1.6.
* <li>followed by
* a byte indicating the storage type of the original object
* as a hint (SERIAL_STORAGE_DBL_ARRAY)
* <li>followed by
* an integer indicating the number of path segments to follow (NP)
* or -1 to indicate an unknown number of path segments follows
* <li>followed by
* an integer indicating the total number of coordinates to follow (NC)
* or -1 to indicate an unknown number of coordinates follows
* (NC should always be even since coordinates always appear in pairs
* representing an x,y pair)
* <li>followed by
* a byte indicating the winding rule
* ({@link #WIND_EVEN_ODD WIND_EVEN_ODD} or
* {@link #WIND_NON_ZERO WIND_NON_ZERO})
* <li>followed by
* {@code NP} (or unlimited if {@code NP < 0}) sets of values consisting of
* a single byte indicating a path segment type
* followed by one or more pairs of float or double
* values representing the coordinates of the path segment
* <li>followed by
* a byte indicating the end of the path (SERIAL_PATH_END).
* </ol>
* <p>
* The following byte value constants are used in the serialized form
* of {@code Path2D} objects:
* <table class="striped">
* <caption>Constants</caption>
* <thead>
* <tr>
* <th scope="col">Constant Name</th>
* <th scope="col">Byte Value</th>
* <th scope="col">Followed by</th>
* <th scope="col">Description</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <th scope="row">{@code SERIAL_STORAGE_FLT_ARRAY}</th>
* <td>0x30</td>
* <td></td>
* <td>A hint that the original {@code Path2D} object stored
* the coordinates in a Java array of floats.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_STORAGE_DBL_ARRAY}</th>
* <td>0x31</td>
* <td></td>
* <td>A hint that the original {@code Path2D} object stored
* the coordinates in a Java array of doubles.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_MOVETO}</th>
* <td>0x40</td>
* <td>2 floats</td>
* <td>A {@link #moveTo moveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_LINETO}</th>
* <td>0x41</td>
* <td>2 floats</td>
* <td>A {@link #lineTo lineTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_QUADTO}</th>
* <td>0x42</td>
* <td>4 floats</td>
* <td>A {@link #quadTo quadTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_FLT_CUBICTO}</th>
* <td>0x43</td>
* <td>6 floats</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_MOVETO}</th>
* <td>0x50</td>
* <td>2 doubles</td>
* <td>A {@link #moveTo moveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_LINETO}</th>
* <td>0x51</td>
* <td>2 doubles</td>
* <td>A {@link #lineTo lineTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_QUADTO}</th>
* <td>0x52</td>
* <td>4 doubles</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_DBL_CUBICTO}</th>
* <td>0x53</td>
* <td>6 doubles</td>
* <td>A {@link #curveTo curveTo} path segment follows.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_SEG_CLOSE}</th>
* <td>0x60</td>
* <td></td>
* <td>A {@link #closePath closePath} path segment.</td>
* </tr>
* <tr>
* <th scope="row">{@code SERIAL_PATH_END}</th>
* <td>0x61</td>
* <td></td>
* <td>There are no more path segments following.</td>
* </tbody>
* </table>
*
* @since 1.6
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException
{
super.writeObject(s, true);
}
/**
* Reads the default serializable fields from the
* {@code ObjectInputStream} followed by an explicit
* serialization of the path segments stored in this
* path.
* <p>
* There are no default serializable fields as of 1.6.
* <p>
* The serial data for this object is described in the
* writeObject method.
