京东自营 + 国补 iPhone 历史最低价          国家补贴 享8折

JDK14/Java14源码在线阅读

/*
 * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package jdk.internal.misc;

import jdk.internal.HotSpotIntrinsicCandidate;
import jdk.internal.ref.Cleaner;
import jdk.internal.vm.annotation.ForceInline;
import sun.nio.ch.DirectBuffer;

import java.lang.reflect.Field;
import java.security.ProtectionDomain;

import static jdk.internal.misc.UnsafeConstants.*;

/**
 * A collection of methods for performing low-level, unsafe operations.
 * Although the class and all methods are public, use of this class is
 * limited because only trusted code can obtain instances of it.
 *
 * <em>Note:</em> It is the resposibility of the caller to make sure
 * arguments are checked before methods of this class are
 * called. While some rudimentary checks are performed on the input,
 * the checks are best effort and when performance is an overriding
 * priority, as when methods of this class are optimized by the
 * runtime compiler, some or all checks (if any) may be elided. Hence,
 * the caller must not rely on the checks and corresponding
 * exceptions!
 *
 * @author John R. Rose
 * @see #getUnsafe
 */

public final class Unsafe {

    private static native void registerNatives();
    static {
        registerNatives();
    }

    private Unsafe() {}

    private static final Unsafe theUnsafe = new Unsafe();

    /**
     * Provides the caller with the capability of performing unsafe
     * operations.
     *
     * <p>The returned {@code Unsafe} object should be carefully guarded
     * by the caller, since it can be used to read and write data at arbitrary
     * memory addresses.  It must never be passed to untrusted code.
     *
     * <p>Most methods in this class are very low-level, and correspond to a
     * small number of hardware instructions (on typical machines).  Compilers
     * are encouraged to optimize these methods accordingly.
     *
     * <p>Here is a suggested idiom for using unsafe operations:
     *
     * <pre> {@code
     * class MyTrustedClass {
     *   private static final Unsafe unsafe = Unsafe.getUnsafe();
     *   ...
     *   private long myCountAddress = ...;
     *   public int getCount() { return unsafe.getByte(myCountAddress); }
     * }}</pre>
     *
     * (It may assist compilers to make the local variable {@code final}.)
     */
    public static Unsafe getUnsafe() {
        return theUnsafe;
    }

    /// peek and poke operations
    /// (compilers should optimize these to memory ops)

    // These work on object fields in the Java heap.
    // They will not work on elements of packed arrays.

    /**
     * Fetches a value from a given Java variable.
     * More specifically, fetches a field or array element within the given
     * object {@code o} at the given offset, or (if {@code o} is null)
     * from the memory address whose numerical value is the given offset.
     * <p>
     * The results are undefined unless one of the following cases is true:
     * <ul>
     * <li>The offset was obtained from {@link #objectFieldOffset} on
     * the {@link java.lang.reflect.Field} of some Java field and the object
     * referred to by {@code o} is of a class compatible with that
     * field's class.
     *
     * <li>The offset and object reference {@code o} (either null or
     * non-null) were both obtained via {@link #staticFieldOffset}
     * and {@link #staticFieldBase} (respectively) from the
     * reflective {@link Field} representation of some Java field.
     *
     * <li>The object referred to by {@code o} is an array, and the offset
     * is an integer of the form {@code B+N*S}, where {@code N} is
     * a valid index into the array, and {@code B} and {@code S} are
     * the values obtained by {@link #arrayBaseOffset} and {@link
     * #arrayIndexScale} (respectively) from the array's class.  The value
     * referred to is the {@code N}<em>th</em> element of the array.
     *
     * </ul>
     * <p>
     * If one of the above cases is true, the call references a specific Java
     * variable (field or array element).  However, the results are undefined
     * if that variable is not in fact of the type returned by this method.
     * <p>
     * This method refers to a variable by means of two parameters, and so
     * it provides (in effect) a <em>double-register</em> addressing mode
     * for Java variables.  When the object reference is null, this method
     * uses its offset as an absolute address.  This is similar in operation
     * to methods such as {@link #getInt(long)}, which provide (in effect) a
     * <em>single-register</em> addressing mode for non-Java variables.
     * However, because Java variables may have a different layout in memory
     * from non-Java variables, programmers should not assume that these
     * two addressing modes are ever equivalent.  Also, programmers should
     * remember that offsets from the double-register addressing mode cannot
     * be portably confused with longs used in the single-register addressing
     * mode.
     *
     * @param o Java heap object in which the variable resides, if any, else
     *        null
     * @param offset indication of where the variable resides in a Java heap
     *        object, if any, else a memory address locating the variable
     *        statically
     * @return the value fetched from the indicated Java variable
     * @throws RuntimeException No defined exceptions are thrown, not even
     *         {@link NullPointerException}
     */
    @HotSpotIntrinsicCandidate
    public native int getInt(Object o, long offset);

    /**
     * Stores a value into a given Java variable.
     * <p>
     * The first two parameters are interpreted exactly as with
     * {@link #getInt(Object, long)} to refer to a specific
     * Java variable (field or array element).  The given value
     * is stored into that variable.
     * <p>
     * The variable must be of the same type as the method
     * parameter {@code x}.
     *
     * @param o Java heap object in which the variable resides, if any, else
     *        null
     * @param offset indication of where the variable resides in a Java heap
     *        object, if any, else a memory address locating the variable
     *        statically
     * @param x the value to store into the indicated Java variable
     * @throws RuntimeException No defined exceptions are thrown, not even
     *         {@link NullPointerException}
     */
    @HotSpotIntrinsicCandidate
    public native void putInt(Object o, long offset, int x);

    /**
     * Fetches a reference value from a given Java variable.
     * @see #getInt(Object, long)
     */
    @HotSpotIntrinsicCandidate
    public native Object getReference(Object o, long offset);

    /**
     * Stores a reference value into a given Java variable.
     * <p>
     * Unless the reference {@code x} being stored is either null
     * or matches the field type, the results are undefined.
     * If the reference {@code o} is non-null, card marks or
     * other store barriers for that object (if the VM requires them)
     * are updated.
     * @see #putInt(Object, long, int)
     */
    @HotSpotIntrinsicCandidate
    public native void putReference(Object o, long offset, Object x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native boolean getBoolean(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putBoolean(Object o, long offset, boolean x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native byte    getByte(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putByte(Object o, long offset, byte x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native short   getShort(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putShort(Object o, long offset, short x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native char    getChar(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putChar(Object o, long offset, char x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native long    getLong(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putLong(Object o, long offset, long x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native float   getFloat(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putFloat(Object o, long offset, float x);

    /** @see #getInt(Object, long) */
    @HotSpotIntrinsicCandidate
    public native double  getDouble(Object o, long offset);

    /** @see #putInt(Object, long, int) */
    @HotSpotIntrinsicCandidate
    public native void    putDouble(Object o, long offset, double x);

    /**
     * Fetches a native pointer from a given memory address.  If the address is
     * zero, or does not point into a block obtained from {@link
     * #allocateMemory}, the results are undefined.
     *
     * <p>If the native pointer is less than 64 bits wide, it is extended as
     * an unsigned number to a Java long.  The pointer may be indexed by any
     * given byte offset, simply by adding that offset (as a simple integer) to
     * the long representing the pointer.  The number of bytes actually read
     * from the target address may be determined by consulting {@link
     * #addressSize}.
     *
     * @see #allocateMemory
     * @see #getInt(Object, long)
     */
    @ForceInline
    public long getAddress(Object o, long offset) {
        if (ADDRESS_SIZE == 4) {
            return Integer.toUnsignedLong(getInt(o, offset));
        } else {
            return getLong(o, offset);
        }
    }

    /**
     * Stores a native pointer into a given memory address.  If the address is
     * zero, or does not point into a block obtained from {@link
     * #allocateMemory}, the results are undefined.
     *
     * <p>The number of bytes actually written at the target address may be
     * determined by consulting {@link #addressSize}.
     *
     * @see #allocateMemory
     * @see #putInt(Object, long, int)
     */
    @ForceInline
    public void putAddress(Object o, long offset, long x) {
        if (ADDRESS_SIZE == 4) {
            putInt(o, offset, (int)x);
        } else {
            putLong(o, offset, x);
        }
    }

    // These read VM internal data.

    /**
     * Fetches an uncompressed reference value from a given native variable
     * ignoring the VM's compressed references mode.
     *
     * @param address a memory address locating the variable
     * @return the value fetched from the indicated native variable
     */
    public native Object getUncompressedObject(long address);

    // These work on values in the C heap.

    /**
     * Fetches a value from a given memory address.  If the address is zero, or
     * does not point into a block obtained from {@link #allocateMemory}, the
     * results are undefined.
     *
     * @see #allocateMemory
     */
    @ForceInline
    public byte getByte(long address) {
        return getByte(null, address);
    }

    /**
     * Stores a value into a given memory address.  If the address is zero, or
     * does not point into a block obtained from {@link #allocateMemory}, the
     * results are undefined.
     *
     * @see #getByte(long)
     */
    @ForceInline
    public void putByte(long address, byte x) {
        putByte(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public short getShort(long address) {
        return getShort(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putShort(long address, short x) {
        putShort(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public char getChar(long address) {
        return getChar(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putChar(long address, char x) {
        putChar(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public int getInt(long address) {
        return getInt(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putInt(long address, int x) {
        putInt(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public long getLong(long address) {
        return getLong(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putLong(long address, long x) {
        putLong(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public float getFloat(long address) {
        return getFloat(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putFloat(long address, float x) {
        putFloat(null, address, x);
    }

    /** @see #getByte(long) */
    @ForceInline
    public double getDouble(long address) {
        return getDouble(null, address);
    }

    /** @see #putByte(long, byte) */
    @ForceInline
    public void putDouble(long address, double x) {
        putDouble(null, address, x);
    }

    /** @see #getAddress(Object, long) */
    @ForceInline
    public long getAddress(long address) {
        return getAddress(null, address);
    }

    /** @see #putAddress(Object, long, long) */
    @ForceInline
    public void putAddress(long address, long x) {
        putAddress(null, address, x);
    }



    /// helper methods for validating various types of objects/values

    /**
     * Create an exception reflecting that some of the input was invalid
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @return an exception object
     */
    private RuntimeException invalidInput() {
        return new IllegalArgumentException();
    }

