/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, Google and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "runtime/atomic.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/threadHeapSampler.hpp"
// Cheap random number generator.
uint64_t ThreadHeapSampler::_rnd;
// Default is 512kb.
volatile int ThreadHeapSampler::_sampling_interval = 512 * 1024;
// Ordering here is important: _log_table first, _log_table_initialized second.
double ThreadHeapSampler::_log_table[1 << ThreadHeapSampler::FastLogNumBits] = {};
// Force initialization of the log_table.
bool ThreadHeapSampler::_log_table_initialized = init_log_table();
bool ThreadHeapSampler::init_log_table() {
for (int i = 0; i < (1 << FastLogNumBits); i++) {
_log_table[i] = (log(1.0 + static_cast<double>(i+0.5) / (1 << FastLogNumBits))
/ log(2.0));
}
return true;
}
// Returns the next prng value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
// This is the lrand64 generator.
uint64_t ThreadHeapSampler::next_random(uint64_t rnd) {
const uint64_t PrngMult = 0x5DEECE66DLL;
const uint64_t PrngAdd = 0xB;
const uint64_t PrngModPower = 48;
const uint64_t PrngModMask = ((uint64_t)1 << PrngModPower) - 1;
//assert(IS_SAFE_SIZE_MUL(PrngMult, rnd), "Overflow on multiplication.");
//assert(IS_SAFE_SIZE_ADD(PrngMult * rnd, PrngAdd), "Overflow on addition.");
return (PrngMult * rnd + PrngAdd) & PrngModMask;
}
double ThreadHeapSampler::fast_log2(const double& d) {
assert(d>0, "bad value passed to assert");
uint64_t x = 0;
assert(sizeof(d) == sizeof(x),
"double and uint64_t do not have the same size");
x = *reinterpret_cast<const uint64_t*>(&d);
const uint32_t x_high = x >> 32;
assert(FastLogNumBits <= 20, "FastLogNumBits should be less than 20.");
const uint32_t y = x_high >> (20 - FastLogNumBits) & FastLogMask;
const int32_t exponent = ((x_high >> 20) & 0x7FF) - 1023;
assert(_log_table_initialized, "log table should be initialized");
return exponent + _log_table[y];
}
// Generates a geometric variable with the specified mean (512K by default).
// This is done by generating a random number between 0 and 1 and applying
// the inverse cumulative distribution function for an exponential.
// Specifically: Let m be the inverse of the sample interval, then
// the probability distribution function is m*exp(-mx) so the CDF is
// p = 1 - exp(-mx), so
// q = 1 - p = exp(-mx)
// log_e(q) = -mx
// -log_e(q)/m = x
// log_2(q) * (-log_e(2) * 1/m) = x
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
void ThreadHeapSampler::pick_next_geometric_sample() {
_rnd = next_random(_rnd);
// Take the top 26 bits as the random number
// (This plus a 1<<58 sampling bound gives a max possible step of
// 5194297183973780480 bytes. In this case,
// for sample_parameter = 1<<19, max possible step is
// 9448372 bytes (24 bits).
const uint64_t PrngModPower = 48; // Number of bits in prng
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
// under piii debug for some binaries.
double q = static_cast<uint32_t>(_rnd >> (PrngModPower - 26)) + 1.0;
// Put the computed p-value through the CDF of a geometric.
// For faster performance (save ~1/20th exec time), replace
// min(0.0, FastLog2(q) - 26) by (Fastlog2(q) - 26.000705)
// The value 26.000705 is used rather than 26 to compensate
// for inaccuracies in FastLog2 which otherwise result in a
// negative answer.
double log_val = (fast_log2(q) - 26);
double result =
(0.0 < log_val ? 0.0 : log_val) * (-log(2.0) * (get_sampling_interval())) + 1;
assert(result > 0 && result < SIZE_MAX, "Result is not in an acceptable range.");
size_t interval = static_cast<size_t>(result);
_bytes_until_sample = interval;
}
void ThreadHeapSampler::pick_next_sample(size_t overflowed_bytes) {
// Explicitly test if the sampling interval is 0, return 0 to sample every
// allocation.
if (get_sampling_interval() == 0) {
_bytes_until_sample = 0;
return;
}
pick_next_geometric_sample();
}
void ThreadHeapSampler::check_for_sampling(oop obj, size_t allocation_size, size_t bytes_since_allocation) {
/**代码未完, 请加载全部代码(NowJava.com).**/