*
* @since 1.6
*/
private void readObject(java.io.ObjectInputStream s)
throws java.lang.ClassNotFoundException, java.io.IOException
{
super.readObject(s, true);
}
static class CopyIterator extends Path2D.Iterator {
double[] doubleCoords;
CopyIterator(Path2D.Double p2dd) {
super(p2dd);
this.doubleCoords = p2dd.doubleCoords;
}
public int currentSegment(float[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
for (int i = 0; i < numCoords; i++) {
coords[i] = (float) doubleCoords[pointIdx + i];
}
}
return type;
}
public int currentSegment(double[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
System.arraycopy(doubleCoords, pointIdx,
coords, 0, numCoords);
}
return type;
}
}
static class TxIterator extends Path2D.Iterator {
double[] doubleCoords;
AffineTransform affine;
TxIterator(Path2D.Double p2dd, AffineTransform at) {
super(p2dd);
this.doubleCoords = p2dd.doubleCoords;
this.affine = at;
}
public int currentSegment(float[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
affine.transform(doubleCoords, pointIdx,
coords, 0, numCoords / 2);
}
return type;
}
public int currentSegment(double[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
affine.transform(doubleCoords, pointIdx,
coords, 0, numCoords / 2);
}
return type;
}
}
}
/**
* Adds a point to the path by moving to the specified
* coordinates specified in double precision.
*
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @since 1.6
*/
public abstract void moveTo(double x, double y);
/**
* Adds a point to the path by drawing a straight line from the
* current coordinates to the new specified coordinates
* specified in double precision.
*
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @since 1.6
*/
public abstract void lineTo(double x, double y);
/**
* Adds a curved segment, defined by two new points, to the path by
* drawing a Quadratic curve that intersects both the current
* coordinates and the specified coordinates {@code (x2,y2)},
* using the specified point {@code (x1,y1)} as a quadratic
* parametric control point.
* All coordinates are specified in double precision.
*
* @param x1 the X coordinate of the quadratic control point
* @param y1 the Y coordinate of the quadratic control point
* @param x2 the X coordinate of the final end point
* @param y2 the Y coordinate of the final end point
* @since 1.6
*/
public abstract void quadTo(double x1, double y1,
double x2, double y2);
/**
* Adds a curved segment, defined by three new points, to the path by
* drawing a Bézier curve that intersects both the current
* coordinates and the specified coordinates {@code (x3,y3)},
* using the specified points {@code (x1,y1)} and {@code (x2,y2)} as
* Bézier control points.
* All coordinates are specified in double precision.
*
* @param x1 the X coordinate of the first Bézier control point
* @param y1 the Y coordinate of the first Bézier control point
* @param x2 the X coordinate of the second Bézier control point
* @param y2 the Y coordinate of the second Bézier control point
* @param x3 the X coordinate of the final end point
* @param y3 the Y coordinate of the final end point
* @since 1.6
*/
public abstract void curveTo(double x1, double y1,
double x2, double y2,
double x3, double y3);
/**
* Closes the current subpath by drawing a straight line back to
* the coordinates of the last {@code moveTo}. If the path is already
* closed then this method has no effect.
*
* @since 1.6
*/
public final synchronized void closePath() {
if (numTypes == 0 || pointTypes[numTypes - 1] != SEG_CLOSE) {
needRoom(true, 0);
pointTypes[numTypes++] = SEG_CLOSE;
}
}
/**
* Appends the geometry of the specified {@code Shape} object to the
* path, possibly connecting the new geometry to the existing path
* segments with a line segment.
* If the {@code connect} parameter is {@code true} and the
* path is not empty then any initial {@code moveTo} in the
* geometry of the appended {@code Shape}
* is turned into a {@code lineTo} segment.
* If the destination coordinates of such a connecting {@code lineTo}
* segment match the ending coordinates of a currently open
* subpath then the segment is omitted as superfluous.
* The winding rule of the specified {@code Shape} is ignored
* and the appended geometry is governed by the winding
* rule specified for this path.
*
* @param s the {@code Shape} whose geometry is appended
* to this path
* @param connect a boolean to control whether or not to turn an initial
* {@code moveTo} segment into a {@code lineTo} segment
* to connect the new geometry to the existing path
* @since 1.6
*/
public final void append(Shape s, boolean connect) {
append(s.getPathIterator(null), connect);
}
/**
* Appends the geometry of the specified
* {@link PathIterator} object
* to the path, possibly connecting the new geometry to the existing
* path segments with a line segment.
* If the {@code connect} parameter is {@code true} and the
* path is not empty then any initial {@code moveTo} in the
* geometry of the appended {@code Shape} is turned into a
* {@code lineTo} segment.