    /**
     * Check if a value is 32-bit clean (32 MSB are all zero)
     *
     * @param value the 64-bit value to check
     *
     * @return true if the value is 32-bit clean
     */
    private boolean is32BitClean(long value) {
        return value >>> 32 == 0;
    }

    /**
     * Check the validity of a size (the equivalent of a size_t)
     *
     * @throws RuntimeException if the size is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkSize(long size) {
        if (ADDRESS_SIZE == 4) {
            // Note: this will also check for negative sizes
            if (!is32BitClean(size)) {
                throw invalidInput();
            }
        } else if (size < 0) {
            throw invalidInput();
        }
    }

    /**
     * Check the validity of a native address (the equivalent of void*)
     *
     * @throws RuntimeException if the address is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkNativeAddress(long address) {
        if (ADDRESS_SIZE == 4) {
            // Accept both zero and sign extended pointers. A valid
            // pointer will, after the +1 below, either have produced
            // the value 0x0 or 0x1. Masking off the low bit allows
            // for testing against 0.
            if ((((address >> 32) + 1) & ~1) != 0) {
                throw invalidInput();
            }
        }
    }

    /**
     * Check the validity of an offset, relative to a base object
     *
     * @param o the base object
     * @param offset the offset to check
     *
     * @throws RuntimeException if the size is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkOffset(Object o, long offset) {
        if (ADDRESS_SIZE == 4) {
            // Note: this will also check for negative offsets
            if (!is32BitClean(offset)) {
                throw invalidInput();
            }
        } else if (offset < 0) {
            throw invalidInput();
        }
    }

    /**
     * Check the validity of a double-register pointer
     *
     * Note: This code deliberately does *not* check for NPE for (at
     * least) three reasons:
     *
     * 1) NPE is not just NULL/0 - there is a range of values all
     * resulting in an NPE, which is not trivial to check for
     *
     * 2) It is the responsibility of the callers of Unsafe methods
     * to verify the input, so throwing an exception here is not really
     * useful - passing in a NULL pointer is a critical error and the
     * must not expect an exception to be thrown anyway.
     *
     * 3) the actual operations will detect NULL pointers anyway by
     * means of traps and signals (like SIGSEGV).
     *
     * @param o Java heap object, or null
     * @param offset indication of where the variable resides in a Java heap
     *        object, if any, else a memory address locating the variable
     *        statically
     *
     * @throws RuntimeException if the pointer is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkPointer(Object o, long offset) {
        if (o == null) {
            checkNativeAddress(offset);
        } else {
            checkOffset(o, offset);
        }
    }

    /**
     * Check if a type is a primitive array type
     *
     * @param c the type to check
     *
     * @return true if the type is a primitive array type
     */
    private void checkPrimitiveArray(Class<?> c) {
        Class<?> componentType = c.getComponentType();
        if (componentType == null || !componentType.isPrimitive()) {
            throw invalidInput();
        }
    }

    /**
     * Check that a pointer is a valid primitive array type pointer
     *
     * Note: pointers off-heap are considered to be primitive arrays
     *
     * @throws RuntimeException if the pointer is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkPrimitivePointer(Object o, long offset) {
        checkPointer(o, offset);

        if (o != null) {
            // If on heap, it must be a primitive array
            checkPrimitiveArray(o.getClass());
        }
    }


    /// wrappers for malloc, realloc, free:

    /**
     * Allocates a new block of native memory, of the given size in bytes.  The
     * contents of the memory are uninitialized; they will generally be
     * garbage.  The resulting native pointer will never be zero, and will be
     * aligned for all value types.  Dispose of this memory by calling {@link
     * #freeMemory}, or resize it with {@link #reallocateMemory}.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if the size is negative or too large
     *         for the native size_t type
     *
     * @throws OutOfMemoryError if the allocation is refused by the system
     *
     * @see #getByte(long)
     * @see #putByte(long, byte)
     */
    public long allocateMemory(long bytes) {
        allocateMemoryChecks(bytes);

        if (bytes == 0) {
            return 0;
        }

        long p = allocateMemory0(bytes);
        if (p == 0) {
            throw new OutOfMemoryError();
        }

        return p;
    }

    /**
     * Validate the arguments to allocateMemory
     *
     * @throws RuntimeException if the arguments are invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void allocateMemoryChecks(long bytes) {
        checkSize(bytes);
    }

    /**
     * Resizes a new block of native memory, to the given size in bytes.  The
     * contents of the new block past the size of the old block are
     * uninitialized; they will generally be garbage.  The resulting native
     * pointer will be zero if and only if the requested size is zero.  The
     * resulting native pointer will be aligned for all value types.  Dispose
     * of this memory by calling {@link #freeMemory}, or resize it with {@link
     * #reallocateMemory}.  The address passed to this method may be null, in
     * which case an allocation will be performed.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if the size is negative or too large
     *         for the native size_t type
     *
     * @throws OutOfMemoryError if the allocation is refused by the system
     *
     * @see #allocateMemory
     */
    public long reallocateMemory(long address, long bytes) {
        reallocateMemoryChecks(address, bytes);

        if (bytes == 0) {
            freeMemory(address);
            return 0;
        }

        long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
        if (p == 0) {
            throw new OutOfMemoryError();
        }

        return p;
    }

    /**
     * Validate the arguments to reallocateMemory
     *
     * @throws RuntimeException if the arguments are invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void reallocateMemoryChecks(long address, long bytes) {
        checkPointer(null, address);
        checkSize(bytes);
    }

    /**
     * Sets all bytes in a given block of memory to a fixed value
     * (usually zero).
     *
     * <p>This method determines a block's base address by means of two parameters,
     * and so it provides (in effect) a <em>double-register</em> addressing mode,
     * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
     * the offset supplies an absolute base address.
     *
     * <p>The stores are in coherent (atomic) units of a size determined
     * by the address and length parameters.  If the effective address and
     * length are all even modulo 8, the stores take place in 'long' units.
     * If the effective address and length are (resp.) even modulo 4 or 2,
     * the stores take place in units of 'int' or 'short'.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if any of the arguments is invalid
     *
     * @since 1.7
     */
    public void setMemory(Object o, long offset, long bytes, byte value) {
        setMemoryChecks(o, offset, bytes, value);

        if (bytes == 0) {
            return;
        }

        setMemory0(o, offset, bytes, value);
    }

    /**
     * Sets all bytes in a given block of memory to a fixed value
     * (usually zero).  This provides a <em>single-register</em> addressing mode,
     * as discussed in {@link #getInt(Object,long)}.
     *
     * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
     */
    public void setMemory(long address, long bytes, byte value) {
        setMemory(null, address, bytes, value);
    }

    /**
     * Validate the arguments to setMemory
     *
     * @throws RuntimeException if the arguments are invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
        checkPrimitivePointer(o, offset);
        checkSize(bytes);
    }

    /**
     * Sets all bytes in a given block of memory to a copy of another
     * block.
     *
     * <p>This method determines each block's base address by means of two parameters,
     * and so it provides (in effect) a <em>double-register</em> addressing mode,
     * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
     * the offset supplies an absolute base address.
     *
     * <p>The transfers are in coherent (atomic) units of a size determined
     * by the address and length parameters.  If the effective addresses and
     * length are all even modulo 8, the transfer takes place in 'long' units.
     * If the effective addresses and length are (resp.) even modulo 4 or 2,
     * the transfer takes place in units of 'int' or 'short'.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if any of the arguments is invalid
     *
     * @since 1.7
     */
    public void copyMemory(Object srcBase, long srcOffset,
                           Object destBase, long destOffset,
                           long bytes) {
        copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);

        if (bytes == 0) {
            return;
        }

        copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
    }

    /**
     * Sets all bytes in a given block of memory to a copy of another
     * block.  This provides a <em>single-register</em> addressing mode,
     * as discussed in {@link #getInt(Object,long)}.
     *
     * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
     */
    public void copyMemory(long srcAddress, long destAddress, long bytes) {
        copyMemory(null, srcAddress, null, destAddress, bytes);
    }

    /**
     * Validate the arguments to copyMemory
     *
     * @throws RuntimeException if any of the arguments is invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void copyMemoryChecks(Object srcBase, long srcOffset,
                                  Object destBase, long destOffset,
                                  long bytes) {
        checkSize(bytes);
        checkPrimitivePointer(srcBase, srcOffset);
        checkPrimitivePointer(destBase, destOffset);
    }

    /**
     * Copies all elements from one block of memory to another block,
     * *unconditionally* byte swapping the elements on the fly.
     *
     * <p>This method determines each block's base address by means of two parameters,
     * and so it provides (in effect) a <em>double-register</em> addressing mode,
     * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
     * the offset supplies an absolute base address.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if any of the arguments is invalid
     *
     * @since 9
     */
    public void copySwapMemory(Object srcBase, long srcOffset,
                               Object destBase, long destOffset,
                               long bytes, long elemSize) {
        copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);

        if (bytes == 0) {
            return;
        }

        copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
    }

    private void copySwapMemoryChecks(Object srcBase, long srcOffset,
                                      Object destBase, long destOffset,
                                      long bytes, long elemSize) {
        checkSize(bytes);

        if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
            throw invalidInput();
        }
        if (bytes % elemSize != 0) {
            throw invalidInput();
        }

        checkPrimitivePointer(srcBase, srcOffset);
        checkPrimitivePointer(destBase, destOffset);
    }

   /**
     * Copies all elements from one block of memory to another block, byte swapping the
     * elements on the fly.
     *
     * This provides a <em>single-register</em> addressing mode, as
     * discussed in {@link #getInt(Object,long)}.
     *
     * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
     */
    public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
        copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
    }

    /**
     * Disposes of a block of native memory, as obtained from {@link
     * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
     * this method may be null, in which case no action is taken.
     *
     * <em>Note:</em> It is the resposibility of the caller to make
     * sure arguments are checked before the methods are called. While
     * some rudimentary checks are performed on the input, the checks
     * are best effort and when performance is an overriding priority,
     * as when methods of this class are optimized by the runtime
     * compiler, some or all checks (if any) may be elided. Hence, the
     * caller must not rely on the checks and corresponding
     * exceptions!
     *
     * @throws RuntimeException if any of the arguments is invalid
     *
     * @see #allocateMemory
     */
    public void freeMemory(long address) {
        freeMemoryChecks(address);

        if (address == 0) {
            return;
        }

        freeMemory0(address);
    }

    /**
     * Validate the arguments to freeMemory
     *
     * @throws RuntimeException if the arguments are invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void freeMemoryChecks(long address) {
        checkPointer(null, address);
    }