* If the destination coordinates of such a connecting {@code lineTo}
* segment match the ending coordinates of a currently open
* subpath then the segment is omitted as superfluous.
* The winding rule of the specified {@code Shape} is ignored
* and the appended geometry is governed by the winding
* rule specified for this path.
*
* @param pi the {@code PathIterator} whose geometry is appended to
* this path
* @param connect a boolean to control whether or not to turn an initial
* {@code moveTo} segment into a {@code lineTo} segment
* to connect the new geometry to the existing path
* @since 1.6
*/
public abstract void append(PathIterator pi, boolean connect);
/**
* Returns the fill style winding rule.
*
* @return an integer representing the current winding rule.
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @see #setWindingRule
* @since 1.6
*/
public final synchronized int getWindingRule() {
return windingRule;
}
/**
* Sets the winding rule for this path to the specified value.
*
* @param rule an integer representing the specified
* winding rule
* @exception IllegalArgumentException if
* {@code rule} is not either
* {@link #WIND_EVEN_ODD} or
* {@link #WIND_NON_ZERO}
* @see #getWindingRule
* @since 1.6
*/
public final void setWindingRule(int rule) {
if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) {
throw new IllegalArgumentException("winding rule must be "+
"WIND_EVEN_ODD or "+
"WIND_NON_ZERO");
}
windingRule = rule;
}
/**
* Returns the coordinates most recently added to the end of the path
* as a {@link Point2D} object.
*
* @return a {@code Point2D} object containing the ending coordinates of
* the path or {@code null} if there are no points in the path.
* @since 1.6
*/
public final synchronized Point2D getCurrentPoint() {
int index = numCoords;
if (numTypes < 1 || index < 1) {
return null;
}
if (pointTypes[numTypes - 1] == SEG_CLOSE) {
loop:
for (int i = numTypes - 2; i > 0; i--) {
switch (pointTypes[i]) {
case SEG_MOVETO:
break loop;
case SEG_LINETO:
index -= 2;
break;
case SEG_QUADTO:
index -= 4;
break;
case SEG_CUBICTO:
index -= 6;
break;
case SEG_CLOSE:
break;
}
}
}
return getPoint(index - 2);
}
/**
* Resets the path to empty. The append position is set back to the
* beginning of the path and all coordinates and point types are
* forgotten.
*
* @since 1.6
*/
public final synchronized void reset() {
numTypes = numCoords = 0;
}
/**
* Transforms the geometry of this path using the specified
* {@link AffineTransform}.
* The geometry is transformed in place, which permanently changes the
* boundary defined by this object.
*
* @param at the {@code AffineTransform} used to transform the area
* @since 1.6
*/
public abstract void transform(AffineTransform at);
/**
* Returns a new {@code Shape} representing a transformed version
* of this {@code Path2D}.
* Note that the exact type and coordinate precision of the return
* value is not specified for this method.
* The method will return a Shape that contains no less precision
* for the transformed geometry than this {@code Path2D} currently
* maintains, but it may contain no more precision either.
* If the tradeoff of precision vs. storage size in the result is
* important then the convenience constructors in the
* {@link Path2D.Float#Float(Shape, AffineTransform) Path2D.Float}
* and
* {@link Path2D.Double#Double(Shape, AffineTransform) Path2D.Double}
* subclasses should be used to make the choice explicit.
*
* @param at the {@code AffineTransform} used to transform a
* new {@code Shape}.
* @return a new {@code Shape}, transformed with the specified
* {@code AffineTransform}.
* @since 1.6
*/
public final synchronized Shape createTransformedShape(AffineTransform at) {
Path2D p2d = (Path2D) clone();
if (at != null) {
p2d.transform(at);
}
return p2d;
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final Rectangle getBounds() {
return getBounds2D().getBounds();
}
/**
* Tests if the specified coordinates are inside the closed
* boundary of the specified {@link PathIterator}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#contains(double, double)} method.