    /**
     * Ensure writeback of a specified virtual memory address range
     * from cache to physical memory. All bytes in the address range
     * are guaranteed to have been written back to physical memory on
     * return from this call i.e. subsequently executed store
     * instructions are guaranteed not to be visible before the
     * writeback is completed.
     *
     * @param address
     *        the lowest byte address that must be guaranteed written
     *        back to memory. bytes at lower addresses may also be
     *        written back.
     *
     * @param length
     *        the length in bytes of the region starting at address
     *        that must be guaranteed written back to memory.
     *
     * @throws RuntimeException if memory writeback is not supported
     *         on the current hardware of if the arguments are invalid.
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     *
     * @since 14
     */

    public void writebackMemory(long address, long length) {
        checkWritebackEnabled();
        checkWritebackMemory(address, length);

        // perform any required pre-writeback barrier
        writebackPreSync0();

        // write back one cache line at a time
        long line = dataCacheLineAlignDown(address);
        long end = address + length;
        while (line < end) {
            writeback0(line);
            line += dataCacheLineFlushSize();
        }

        // perform any required post-writeback barrier
        writebackPostSync0();
    }

    /**
     * Validate the arguments to writebackMemory
     *
     * @throws RuntimeException if the arguments are invalid
     *         (<em>Note:</em> after optimization, invalid inputs may
     *         go undetected, which will lead to unpredictable
     *         behavior)
     */
    private void checkWritebackMemory(long address, long length) {
        checkNativeAddress(address);
        checkSize(length);
    }

    /**
     * Validate that the current hardware supports memory writeback.
     * (<em>Note:</em> this is a belt and braces check.  Clients are
     * expected to test whether writeback is enabled by calling
     * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
     * calling method {@link writeback #writeback} if it is disabled).
     *
     *
     * @throws RuntimeException if memory writeback is not supported
     */
    private void checkWritebackEnabled() {
        if (!isWritebackEnabled()) {
            throw new RuntimeException("writebackMemory not enabled!");
        }
    }

    /**
     * force writeback of an individual cache line.
     *
     * @param address
     *        the start address of the cache line to be written back
     */
    @HotSpotIntrinsicCandidate
    private native void writeback0(long address);

     /**
      * Serialize writeback operations relative to preceding memory writes.
      */
    @HotSpotIntrinsicCandidate
    private native void writebackPreSync0();

     /**
      * Serialize writeback operations relative to following memory writes.
      */
    @HotSpotIntrinsicCandidate
    private native void writebackPostSync0();

    /// random queries

    /**
     * This constant differs from all results that will ever be returned from
     * {@link #staticFieldOffset}, {@link #objectFieldOffset},
     * or {@link #arrayBaseOffset}.
     */
    public static final int INVALID_FIELD_OFFSET = -1;

    /**
     * Reports the location of a given field in the storage allocation of its
     * class.  Do not expect to perform any sort of arithmetic on this offset;
     * it is just a cookie which is passed to the unsafe heap memory accessors.
     *
     * <p>Any given field will always have the same offset and base, and no
     * two distinct fields of the same class will ever have the same offset
     * and base.
     *
     * <p>As of 1.4.1, offsets for fields are represented as long values,
     * although the Sun JVM does not use the most significant 32 bits.
     * However, JVM implementations which store static fields at absolute
     * addresses can use long offsets and null base pointers to express
     * the field locations in a form usable by {@link #getInt(Object,long)}.
     * Therefore, code which will be ported to such JVMs on 64-bit platforms
     * must preserve all bits of static field offsets.
     * @see #getInt(Object, long)
     */
    public long objectFieldOffset(Field f) {
        if (f == null) {
            throw new NullPointerException();
        }

        return objectFieldOffset0(f);
    }

    /**
     * Reports the location of the field with a given name in the storage
     * allocation of its class.
     *
     * @throws NullPointerException if any parameter is {@code null}.
     * @throws InternalError if there is no field named {@code name} declared
     *         in class {@code c}, i.e., if {@code c.getDeclaredField(name)}
     *         would throw {@code java.lang.NoSuchFieldException}.
     *
     * @see #objectFieldOffset(Field)
     */
    public long objectFieldOffset(Class<?> c, String name) {
        if (c == null || name == null) {
            throw new NullPointerException();
        }

        return objectFieldOffset1(c, name);
    }

    /**
     * Reports the location of a given static field, in conjunction with {@link
     * #staticFieldBase}.
     * <p>Do not expect to perform any sort of arithmetic on this offset;
     * it is just a cookie which is passed to the unsafe heap memory accessors.
     *
     * <p>Any given field will always have the same offset, and no two distinct
     * fields of the same class will ever have the same offset.
     *
     * <p>As of 1.4.1, offsets for fields are represented as long values,
     * although the Sun JVM does not use the most significant 32 bits.
     * It is hard to imagine a JVM technology which needs more than
     * a few bits to encode an offset within a non-array object,
     * However, for consistency with other methods in this class,
     * this method reports its result as a long value.
     * @see #getInt(Object, long)
     */
    public long staticFieldOffset(Field f) {
        if (f == null) {
            throw new NullPointerException();
        }

        return staticFieldOffset0(f);
    }

    /**
     * Reports the location of a given static field, in conjunction with {@link
     * #staticFieldOffset}.
     * <p>Fetch the base "Object", if any, with which static fields of the
     * given class can be accessed via methods like {@link #getInt(Object,
     * long)}.  This value may be null.  This value may refer to an object
     * which is a "cookie", not guaranteed to be a real Object, and it should
     * not be used in any way except as argument to the get and put routines in
     * this class.
     */
    public Object staticFieldBase(Field f) {
        if (f == null) {
            throw new NullPointerException();
        }

        return staticFieldBase0(f);
    }

    /**
     * Detects if the given class may need to be initialized. This is often
     * needed in conjunction with obtaining the static field base of a
     * class.
     * @return false only if a call to {@code ensureClassInitialized} would have no effect
     */
    public boolean shouldBeInitialized(Class<?> c) {
        if (c == null) {
            throw new NullPointerException();
        }

        return shouldBeInitialized0(c);
    }

    /**
     * Ensures the given class has been initialized. This is often
     * needed in conjunction with obtaining the static field base of a
     * class.
     */
    public void ensureClassInitialized(Class<?> c) {
        if (c == null) {
            throw new NullPointerException();
        }

        ensureClassInitialized0(c);
    }

    /**
     * Reports the offset of the first element in the storage allocation of a
     * given array class.  If {@link #arrayIndexScale} returns a non-zero value
     * for the same class, you may use that scale factor, together with this
     * base offset, to form new offsets to access elements of arrays of the
     * given class.
     *
     * @see #getInt(Object, long)
     * @see #putInt(Object, long, int)
     */
    public int arrayBaseOffset(Class<?> arrayClass) {
        if (arrayClass == null) {
            throw new NullPointerException();
        }

        return arrayBaseOffset0(arrayClass);
    }


    /** The value of {@code arrayBaseOffset(boolean[].class)} */
    public static final int ARRAY_BOOLEAN_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(boolean[].class);

    /** The value of {@code arrayBaseOffset(byte[].class)} */
    public static final int ARRAY_BYTE_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(byte[].class);

    /** The value of {@code arrayBaseOffset(short[].class)} */
    public static final int ARRAY_SHORT_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(short[].class);

    /** The value of {@code arrayBaseOffset(char[].class)} */
    public static final int ARRAY_CHAR_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(char[].class);

    /** The value of {@code arrayBaseOffset(int[].class)} */
    public static final int ARRAY_INT_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(int[].class);

    /** The value of {@code arrayBaseOffset(long[].class)} */
    public static final int ARRAY_LONG_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(long[].class);

    /** The value of {@code arrayBaseOffset(float[].class)} */
    public static final int ARRAY_FLOAT_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(float[].class);

    /** The value of {@code arrayBaseOffset(double[].class)} */
    public static final int ARRAY_DOUBLE_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(double[].class);

    /** The value of {@code arrayBaseOffset(Object[].class)} */
    public static final int ARRAY_OBJECT_BASE_OFFSET
            = theUnsafe.arrayBaseOffset(Object[].class);

    /**
     * Reports the scale factor for addressing elements in the storage
     * allocation of a given array class.  However, arrays of "narrow" types
     * will generally not work properly with accessors like {@link
     * #getByte(Object, long)}, so the scale factor for such classes is reported
     * as zero.
     *
     * @see #arrayBaseOffset
     * @see #getInt(Object, long)
     * @see #putInt(Object, long, int)
     */
    public int arrayIndexScale(Class<?> arrayClass) {
        if (arrayClass == null) {
            throw new NullPointerException();
        }

        return arrayIndexScale0(arrayClass);
    }


    /** The value of {@code arrayIndexScale(boolean[].class)} */
    public static final int ARRAY_BOOLEAN_INDEX_SCALE
            = theUnsafe.arrayIndexScale(boolean[].class);

    /** The value of {@code arrayIndexScale(byte[].class)} */
    public static final int ARRAY_BYTE_INDEX_SCALE
            = theUnsafe.arrayIndexScale(byte[].class);

    /** The value of {@code arrayIndexScale(short[].class)} */
    public static final int ARRAY_SHORT_INDEX_SCALE
            = theUnsafe.arrayIndexScale(short[].class);

    /** The value of {@code arrayIndexScale(char[].class)} */
    public static final int ARRAY_CHAR_INDEX_SCALE
            = theUnsafe.arrayIndexScale(char[].class);

    /** The value of {@code arrayIndexScale(int[].class)} */
    public static final int ARRAY_INT_INDEX_SCALE
            = theUnsafe.arrayIndexScale(int[].class);

    /** The value of {@code arrayIndexScale(long[].class)} */
    public static final int ARRAY_LONG_INDEX_SCALE
            = theUnsafe.arrayIndexScale(long[].class);

    /** The value of {@code arrayIndexScale(float[].class)} */
    public static final int ARRAY_FLOAT_INDEX_SCALE
            = theUnsafe.arrayIndexScale(float[].class);