*
* @param pi the specified {@code PathIterator}
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @return {@code true} if the specified coordinates are inside the
* specified {@code PathIterator}; {@code false} otherwise
* @since 1.6
*/
public static boolean contains(PathIterator pi, double x, double y) {
if (x * 0.0 + y * 0.0 == 0.0) {
/* N * 0.0 is 0.0 only if N is finite.
* Here we know that both x and y are finite.
*/
int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 1);
int cross = Curve.pointCrossingsForPath(pi, x, y);
return ((cross & mask) != 0);
} else {
/* Either x or y was infinite or NaN.
* A NaN always produces a negative response to any test
* and Infinity values cannot be "inside" any path so
* they should return false as well.
*/
return false;
}
}
/**
* Tests if the specified {@link Point2D} is inside the closed
* boundary of the specified {@link PathIterator}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#contains(Point2D)} method.
*
* @param pi the specified {@code PathIterator}
* @param p the specified {@code Point2D}
* @return {@code true} if the specified coordinates are inside the
* specified {@code PathIterator}; {@code false} otherwise
* @since 1.6
*/
public static boolean contains(PathIterator pi, Point2D p) {
return contains(pi, p.getX(), p.getY());
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final boolean contains(double x, double y) {
if (x * 0.0 + y * 0.0 == 0.0) {
/* N * 0.0 is 0.0 only if N is finite.
* Here we know that both x and y are finite.
*/
if (numTypes < 2) {
return false;
}
int mask = (windingRule == WIND_NON_ZERO ? -1 : 1);
return ((pointCrossings(x, y) & mask) != 0);
} else {
/* Either x or y was infinite or NaN.
* A NaN always produces a negative response to any test
* and Infinity values cannot be "inside" any path so
* they should return false as well.
*/
return false;
}
}
/**
* {@inheritDoc}
* @since 1.6
*/
public final boolean contains(Point2D p) {
return contains(p.getX(), p.getY());
}
/**
* Tests if the specified rectangular area is entirely inside the
* closed boundary of the specified {@link PathIterator}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#contains(double, double, double, double)} method.
* <p>
* This method object may conservatively return false in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such segments could lie entirely within the interior of the
* path if they are part of a path with a {@link #WIND_NON_ZERO}
* winding rule or if the segments are retraced in the reverse
* direction such that the two sets of segments cancel each
* other out without any exterior area falling between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @param pi the specified {@code PathIterator}
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @param w the width of the specified rectangular area
* @param h the height of the specified rectangular area
* @return {@code true} if the specified {@code PathIterator} contains
* the specified rectangular area; {@code false} otherwise.
* @since 1.6
*/
public static boolean contains(PathIterator pi,
double x, double y, double w, double h)
{
if (java.lang.Double.isNaN(x+w) || java.lang.Double.isNaN(y+h)) {
/* [xy]+[wh] is NaN if any of those values are NaN,
* or if adding the two together would produce NaN
* by virtue of adding opposing Infinte values.
* Since we need to add them below, their sum must
* not be NaN.
* We return false because NaN always produces a
* negative response to tests
*/
return false;
}
if (w <= 0 || h <= 0) {
return false;
}
int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2);
int crossings = Curve.rectCrossingsForPath(pi, x, y, x+w, y+h);
return (crossings != Curve.RECT_INTERSECTS &&
(crossings & mask) != 0);
}
/**
* Tests if the specified {@link Rectangle2D} is entirely inside the
* closed boundary of the specified {@link PathIterator}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#contains(Rectangle2D)} method.
* <p>
* This method object may conservatively return false in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such segments could lie entirely within the interior of the
* path if they are part of a path with a {@link #WIND_NON_ZERO}
* winding rule or if the segments are retraced in the reverse
* direction such that the two sets of segments cancel each
* other out without any exterior area falling between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @param pi the specified {@code PathIterator}
* @param r a specified {@code Rectangle2D}
* @return {@code true} if the specified {@code PathIterator} contains
* the specified {@code Rectangle2D}; {@code false} otherwise.