    /** The value of {@code arrayIndexScale(double[].class)} */
    public static final int ARRAY_DOUBLE_INDEX_SCALE
            = theUnsafe.arrayIndexScale(double[].class);

    /** The value of {@code arrayIndexScale(Object[].class)} */
    public static final int ARRAY_OBJECT_INDEX_SCALE
            = theUnsafe.arrayIndexScale(Object[].class);

    /**
     * Reports the size in bytes of a native pointer, as stored via {@link
     * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
     * other primitive types (as stored in native memory blocks) is determined
     * fully by their information content.
     */
    public int addressSize() {
        return ADDRESS_SIZE;
    }

    /** The value of {@code addressSize()} */
    public static final int ADDRESS_SIZE = ADDRESS_SIZE0;

    /**
     * Reports the size in bytes of a native memory page (whatever that is).
     * This value will always be a power of two.
     */
    public int pageSize() { return PAGE_SIZE; }

    /**
     * Reports the size in bytes of a data cache line written back by
     * the hardware cache line flush operation available to the JVM or
     * 0 if data cache line flushing is not enabled.
     */
    public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }

    /**
     * Rounds down address to a data cache line boundary as
     * determined by {@link #dataCacheLineFlushSize}
     * @return the rounded down address
     */
    public long dataCacheLineAlignDown(long address) {
        return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
    }

    /**
     * Returns true if data cache line writeback
     */
    public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }

    /// random trusted operations from JNI:

    /**
     * Tells the VM to define a class, without security checks.  By default, the
     * class loader and protection domain come from the caller's class.
     */
    public Class<?> defineClass(String name, byte[] b, int off, int len,
                                ClassLoader loader,
                                ProtectionDomain protectionDomain) {
        if (b == null) {
            throw new NullPointerException();
        }
        if (len < 0) {
            throw new ArrayIndexOutOfBoundsException();
        }

        return defineClass0(name, b, off, len, loader, protectionDomain);
    }

    public native Class<?> defineClass0(String name, byte[] b, int off, int len,
                                        ClassLoader loader,
                                        ProtectionDomain protectionDomain);

    /**
     * Defines a class but does not make it known to the class loader or system dictionary.
     * <p>
     * For each CP entry, the corresponding CP patch must either be null or have
     * the a format that matches its tag:
     * <ul>
     * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
     * <li>Utf8: a string (must have suitable syntax if used as signature or name)
     * <li>Class: any java.lang.Class object
     * <li>String: any object (not just a java.lang.String)
     * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
     * </ul>
     * @param hostClass context for linkage, access control, protection domain, and class loader
     * @param data      bytes of a class file
     * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
     */
    public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
        if (hostClass == null || data == null) {
            throw new NullPointerException();
        }
        if (hostClass.isArray() || hostClass.isPrimitive()) {
            throw new IllegalArgumentException();
        }

        return defineAnonymousClass0(hostClass, data, cpPatches);
    }

    /**
     * Allocates an instance but does not run any constructor.
     * Initializes the class if it has not yet been.
     */
    @HotSpotIntrinsicCandidate
    public native Object allocateInstance(Class<?> cls)
        throws InstantiationException;

    /**
     * Allocates an array of a given type, but does not do zeroing.
     * <p>
     * This method should only be used in the very rare cases where a high-performance code
     * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
     * In an overwhelming majority of cases, a normal Java allocation should be used instead.
     * <p>
     * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
     * before allowing untrusted code, or code in other threads, to observe the reference
     * to the newly allocated array. In addition, the publication of the array reference must be
     * safe according to the Java Memory Model requirements.
     * <p>
     * The safest approach to deal with an uninitialized array is to keep the reference to it in local
     * variable at least until the initialization is complete, and then publish it <b>once</b>, either
     * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
     * or issuing a {@link #storeFence} before publishing the reference.
     * <p>
     * @implnote This method can only allocate primitive arrays, to avoid garbage reference
     * elements that could break heap integrity.
     *
     * @param componentType array component type to allocate
     * @param length array size to allocate
     * @throws IllegalArgumentException if component type is null, or not a primitive class;
     *                                  or the length is negative
     */
    public Object allocateUninitializedArray(Class<?> componentType, int length) {
       if (componentType == null) {
           throw new IllegalArgumentException("Component type is null");
       }
       if (!componentType.isPrimitive()) {
           throw new IllegalArgumentException("Component type is not primitive");
       }
       if (length < 0) {
           throw new IllegalArgumentException("Negative length");
       }
       return allocateUninitializedArray0(componentType, length);
    }

    @HotSpotIntrinsicCandidate
    private Object allocateUninitializedArray0(Class<?> componentType, int length) {
       // These fallbacks provide zeroed arrays, but intrinsic is not required to
       // return the zeroed arrays.
       if (componentType == byte.class)    return new byte[length];
       if (componentType == boolean.class) return new boolean[length];
       if (componentType == short.class)   return new short[length];
       if (componentType == char.class)    return new char[length];
       if (componentType == int.class)     return new int[length];
       if (componentType == float.class)   return new float[length];
       if (componentType == long.class)    return new long[length];
       if (componentType == double.class)  return new double[length];
       return null;
    }

    /** Throws the exception without telling the verifier. */
    public native void throwException(Throwable ee);

    /**
     * Atomically updates Java variable to {@code x} if it is currently
     * holding {@code expected}.
     *
     * <p>This operation has memory semantics of a {@code volatile} read
     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
     *
     * @return {@code true} if successful
     */
    @HotSpotIntrinsicCandidate
    public final native boolean compareAndSetReference(Object o, long offset,
                                                       Object expected,
                                                       Object x);

    @HotSpotIntrinsicCandidate
    public final native Object compareAndExchangeReference(Object o, long offset,
                                                           Object expected,
                                                           Object x);

    @HotSpotIntrinsicCandidate
    public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
                                                           Object expected,
                                                           Object x) {
        return compareAndExchangeReference(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final Object compareAndExchangeReferenceRelease(Object o, long offset,
                                                           Object expected,
                                                           Object x) {
        return compareAndExchangeReference(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
                                                         Object expected,
                                                         Object x) {
        return compareAndSetReference(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
                                                           Object expected,
                                                           Object x) {
        return compareAndSetReference(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
                                                           Object expected,
                                                           Object x) {
        return compareAndSetReference(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetReference(Object o, long offset,
                                                    Object expected,
                                                    Object x) {
        return compareAndSetReference(o, offset, expected, x);
    }

    /**
     * Atomically updates Java variable to {@code x} if it is currently
     * holding {@code expected}.
     *
     * <p>This operation has memory semantics of a {@code volatile} read
     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
     *
     * @return {@code true} if successful
     */
    @HotSpotIntrinsicCandidate
    public final native boolean compareAndSetInt(Object o, long offset,
                                                 int expected,
                                                 int x);

    @HotSpotIntrinsicCandidate
    public final native int compareAndExchangeInt(Object o, long offset,
                                                  int expected,
                                                  int x);

    @HotSpotIntrinsicCandidate
    public final int compareAndExchangeIntAcquire(Object o, long offset,
                                                         int expected,
                                                         int x) {
        return compareAndExchangeInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final int compareAndExchangeIntRelease(Object o, long offset,
                                                         int expected,
                                                         int x) {
        return compareAndExchangeInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetIntPlain(Object o, long offset,
                                                   int expected,
                                                   int x) {
        return compareAndSetInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
                                                     int expected,
                                                     int x) {
        return compareAndSetInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetIntRelease(Object o, long offset,
                                                     int expected,
                                                     int x) {
        return compareAndSetInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetInt(Object o, long offset,
                                              int expected,
                                              int x) {
        return compareAndSetInt(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final byte compareAndExchangeByte(Object o, long offset,
                                             byte expected,
                                             byte x) {
        long wordOffset = offset & ~3;
        int shift = (int) (offset & 3) << 3;
        if (BIG_ENDIAN) {
            shift = 24 - shift;
        }
        int mask           = 0xFF << shift;
        int maskedExpected = (expected & 0xFF) << shift;
        int maskedX        = (x & 0xFF) << shift;
        int fullWord;
        do {
            fullWord = getIntVolatile(o, wordOffset);
            if ((fullWord & mask) != maskedExpected)
                return (byte) ((fullWord & mask) >> shift);
        } while (!weakCompareAndSetInt(o, wordOffset,
                                                fullWord, (fullWord & ~mask) | maskedX));
        return expected;
    }

    @HotSpotIntrinsicCandidate
    public final boolean compareAndSetByte(Object o, long offset,
                                           byte expected,
                                           byte x) {
        return compareAndExchangeByte(o, offset, expected, x) == expected;
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetByte(Object o, long offset,
                                               byte expected,
                                               byte x) {
        return compareAndSetByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
                                                      byte expected,
                                                      byte x) {
        return weakCompareAndSetByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetByteRelease(Object o, long offset,
                                                      byte expected,
                                                      byte x) {
        return weakCompareAndSetByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetBytePlain(Object o, long offset,
                                                    byte expected,
                                                    byte x) {
        return weakCompareAndSetByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final byte compareAndExchangeByteAcquire(Object o, long offset,
                                                    byte expected,
                                                    byte x) {
        return compareAndExchangeByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final byte compareAndExchangeByteRelease(Object o, long offset,
                                                    byte expected,
                                                    byte x) {
        return compareAndExchangeByte(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final short compareAndExchangeShort(Object o, long offset,
                                               short expected,
                                               short x) {
        if ((offset & 3) == 3) {
            throw new IllegalArgumentException("Update spans the word, not supported");
        }
        long wordOffset = offset & ~3;
        int shift = (int) (offset & 3) << 3;
        if (BIG_ENDIAN) {
            shift = 16 - shift;
        }
        int mask           = 0xFFFF << shift;
        int maskedExpected = (expected & 0xFFFF) << shift;
        int maskedX        = (x & 0xFFFF) << shift;
        int fullWord;
        do {
            fullWord = getIntVolatile(o, wordOffset);
            if ((fullWord & mask) != maskedExpected) {
                return (short) ((fullWord & mask) >> shift);
            }
        } while (!weakCompareAndSetInt(o, wordOffset,
                                                fullWord, (fullWord & ~mask) | maskedX));
        return expected;
    }