* @since 1.6
*/
public static boolean contains(PathIterator pi, Rectangle2D r) {
return contains(pi, r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* {@inheritDoc}
* <p>
* This method object may conservatively return false in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such segments could lie entirely within the interior of the
* path if they are part of a path with a {@link #WIND_NON_ZERO}
* winding rule or if the segments are retraced in the reverse
* direction such that the two sets of segments cancel each
* other out without any exterior area falling between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @since 1.6
*/
public final boolean contains(double x, double y, double w, double h) {
if (java.lang.Double.isNaN(x+w) || java.lang.Double.isNaN(y+h)) {
/* [xy]+[wh] is NaN if any of those values are NaN,
* or if adding the two together would produce NaN
* by virtue of adding opposing Infinte values.
* Since we need to add them below, their sum must
* not be NaN.
* We return false because NaN always produces a
* negative response to tests
*/
return false;
}
if (w <= 0 || h <= 0) {
return false;
}
int mask = (windingRule == WIND_NON_ZERO ? -1 : 2);
int crossings = rectCrossings(x, y, x+w, y+h);
return (crossings != Curve.RECT_INTERSECTS &&
(crossings & mask) != 0);
}
/**
* {@inheritDoc}
* <p>
* This method object may conservatively return false in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such segments could lie entirely within the interior of the
* path if they are part of a path with a {@link #WIND_NON_ZERO}
* winding rule or if the segments are retraced in the reverse
* direction such that the two sets of segments cancel each
* other out without any exterior area falling between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @since 1.6
*/
public final boolean contains(Rectangle2D r) {
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* Tests if the interior of the specified {@link PathIterator}
* intersects the interior of a specified set of rectangular
* coordinates.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#intersects(double, double, double, double)} method.
* <p>
* This method object may conservatively return true in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such a case may occur if some set of segments of the
* path are retraced in the reverse direction such that the
* two sets of segments cancel each other out without any
* interior area between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @param pi the specified {@code PathIterator}
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @param w the width of the specified rectangular coordinates
* @param h the height of the specified rectangular coordinates
* @return {@code true} if the specified {@code PathIterator} and
* the interior of the specified set of rectangular
* coordinates intersect each other; {@code false} otherwise.
* @since 1.6
*/
public static boolean intersects(PathIterator pi,
double x, double y, double w, double h)
{
if (java.lang.Double.isNaN(x+w) || java.lang.Double.isNaN(y+h)) {
/* [xy]+[wh] is NaN if any of those values are NaN,
* or if adding the two together would produce NaN
* by virtue of adding opposing Infinte values.
* Since we need to add them below, their sum must
* not be NaN.
* We return false because NaN always produces a
* negative response to tests
*/
return false;
}
if (w <= 0 || h <= 0) {
return false;
}
int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2);
int crossings = Curve.rectCrossingsForPath(pi, x, y, x+w, y+h);
return (crossings == Curve.RECT_INTERSECTS ||
(crossings & mask) != 0);
}
/**
* Tests if the interior of the specified {@link PathIterator}
* intersects the interior of a specified {@link Rectangle2D}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#intersects(Rectangle2D)} method.
* <p>
* This method object may conservatively return true in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such a case may occur if some set of segments of the
* path are retraced in the reverse direction such that the
* two sets of segments cancel each other out without any
* interior area between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @param pi the specified {@code PathIterator}
* @param r the specified {@code Rectangle2D}
* @return {@code true} if the specified {@code PathIterator} and
* the interior of the specified {@code Rectangle2D}
* intersect each other; {@code false} otherwise.
* @since 1.6
*/
public static boolean intersects(PathIterator pi, Rectangle2D r) {
return intersects(pi, r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* {@inheritDoc}
* <p>
* This method object may conservatively return true in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such a case may occur if some set of segments of the
* path are retraced in the reverse direction such that the
* two sets of segments cancel each other out without any
* interior area between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @since 1.6
*/
public final boolean intersects(double x, double y, double w, double h) {
if (java.lang.Double.isNaN(x+w) || java.lang.Double.isNaN(y+h)) {
/**代码未完, 请加载全部代码(NowJava.com).**/