    @HotSpotIntrinsicCandidate
    public final boolean compareAndSetShort(Object o, long offset,
                                            short expected,
                                            short x) {
        return compareAndExchangeShort(o, offset, expected, x) == expected;
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetShort(Object o, long offset,
                                                short expected,
                                                short x) {
        return compareAndSetShort(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
                                                       short expected,
                                                       short x) {
        return weakCompareAndSetShort(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetShortRelease(Object o, long offset,
                                                       short expected,
                                                       short x) {
        return weakCompareAndSetShort(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetShortPlain(Object o, long offset,
                                                     short expected,
                                                     short x) {
        return weakCompareAndSetShort(o, offset, expected, x);
    }


    @HotSpotIntrinsicCandidate
    public final short compareAndExchangeShortAcquire(Object o, long offset,
                                                     short expected,
                                                     short x) {
        return compareAndExchangeShort(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final short compareAndExchangeShortRelease(Object o, long offset,
                                                    short expected,
                                                    short x) {
        return compareAndExchangeShort(o, offset, expected, x);
    }

    @ForceInline
    private char s2c(short s) {
        return (char) s;
    }

    @ForceInline
    private short c2s(char s) {
        return (short) s;
    }

    @ForceInline
    public final boolean compareAndSetChar(Object o, long offset,
                                           char expected,
                                           char x) {
        return compareAndSetShort(o, offset, c2s(expected), c2s(x));
    }

    @ForceInline
    public final char compareAndExchangeChar(Object o, long offset,
                                             char expected,
                                             char x) {
        return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
    }

    @ForceInline
    public final char compareAndExchangeCharAcquire(Object o, long offset,
                                            char expected,
                                            char x) {
        return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
    }

    @ForceInline
    public final char compareAndExchangeCharRelease(Object o, long offset,
                                            char expected,
                                            char x) {
        return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
    }

    @ForceInline
    public final boolean weakCompareAndSetChar(Object o, long offset,
                                               char expected,
                                               char x) {
        return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
                                                      char expected,
                                                      char x) {
        return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetCharRelease(Object o, long offset,
                                                      char expected,
                                                      char x) {
        return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetCharPlain(Object o, long offset,
                                                    char expected,
                                                    char x) {
        return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
    }

    /**
     * The JVM converts integral values to boolean values using two
     * different conventions, byte testing against zero and truncation
     * to least-significant bit.
     *
     * <p>The JNI documents specify that, at least for returning
     * values from native methods, a Java boolean value is converted
     * to the value-set 0..1 by first truncating to a byte (0..255 or
     * maybe -128..127) and then testing against zero. Thus, Java
     * booleans in non-Java data structures are by convention
     * represented as 8-bit containers containing either zero (for
     * false) or any non-zero value (for true).
     *
     * <p>Java booleans in the heap are also stored in bytes, but are
     * strongly normalized to the value-set 0..1 (i.e., they are
     * truncated to the least-significant bit).
     *
     * <p>The main reason for having different conventions for
     * conversion is performance: Truncation to the least-significant
     * bit can be usually implemented with fewer (machine)
     * instructions than byte testing against zero.
     *
     * <p>A number of Unsafe methods load boolean values from the heap
     * as bytes. Unsafe converts those values according to the JNI
     * rules (i.e, using the "testing against zero" convention). The
     * method {@code byte2bool} implements that conversion.
     *
     * @param b the byte to be converted to boolean
     * @return the result of the conversion
     */
    @ForceInline
    private boolean byte2bool(byte b) {
        return b != 0;
    }

    /**
     * Convert a boolean value to a byte. The return value is strongly
     * normalized to the value-set 0..1 (i.e., the value is truncated
     * to the least-significant bit). See {@link #byte2bool(byte)} for
     * more details on conversion conventions.
     *
     * @param b the boolean to be converted to byte (and then normalized)
     * @return the result of the conversion
     */
    @ForceInline
    private byte bool2byte(boolean b) {
        return b ? (byte)1 : (byte)0;
    }

    @ForceInline
    public final boolean compareAndSetBoolean(Object o, long offset,
                                              boolean expected,
                                              boolean x) {
        return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
    }

    @ForceInline
    public final boolean compareAndExchangeBoolean(Object o, long offset,
                                                   boolean expected,
                                                   boolean x) {
        return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
    }

    @ForceInline
    public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
                                                    boolean expected,
                                                    boolean x) {
        return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
    }

    @ForceInline
    public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
                                                       boolean expected,
                                                       boolean x) {
        return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
    }

    @ForceInline
    public final boolean weakCompareAndSetBoolean(Object o, long offset,
                                                  boolean expected,
                                                  boolean x) {
        return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
                                                         boolean expected,
                                                         boolean x) {
        return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
                                                         boolean expected,
                                                         boolean x) {
        return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
                                                       boolean expected,
                                                       boolean x) {
        return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
    }

    /**
     * Atomically updates Java variable to {@code x} if it is currently
     * holding {@code expected}.
     *
     * <p>This operation has memory semantics of a {@code volatile} read
     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
     *
     * @return {@code true} if successful
     */
    @ForceInline
    public final boolean compareAndSetFloat(Object o, long offset,
                                            float expected,
                                            float x) {
        return compareAndSetInt(o, offset,
                                 Float.floatToRawIntBits(expected),
                                 Float.floatToRawIntBits(x));
    }

    @ForceInline
    public final float compareAndExchangeFloat(Object o, long offset,
                                               float expected,
                                               float x) {
        int w = compareAndExchangeInt(o, offset,
                                      Float.floatToRawIntBits(expected),
                                      Float.floatToRawIntBits(x));
        return Float.intBitsToFloat(w);
    }

    @ForceInline
    public final float compareAndExchangeFloatAcquire(Object o, long offset,
                                                  float expected,
                                                  float x) {
        int w = compareAndExchangeIntAcquire(o, offset,
                                             Float.floatToRawIntBits(expected),
                                             Float.floatToRawIntBits(x));
        return Float.intBitsToFloat(w);
    }

    @ForceInline
    public final float compareAndExchangeFloatRelease(Object o, long offset,
                                                  float expected,
                                                  float x) {
        int w = compareAndExchangeIntRelease(o, offset,
                                             Float.floatToRawIntBits(expected),
                                             Float.floatToRawIntBits(x));
        return Float.intBitsToFloat(w);
    }

    @ForceInline
    public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
                                                     float expected,
                                                     float x) {
        return weakCompareAndSetIntPlain(o, offset,
                                     Float.floatToRawIntBits(expected),
                                     Float.floatToRawIntBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
                                                       float expected,
                                                       float x) {
        return weakCompareAndSetIntAcquire(o, offset,
                                            Float.floatToRawIntBits(expected),
                                            Float.floatToRawIntBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
                                                       float expected,
                                                       float x) {
        return weakCompareAndSetIntRelease(o, offset,
                                            Float.floatToRawIntBits(expected),
                                            Float.floatToRawIntBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetFloat(Object o, long offset,
                                                float expected,
                                                float x) {
        return weakCompareAndSetInt(o, offset,
                                             Float.floatToRawIntBits(expected),
                                             Float.floatToRawIntBits(x));
    }

    /**
     * Atomically updates Java variable to {@code x} if it is currently
     * holding {@code expected}.
     *
     * <p>This operation has memory semantics of a {@code volatile} read
     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
     *
     * @return {@code true} if successful
     */
    @ForceInline
    public final boolean compareAndSetDouble(Object o, long offset,
                                             double expected,
                                             double x) {
        return compareAndSetLong(o, offset,
                                 Double.doubleToRawLongBits(expected),
                                 Double.doubleToRawLongBits(x));
    }

    @ForceInline
    public final double compareAndExchangeDouble(Object o, long offset,
                                                 double expected,
                                                 double x) {
        long w = compareAndExchangeLong(o, offset,
                                        Double.doubleToRawLongBits(expected),
                                        Double.doubleToRawLongBits(x));
        return Double.longBitsToDouble(w);
    }

    @ForceInline
    public final double compareAndExchangeDoubleAcquire(Object o, long offset,
                                                        double expected,
                                                        double x) {
        long w = compareAndExchangeLongAcquire(o, offset,
                                               Double.doubleToRawLongBits(expected),
                                               Double.doubleToRawLongBits(x));
        return Double.longBitsToDouble(w);
    }

    @ForceInline
    public final double compareAndExchangeDoubleRelease(Object o, long offset,
                                                        double expected,
                                                        double x) {
        long w = compareAndExchangeLongRelease(o, offset,
                                               Double.doubleToRawLongBits(expected),
                                               Double.doubleToRawLongBits(x));
        return Double.longBitsToDouble(w);
    }

    @ForceInline
    public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
                                                      double expected,
                                                      double x) {
        return weakCompareAndSetLongPlain(o, offset,
                                     Double.doubleToRawLongBits(expected),
                                     Double.doubleToRawLongBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
                                                        double expected,
                                                        double x) {
        return weakCompareAndSetLongAcquire(o, offset,
                                             Double.doubleToRawLongBits(expected),
                                             Double.doubleToRawLongBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
                                                        double expected,
                                                        double x) {
        return weakCompareAndSetLongRelease(o, offset,
                                             Double.doubleToRawLongBits(expected),
                                             Double.doubleToRawLongBits(x));
    }

    @ForceInline
    public final boolean weakCompareAndSetDouble(Object o, long offset,
                                                 double expected,
                                                 double x) {
        return weakCompareAndSetLong(o, offset,
                                              Double.doubleToRawLongBits(expected),
                                              Double.doubleToRawLongBits(x));
    }

    /**
     * Atomically updates Java variable to {@code x} if it is currently
     * holding {@code expected}.
     *
     * <p>This operation has memory semantics of a {@code volatile} read
     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
     *
     * @return {@code true} if successful
     */
    @HotSpotIntrinsicCandidate
    public final native boolean compareAndSetLong(Object o, long offset,
                                                  long expected,
                                                  long x);

    @HotSpotIntrinsicCandidate
    public final native long compareAndExchangeLong(Object o, long offset,
                                                    long expected,
                                                    long x);

    @HotSpotIntrinsicCandidate
    public final long compareAndExchangeLongAcquire(Object o, long offset,
                                                           long expected,
                                                           long x) {
        return compareAndExchangeLong(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final long compareAndExchangeLongRelease(Object o, long offset,
                                                           long expected,
                                                           long x) {
        return compareAndExchangeLong(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetLongPlain(Object o, long offset,
                                                    long expected,
                                                    long x) {
        return compareAndSetLong(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
                                                      long expected,
                                                      long x) {
        return compareAndSetLong(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetLongRelease(Object o, long offset,
                                                      long expected,
                                                      long x) {
        return compareAndSetLong(o, offset, expected, x);
    }

    @HotSpotIntrinsicCandidate
    public final boolean weakCompareAndSetLong(Object o, long offset,
                                               long expected,
                                               long x) {
        return compareAndSetLong(o, offset, expected, x);
    }

    /**
     * Fetches a reference value from a given Java variable, with volatile
     * load semantics. Otherwise identical to {@link #getReference(Object, long)}
     */
    @HotSpotIntrinsicCandidate
    public native Object getReferenceVolatile(Object o, long offset);

    /**
     * Stores a reference value into a given Java variable, with
     * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
     */
    @HotSpotIntrinsicCandidate
    public native void putReferenceVolatile(Object o, long offset, Object x);

    /** Volatile version of {@link #getInt(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native int     getIntVolatile(Object o, long offset);

    /** Volatile version of {@link #putInt(Object, long, int)}  */
    @HotSpotIntrinsicCandidate
    public native void    putIntVolatile(Object o, long offset, int x);

    /** Volatile version of {@link #getBoolean(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native boolean getBooleanVolatile(Object o, long offset);

    /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
    @HotSpotIntrinsicCandidate
    public native void    putBooleanVolatile(Object o, long offset, boolean x);

    /** Volatile version of {@link #getByte(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native byte    getByteVolatile(Object o, long offset);

    /** Volatile version of {@link #putByte(Object, long, byte)}  */
    @HotSpotIntrinsicCandidate
    public native void    putByteVolatile(Object o, long offset, byte x);

    /** Volatile version of {@link #getShort(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native short   getShortVolatile(Object o, long offset);

    /** Volatile version of {@link #putShort(Object, long, short)}  */
    @HotSpotIntrinsicCandidate
    public native void    putShortVolatile(Object o, long offset, short x);

    /** Volatile version of {@link #getChar(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native char    getCharVolatile(Object o, long offset);

    /** Volatile version of {@link #putChar(Object, long, char)}  */
    @HotSpotIntrinsicCandidate
    public native void    putCharVolatile(Object o, long offset, char x);

    /** Volatile version of {@link #getLong(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native long    getLongVolatile(Object o, long offset);

    /** Volatile version of {@link #putLong(Object, long, long)}  */
    @HotSpotIntrinsicCandidate
    public native void    putLongVolatile(Object o, long offset, long x);

    /** Volatile version of {@link #getFloat(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native float   getFloatVolatile(Object o, long offset);

    /** Volatile version of {@link #putFloat(Object, long, float)}  */
    @HotSpotIntrinsicCandidate
    public native void    putFloatVolatile(Object o, long offset, float x);

    /** Volatile version of {@link #getDouble(Object, long)}  */
    @HotSpotIntrinsicCandidate
    public native double  getDoubleVolatile(Object o, long offset);

    /** Volatile version of {@link #putDouble(Object, long, double)}  */
    @HotSpotIntrinsicCandidate
    public native void    putDoubleVolatile(Object o, long offset, double x);



    /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final Object getReferenceAcquire(Object o, long offset) {
        return getReferenceVolatile(o, offset);
    }

    /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final boolean getBooleanAcquire(Object o, long offset) {
        return getBooleanVolatile(o, offset);
    }

    /** Acquire version of {@link #getByteVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final byte getByteAcquire(Object o, long offset) {
        return getByteVolatile(o, offset);
    }

    /** Acquire version of {@link #getShortVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final short getShortAcquire(Object o, long offset) {
        return getShortVolatile(o, offset);
    }

    /** Acquire version of {@link #getCharVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final char getCharAcquire(Object o, long offset) {
        return getCharVolatile(o, offset);
    }

    /** Acquire version of {@link #getIntVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final int getIntAcquire(Object o, long offset) {
        return getIntVolatile(o, offset);
    }

    /** Acquire version of {@link #getFloatVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final float getFloatAcquire(Object o, long offset) {
        return getFloatVolatile(o, offset);
    }

    /** Acquire version of {@link #getLongVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final long getLongAcquire(Object o, long offset) {
        return getLongVolatile(o, offset);
    }

    /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final double getDoubleAcquire(Object o, long offset) {
        return getDoubleVolatile(o, offset);
    }

    /*
      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
      * that do not guarantee immediate visibility of the store to
      * other threads. This method is generally only useful if the
      * underlying field is a Java volatile (or if an array cell, one
      * that is otherwise only accessed using volatile accesses).
      *
      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
      */

    /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
    @HotSpotIntrinsicCandidate
    public final void putReferenceRelease(Object o, long offset, Object x) {
        putReferenceVolatile(o, offset, x);
    }

    /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
    @HotSpotIntrinsicCandidate
    public final void putBooleanRelease(Object o, long offset, boolean x) {
        putBooleanVolatile(o, offset, x);
    }

    /** Release version of {@link #putByteVolatile(Object, long, byte)} */
    @HotSpotIntrinsicCandidate
    public final void putByteRelease(Object o, long offset, byte x) {
        putByteVolatile(o, offset, x);
    }

    /** Release version of {@link #putShortVolatile(Object, long, short)} */
    @HotSpotIntrinsicCandidate
    public final void putShortRelease(Object o, long offset, short x) {
        putShortVolatile(o, offset, x);
    }

    /** Release version of {@link #putCharVolatile(Object, long, char)} */
    @HotSpotIntrinsicCandidate
    public final void putCharRelease(Object o, long offset, char x) {
        putCharVolatile(o, offset, x);
    }

    /** Release version of {@link #putIntVolatile(Object, long, int)} */
    @HotSpotIntrinsicCandidate
    public final void putIntRelease(Object o, long offset, int x) {
        putIntVolatile(o, offset, x);
    }

    /** Release version of {@link #putFloatVolatile(Object, long, float)} */
    @HotSpotIntrinsicCandidate
    public final void putFloatRelease(Object o, long offset, float x) {
        putFloatVolatile(o, offset, x);
    }

    /** Release version of {@link #putLongVolatile(Object, long, long)} */
    @HotSpotIntrinsicCandidate
    public final void putLongRelease(Object o, long offset, long x) {
        putLongVolatile(o, offset, x);
    }

    /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
    @HotSpotIntrinsicCandidate
    public final void putDoubleRelease(Object o, long offset, double x) {
        putDoubleVolatile(o, offset, x);
    }

    // ------------------------------ Opaque --------------------------------------

    /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final Object getReferenceOpaque(Object o, long offset) {
        return getReferenceVolatile(o, offset);
    }

    /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final boolean getBooleanOpaque(Object o, long offset) {
        return getBooleanVolatile(o, offset);
    }

    /** Opaque version of {@link #getByteVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final byte getByteOpaque(Object o, long offset) {
        return getByteVolatile(o, offset);
    }

    /** Opaque version of {@link #getShortVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final short getShortOpaque(Object o, long offset) {
        return getShortVolatile(o, offset);
    }

    /** Opaque version of {@link #getCharVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final char getCharOpaque(Object o, long offset) {
        return getCharVolatile(o, offset);
    }

    /** Opaque version of {@link #getIntVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final int getIntOpaque(Object o, long offset) {
        return getIntVolatile(o, offset);
    }

    /** Opaque version of {@link #getFloatVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final float getFloatOpaque(Object o, long offset) {
        return getFloatVolatile(o, offset);
    }

    /** Opaque version of {@link #getLongVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final long getLongOpaque(Object o, long offset) {
        return getLongVolatile(o, offset);
    }

    /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
    @HotSpotIntrinsicCandidate
    public final double getDoubleOpaque(Object o, long offset) {
        return getDoubleVolatile(o, offset);
    }

    /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
    @HotSpotIntrinsicCandidate
    public final void putReferenceOpaque(Object o, long offset, Object x) {
        putReferenceVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
    @HotSpotIntrinsicCandidate
    public final void putBooleanOpaque(Object o, long offset, boolean x) {
        putBooleanVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
    @HotSpotIntrinsicCandidate
    public final void putByteOpaque(Object o, long offset, byte x) {
        putByteVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
    @HotSpotIntrinsicCandidate
    public final void putShortOpaque(Object o, long offset, short x) {
        putShortVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
    @HotSpotIntrinsicCandidate
    public final void putCharOpaque(Object o, long offset, char x) {
        putCharVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
    @HotSpotIntrinsicCandidate
    public final void putIntOpaque(Object o, long offset, int x) {
        putIntVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
    @HotSpotIntrinsicCandidate
    public final void putFloatOpaque(Object o, long offset, float x) {
        putFloatVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
    @HotSpotIntrinsicCandidate
    public final void putLongOpaque(Object o, long offset, long x) {
        putLongVolatile(o, offset, x);
    }

    /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
    @HotSpotIntrinsicCandidate
    public final void putDoubleOpaque(Object o, long offset, double x) {
        putDoubleVolatile(o, offset, x);
    }

    /**
     * Unblocks the given thread blocked on {@code park}, or, if it is
     * not blocked, causes the subsequent call to {@code park} not to
     * block.  Note: this operation is "unsafe" solely because the
     * caller must somehow ensure that the thread has not been
     * destroyed. Nothing special is usually required to ensure this
     * when called from Java (in which there will ordinarily be a live
     * reference to the thread) but this is not nearly-automatically
     * so when calling from native code.
     *
     * @param thread the thread to unpark.
     */
    @HotSpotIntrinsicCandidate
    public native void unpark(Object thread);

    /**
     * Blocks current thread, returning when a balancing
     * {@code unpark} occurs, or a balancing {@code unpark} has
     * already occurred, or the thread is interrupted, or, if not
     * absolute and time is not zero, the given time nanoseconds have
     * elapsed, or if absolute, the given deadline in milliseconds
     * since Epoch has passed, or spuriously (i.e., returning for no
     * "reason"). Note: This operation is in the Unsafe class only
     * because {@code unpark} is, so it would be strange to place it
     * elsewhere.
     */
    @HotSpotIntrinsicCandidate
    public native void park(boolean isAbsolute, long time);

    /**
     * Gets the load average in the system run queue assigned
     * to the available processors averaged over various periods of time.
     * This method retrieves the given {@code nelem} samples and
     * assigns to the elements of the given {@code loadavg} array.
     * The system imposes a maximum of 3 samples, representing
     * averages over the last 1,  5,  and  15 minutes, respectively.
     *
     * @param loadavg an array of double of size nelems
     * @param nelems the number of samples to be retrieved and
     *        must be 1 to 3.
     *
     * @return the number of samples actually retrieved; or -1
     *         if the load average is unobtainable.
     */
    public int getLoadAverage(double[] loadavg, int nelems) {
        if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
            throw new ArrayIndexOutOfBoundsException();
        }

        return getLoadAverage0(loadavg, nelems);
    }

    // The following contain CAS-based Java implementations used on
    // platforms not supporting native instructions

    /**
     * Atomically adds the given value to the current value of a field
     * or array element within the given object {@code o}
     * at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param delta the value to add
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final int getAndAddInt(Object o, long offset, int delta) {
        int v;
        do {
            v = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset, v, v + delta));
        return v;
    }

    @ForceInline
    public final int getAndAddIntRelease(Object o, long offset, int delta) {
        int v;
        do {
            v = getInt(o, offset);
        } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
        return v;
    }

    @ForceInline
    public final int getAndAddIntAcquire(Object o, long offset, int delta) {
        int v;
        do {
            v = getIntAcquire(o, offset);
        } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
        return v;
    }

    /**
     * Atomically adds the given value to the current value of a field
     * or array element within the given object {@code o}
     * at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param delta the value to add
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final long getAndAddLong(Object o, long offset, long delta) {
        long v;
        do {
            v = getLongVolatile(o, offset);
        } while (!weakCompareAndSetLong(o, offset, v, v + delta));
        return v;
    }

    @ForceInline
    public final long getAndAddLongRelease(Object o, long offset, long delta) {
        long v;
        do {
            v = getLong(o, offset);
        } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
        return v;
    }

    @ForceInline
    public final long getAndAddLongAcquire(Object o, long offset, long delta) {
        long v;
        do {
            v = getLongAcquire(o, offset);
        } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
        return v;
    }

    @HotSpotIntrinsicCandidate
    public final byte getAndAddByte(Object o, long offset, byte delta) {
        byte v;
        do {
            v = getByteVolatile(o, offset);
        } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
        return v;
    }

    @ForceInline
    public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
        byte v;
        do {
            v = getByte(o, offset);
        } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
        return v;
    }

    @ForceInline
    public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
        byte v;
        do {
            v = getByteAcquire(o, offset);
        } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
        return v;
    }

    @HotSpotIntrinsicCandidate
    public final short getAndAddShort(Object o, long offset, short delta) {
        short v;
        do {
            v = getShortVolatile(o, offset);
        } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
        return v;
    }

    @ForceInline
    public final short getAndAddShortRelease(Object o, long offset, short delta) {
        short v;
        do {
            v = getShort(o, offset);
        } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
        return v;
    }

    @ForceInline
    public final short getAndAddShortAcquire(Object o, long offset, short delta) {
        short v;
        do {
            v = getShortAcquire(o, offset);
        } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
        return v;
    }

    @ForceInline
    public final char getAndAddChar(Object o, long offset, char delta) {
        return (char) getAndAddShort(o, offset, (short) delta);
    }

    @ForceInline
    public final char getAndAddCharRelease(Object o, long offset, char delta) {
        return (char) getAndAddShortRelease(o, offset, (short) delta);
    }

    @ForceInline
    public final char getAndAddCharAcquire(Object o, long offset, char delta) {
        return (char) getAndAddShortAcquire(o, offset, (short) delta);
    }

    @ForceInline
    public final float getAndAddFloat(Object o, long offset, float delta) {
        int expectedBits;
        float v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getIntVolatile(o, offset);
            v = Float.intBitsToFloat(expectedBits);
        } while (!weakCompareAndSetInt(o, offset,
                                                expectedBits, Float.floatToRawIntBits(v + delta)));
        return v;
    }

    @ForceInline
    public final float getAndAddFloatRelease(Object o, long offset, float delta) {
        int expectedBits;
        float v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getInt(o, offset);
            v = Float.intBitsToFloat(expectedBits);
        } while (!weakCompareAndSetIntRelease(o, offset,
                                               expectedBits, Float.floatToRawIntBits(v + delta)));
        return v;
    }

    @ForceInline
    public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
        int expectedBits;
        float v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getIntAcquire(o, offset);
            v = Float.intBitsToFloat(expectedBits);
        } while (!weakCompareAndSetIntAcquire(o, offset,
                                               expectedBits, Float.floatToRawIntBits(v + delta)));
        return v;
    }

    @ForceInline
    public final double getAndAddDouble(Object o, long offset, double delta) {
        long expectedBits;
        double v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getLongVolatile(o, offset);
            v = Double.longBitsToDouble(expectedBits);
        } while (!weakCompareAndSetLong(o, offset,
                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
        return v;
    }

    @ForceInline
    public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
        long expectedBits;
        double v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getLong(o, offset);
            v = Double.longBitsToDouble(expectedBits);
        } while (!weakCompareAndSetLongRelease(o, offset,
                                                expectedBits, Double.doubleToRawLongBits(v + delta)));
        return v;
    }

    @ForceInline
    public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
        long expectedBits;
        double v;
        do {
            // Load and CAS with the raw bits to avoid issues with NaNs and
            // possible bit conversion from signaling NaNs to quiet NaNs that
            // may result in the loop not terminating.
            expectedBits = getLongAcquire(o, offset);
            v = Double.longBitsToDouble(expectedBits);
        } while (!weakCompareAndSetLongAcquire(o, offset,
                                                expectedBits, Double.doubleToRawLongBits(v + delta)));
        return v;
    }

    /**
     * Atomically exchanges the given value with the current value of
     * a field or array element within the given object {@code o}
     * at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param newValue new value
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final int getAndSetInt(Object o, long offset, int newValue) {
        int v;
        do {
            v = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final int getAndSetIntRelease(Object o, long offset, int newValue) {
        int v;
        do {
            v = getInt(o, offset);
        } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
        int v;
        do {
            v = getIntAcquire(o, offset);
        } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
        return v;
    }

    /**
     * Atomically exchanges the given value with the current value of
     * a field or array element within the given object {@code o}
     * at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param newValue new value
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final long getAndSetLong(Object o, long offset, long newValue) {
        long v;
        do {
            v = getLongVolatile(o, offset);
        } while (!weakCompareAndSetLong(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final long getAndSetLongRelease(Object o, long offset, long newValue) {
        long v;
        do {
            v = getLong(o, offset);
        } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
        long v;
        do {
            v = getLongAcquire(o, offset);
        } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
        return v;
    }

    /**
     * Atomically exchanges the given reference value with the current
     * reference value of a field or array element within the given
     * object {@code o} at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param newValue new value
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final Object getAndSetReference(Object o, long offset, Object newValue) {
        Object v;
        do {
            v = getReferenceVolatile(o, offset);
        } while (!weakCompareAndSetReference(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
        Object v;
        do {
            v = getReference(o, offset);
        } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
        Object v;
        do {
            v = getReferenceAcquire(o, offset);
        } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
        return v;
    }

    @HotSpotIntrinsicCandidate
    public final byte getAndSetByte(Object o, long offset, byte newValue) {
        byte v;
        do {
            v = getByteVolatile(o, offset);
        } while (!weakCompareAndSetByte(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
        byte v;
        do {
            v = getByte(o, offset);
        } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
        byte v;
        do {
            v = getByteAcquire(o, offset);
        } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
        return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
    }

    @ForceInline
    public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
        return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
    }

    @ForceInline
    public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
        return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
    }

    @HotSpotIntrinsicCandidate
    public final short getAndSetShort(Object o, long offset, short newValue) {
        short v;
        do {
            v = getShortVolatile(o, offset);
        } while (!weakCompareAndSetShort(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final short getAndSetShortRelease(Object o, long offset, short newValue) {
        short v;
        do {
            v = getShort(o, offset);
        } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
        short v;
        do {
            v = getShortAcquire(o, offset);
        } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
        return v;
    }

    @ForceInline
    public final char getAndSetChar(Object o, long offset, char newValue) {
        return s2c(getAndSetShort(o, offset, c2s(newValue)));
    }

    @ForceInline
    public final char getAndSetCharRelease(Object o, long offset, char newValue) {
        return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
    }

    @ForceInline
    public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
        return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
    }

    @ForceInline
    public final float getAndSetFloat(Object o, long offset, float newValue) {
        int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
        return Float.intBitsToFloat(v);
    }

    @ForceInline
    public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
        int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
        return Float.intBitsToFloat(v);
    }

    @ForceInline
    public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
        int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
        return Float.intBitsToFloat(v);
    }

    @ForceInline
    public final double getAndSetDouble(Object o, long offset, double newValue) {
        long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
        return Double.longBitsToDouble(v);
    }

    @ForceInline
    public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
        long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
        return Double.longBitsToDouble(v);
    }

    @ForceInline
    public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
        long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
        return Double.longBitsToDouble(v);
    }


    // The following contain CAS-based Java implementations used on
    // platforms not supporting native instructions

    @ForceInline
    public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
    }

    @ForceInline
    public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
        return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
    }


    @ForceInline
    public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByteVolatile(o, offset);
        } while (!weakCompareAndSetByte(o, offset,
                                                  current, (byte) (current | mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteRelease(o, offset,
                                                 current, (byte) (current | mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
        byte current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteAcquire(o, offset,
                                                 current, (byte) (current | mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByteVolatile(o, offset);
        } while (!weakCompareAndSetByte(o, offset,
                                                  current, (byte) (current & mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteRelease(o, offset,
                                                 current, (byte) (current & mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
        byte current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteAcquire(o, offset,
                                                 current, (byte) (current & mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByteVolatile(o, offset);
        } while (!weakCompareAndSetByte(o, offset,
                                                  current, (byte) (current ^ mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
        byte current;
        do {
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteRelease(o, offset,
                                                 current, (byte) (current ^ mask)));
        return current;
    }

    @ForceInline
    public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
        byte current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getByte(o, offset);
        } while (!weakCompareAndSetByteAcquire(o, offset,
                                                 current, (byte) (current ^ mask)));
        return current;
    }


    @ForceInline
    public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
        return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
        return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
        return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
        return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
        return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
        return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
        return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
        return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
    }

    @ForceInline
    public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
        return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
    }


    @ForceInline
    public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
        short current;
        do {
            current = getShortVolatile(o, offset);
        } while (!weakCompareAndSetShort(o, offset,
                                                current, (short) (current | mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
        short current;
        do {
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortRelease(o, offset,
                                               current, (short) (current | mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
        short current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortAcquire(o, offset,
                                               current, (short) (current | mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
        short current;
        do {
            current = getShortVolatile(o, offset);
        } while (!weakCompareAndSetShort(o, offset,
                                                current, (short) (current & mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
        short current;
        do {
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortRelease(o, offset,
                                               current, (short) (current & mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
        short current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortAcquire(o, offset,
                                               current, (short) (current & mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
        short current;
        do {
            current = getShortVolatile(o, offset);
        } while (!weakCompareAndSetShort(o, offset,
                                                current, (short) (current ^ mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
        short current;
        do {
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortRelease(o, offset,
                                               current, (short) (current ^ mask)));
        return current;
    }

    @ForceInline
    public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
        short current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getShort(o, offset);
        } while (!weakCompareAndSetShortAcquire(o, offset,
                                               current, (short) (current ^ mask)));
        return current;
    }


    @ForceInline
    public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
        int current;
        do {
            current = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset,
                                                current, current | mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
        int current;
        do {
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntRelease(o, offset,
                                               current, current | mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
        int current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntAcquire(o, offset,
                                               current, current | mask));
        return current;
    }

    /**
     * Atomically replaces the current value of a field or array element within
     * the given object with the result of bitwise AND between the current value
     * and mask.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param mask the mask value
     * @return the previous value
     * @since 9
     */
    @ForceInline
    public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
        int current;
        do {
            current = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset,
                                                current, current & mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
        int current;
        do {
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntRelease(o, offset,
                                               current, current & mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
        int current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntAcquire(o, offset,
                                               current, current & mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
        int current;
        do {
            current = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset,
                                                current, current ^ mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
        int current;
        do {
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntRelease(o, offset,
                                               current, current ^ mask));
        return current;
    }

    @ForceInline
    public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
        int current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getInt(o, offset);
        } while (!weakCompareAndSetIntAcquire(o, offset,
                                               current, current ^ mask));
        return current;
    }


    @ForceInline
    public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
        long current;
        do {
            current = getLongVolatile(o, offset);
        } while (!weakCompareAndSetLong(o, offset,
                                                current, current | mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
        long current;
        do {
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongRelease(o, offset,
                                               current, current | mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
        long current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongAcquire(o, offset,
                                               current, current | mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
        long current;
        do {
            current = getLongVolatile(o, offset);
        } while (!weakCompareAndSetLong(o, offset,
                                                current, current & mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
        long current;
        do {
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongRelease(o, offset,
                                               current, current & mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
        long current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongAcquire(o, offset,
                                               current, current & mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
        long current;
        do {
            current = getLongVolatile(o, offset);
        } while (!weakCompareAndSetLong(o, offset,
                                                current, current ^ mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
        long current;
        do {
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongRelease(o, offset,
                                               current, current ^ mask));
        return current;
    }

    @ForceInline
    public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
        long current;
        do {
            // Plain read, the value is a hint, the acquire CAS does the work
            current = getLong(o, offset);
        } while (!weakCompareAndSetLongAcquire(o, offset,
                                               current, current ^ mask));
        return current;
    }



    /**
     * Ensures that loads before the fence will not be reordered with loads and
     * stores after the fence; a "LoadLoad plus LoadStore barrier".
     *
     * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
     * (an "acquire fence").
     *
     * A pure LoadLoad fence is not provided, since the addition of LoadStore
     * is almost always desired, and most current hardware instructions that
     * provide a LoadLoad barrier also provide a LoadStore barrier for free.
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public native void loadFence();

    /**
     * Ensures that loads and stores before the fence will not be reordered with
     * stores after the fence; a "StoreStore plus LoadStore barrier".
     *
     * Corresponds to C11 atomic_thread_fence(memory_order_release)
     * (a "release fence").
     *
     * A pure StoreStore fence is not provided, since the addition of LoadStore
     * is almost always desired, and most current hardware instructions that
     * provide a StoreStore barrier also provide a LoadStore barrier for free.
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public native void storeFence();

    /**
     * Ensures that loads and stores before the fence will not be reordered
     * with loads and stores after the fence.  Implies the effects of both
     * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
     * barrier.
     *
     * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public native void fullFence();

    /**
     * Ensures that loads before the fence will not be reordered with
     * loads after the fence.
     */
    public final void loadLoadFence() {
        loadFence();
    }

    /**
     * Ensures that stores before the fence will not be reordered with
     * stores after the fence.
     */
    public final void storeStoreFence() {
        storeFence();
    }


    /**
     * Throws IllegalAccessError; for use by the VM for access control
     * error support.
     * @since 1.8
     */
    private static void throwIllegalAccessError() {
        throw new IllegalAccessError();
    }

    /**
     * Throws NoSuchMethodError; for use by the VM for redefinition support.
     * @since 13
     */
    private static void throwNoSuchMethodError() {
        throw new NoSuchMethodError();
    }

    /**
     * @return Returns true if the native byte ordering of this
     * platform is big-endian, false if it is little-endian.
     */
    public final boolean isBigEndian() { return BIG_ENDIAN; }

    /**
     * @return Returns true if this platform is capable of performing
     * accesses at addresses which are not aligned for the type of the
     * primitive type being accessed, false otherwise.
     */
    public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }

    /**
     * Fetches a value at some byte offset into a given Java object.
     * More specifically, fetches a value within the given object
     * <code>o</code> at the given offset, or (if <code>o</code> is
     * null) from the memory address whose numerical value is the
     * given offset.  <p>
     *
     * The specification of this method is the same as {@link
     * #getLong(Object, long)} except that the offset does not need to
     * have been obtained from {@link #objectFieldOffset} on the
     * {@link java.lang.reflect.Field} of some Java field.  The value
     * in memory is raw data, and need not correspond to any Java
     * variable.  Unless <code>o</code> is null, the value accessed
     * must be entirely within the allocated object.  The endianness
     * of the value in memory is the endianness of the native platform.
     *
     * <p> The read will be atomic with respect to the largest power
     * of two that divides the GCD of the offset and the storage size.
     * For example, getLongUnaligned will make atomic reads of 2-, 4-,
     * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
     * respectively.  There are no other guarantees of atomicity.
     * <p>
     * 8-byte atomicity is only guaranteed on platforms on which
     * support atomic accesses to longs.
     *
     * @param o Java heap object in which the value resides, if any, else
     *        null
     * @param offset The offset in bytes from the start of the object
     * @return the value fetched from the indicated object
     * @throws RuntimeException No defined exceptions are thrown, not even
     *         {@link NullPointerException}
     * @since 9
     */
    @HotSpotIntrinsicCandidate
    public final long getLongUnaligned(Object o, long offset) {
        if ((offset & 7) == 0) {
            return getLong(o, offset);
        } else if ((offset & 3) == 0) {
            return makeLong(getInt(o, offset),
                            getInt(o, offset + 4));
        } else if ((offset & 1) == 0) {
            return makeLong(getShort(o, offset),
                            getShort(o, offset + 2),
                            getShort(o, offset + 4),
                            getShort(o, offset + 6));
        } else {
            return makeLong(getByte(o, offset),
                            getByte(o, offset + 1),
                            getByte(o, offset + 2),
                            getByte(o, offset + 3),
                            getByte(o, offset + 4),
                            getByte(o, offset + 5),
                            getByte(o, offset + 6),
                            getByte(o, offset + 7));
        }
    }
    /**
     * As {@link #getLongUnaligned(Object, long)} but with an
     * additional argument which specifies the endianness of the value
     * as stored in memory.
     *
     * @param o Java heap object in which the variable resides
     * @param offset The offset in bytes from the start of the object
     * @param bigEndian The endianness of the value
     * @return the value fetched from the indicated object
     * @since 9
     */
    public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
        return convEndian(bigEndian, getLongUnaligned(o, offset));
    }

    /** @see #getLongUnaligned(Object, long) */
    @HotSpotIntrinsicCandidate
    public final int getIntUnaligned(Object o, long offset) {
        if ((offset & 3) == 0) {
            return getInt(o, offset);
        } else if ((offset & 1) == 0) {
            return makeInt(getShort(o, offset),
                           getShort(o, offset + 2));
        } else {
            return makeInt(getByte(o, offset),
                           getByte(o, offset + 1),
                           getByte(o, offset + 2),
                           getByte(o, offset + 3));
        }
    }
    /** @see #getLongUnaligned(Object, long, boolean) */
    public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
        return convEndian(bigEndian, getIntUnaligned(o, offset));
    }

    /** @see #getLongUnaligned(Object, long) */
    @HotSpotIntrinsicCandidate
    public final short getShortUnaligned(Object o, long offset) {
        if ((offset & 1) == 0) {
            return getShort(o, offset);
        } else {
            return makeShort(getByte(o, offset),
                             getByte(o, offset + 1));
        }
    }
    /** @see #getLongUnaligned(Object, long, boolean) */
    public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
        return convEndian(bigEndian, getShortUnaligned(o, offset));
    }

    /** @see #getLongUnaligned(Object, long) */
    @HotSpotIntrinsicCandidate
    public final char getCharUnaligned(Object o, long offset) {
        if ((offset & 1) == 0) {
            return getChar(o, offset);
        } else {
            return (char)makeShort(getByte(o, offset),
                                   getByte(o, offset + 1));
        }
    }

    /** @see #getLongUnaligned(Object, long, boolean) */
    public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
        return convEndian(bigEndian, getCharUnaligned(o, offset));
    }

    /**
     * Stores a value at some byte offset into a given Java object.
     * <p>
     * The specification of this method is the same as {@link
     * #getLong(Object, long)} except that the offset does not need to

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java