/*
* Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "logging/log.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/mutex.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safepointMechanism.inline.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/events.hpp"
#include "utilities/macros.hpp"
#ifdef ASSERT
void Mutex::check_block_state(Thread* thread) {
if (!_allow_vm_block && thread->is_VM_thread()) {
// JavaThreads are checked to make sure that they do not hold _allow_vm_block locks during operations
// that could safepoint. Make sure the vm thread never uses locks with _allow_vm_block == false.
fatal("VM thread could block on lock that may be held by a JavaThread during safepoint: %s", name());
}
assert(!os::ThreadCrashProtection::is_crash_protected(thread),
"locking not allowed when crash protection is set");
}
void Mutex::check_safepoint_state(Thread* thread) {
check_block_state(thread);
// If the JavaThread checks for safepoint, verify that the lock wasn't created with safepoint_check_never.
if (thread->is_active_Java_thread()) {
assert(_safepoint_check_required != _safepoint_check_never,
"This lock should %s have a safepoint check for Java threads: %s",
_safepoint_check_required ? "always" : "never", name());
// Also check NoSafepointVerifier, and thread state is _thread_in_vm
thread->check_for_valid_safepoint_state();
} else {
// If initialized with safepoint_check_never, a NonJavaThread should never ask to safepoint check either.
assert(_safepoint_check_required != _safepoint_check_never,
"NonJavaThread should not check for safepoint");
}
}
void Mutex::check_no_safepoint_state(Thread* thread) {
check_block_state(thread);
assert(!thread->is_active_Java_thread() || _safepoint_check_required != _safepoint_check_always,
"This lock should %s have a safepoint check for Java threads: %s",
_safepoint_check_required ? "always" : "never", name());
}
#endif // ASSERT
void Mutex::lock_contended(Thread* self) {
Mutex *in_flight_mutex = NULL;
DEBUG_ONLY(int retry_cnt = 0;)
bool is_active_Java_thread = self->is_active_Java_thread();
do {
#ifdef ASSERT
if (retry_cnt++ > 3) {
log_trace(vmmutex)("JavaThread " INTPTR_FORMAT " on %d attempt trying to acquire vmmutex %s", p2i(self), retry_cnt, _name);
}
#endif // ASSERT
// Is it a JavaThread participating in the safepoint protocol.
if (is_active_Java_thread) {
assert(rank() > Mutex::special, "Potential deadlock with special or lesser rank mutex");
{ ThreadBlockInVMWithDeadlockCheck tbivmdc((JavaThread *) self, &in_flight_mutex);
in_flight_mutex = this; // save for ~ThreadBlockInVMWithDeadlockCheck
_lock.lock();
}
if (in_flight_mutex != NULL) {
// Not unlocked by ~ThreadBlockInVMWithDeadlockCheck
break;
}
} else {
_lock.lock();
break;
}
} while (!_lock.try_lock());
}
void Mutex::lock(Thread* self) {
check_safepoint_state(self);
assert(_owner != self, "invariant");
if (!_lock.try_lock()) {
// The lock is contended, use contended slow-path function to lock
lock_contended(self);
}
assert_owner(NULL);
set_owner(self);
}
void Mutex::lock() {
lock(Thread::current());
}
// Lock without safepoint check - a degenerate variant of lock() for use by
// JavaThreads when it is known to be safe to not check for a safepoint when
// acquiring this lock. If the thread blocks acquiring the lock it is not
// safepoint-safe and so will prevent a safepoint from being reached. If used
// in the wrong way this can lead to a deadlock with the safepoint code.
void Mutex::lock_without_safepoint_check(Thread * self) {
check_no_safepoint_state(self);
assert(_owner != self, "invariant");
_lock.lock();
assert_owner(NULL);
set_owner(self);
}
void Mutex::lock_without_safepoint_check() {
lock_without_safepoint_check(Thread::current());
}
// Returns true if thread succeeds in grabbing the lock, otherwise false.
bool Mutex::try_lock() {
Thread * const self = Thread::current();
// Some safepoint_check_always locks use try_lock, so cannot check
// safepoint state, but can check blocking state.
check_block_state(self);
if (_lock.try_lock()) {
assert_owner(NULL);
set_owner(self);
return true;
}
return false;
}
void Mutex::release_for_safepoint() {
assert_owner(NULL);
_lock.unlock();
}
void Mutex::unlock() {
DEBUG_ONLY(assert_owner(Thread::current()));
set_owner(NULL);
_lock.unlock();
}
void Monitor::notify() {
DEBUG_ONLY(assert_owner(Thread::current()));
_lock.notify();
}
void Monitor::notify_all() {
DEBUG_ONLY(assert_owner(Thread::current()));
_lock.notify_all();
}
#ifdef ASSERT
void Monitor::assert_wait_lock_state(Thread* self) {
Mutex* least = get_least_ranked_lock_besides_this(self->owned_locks());
assert(least != this, "Specification of get_least_... call above");
if (least != NULL && least->rank() <= special) {
::tty->print("Attempting to wait on monitor %s/%d while holding"
" lock %s/%d -- possible deadlock",
name(), rank(), least->name(), least->rank());
assert(false, "Shouldn't block(wait) while holding a lock of rank special");
}
}
#endif // ASSERT
bool Monitor::wait_without_safepoint_check(long timeout) {
Thread* const self = Thread::current();
// timeout is in milliseconds - with zero meaning never timeout
assert(timeout >= 0, "negative timeout");
assert_owner(self);
assert_wait_lock_state(self);
// conceptually set the owner to NULL in anticipation of
// abdicating the lock in wait
set_owner(NULL);
// Check safepoint state after resetting owner and possible NSV.
check_no_safepoint_state(self);
int wait_status = _lock.wait(timeout);
set_owner(self);
return wait_status != 0; // return true IFF timeout
}
bool Monitor::wait(long timeout, bool as_suspend_equivalent) {
Thread* const self = Thread::current();
// timeout is in milliseconds - with zero meaning never timeout
assert(timeout >= 0, "negative timeout");
assert_owner(self);
// Safepoint checking logically implies an active JavaThread.
guarantee(self->is_active_Java_thread(), "invariant");
assert_wait_lock_state(self);
int wait_status;
// conceptually set the owner to NULL in anticipation of
// abdicating the lock in wait
set_owner(NULL);
// Check safepoint state after resetting owner and possible NSV.
check_safepoint_state(self);
JavaThread *jt = (JavaThread *)self;
Mutex* in_flight_mutex = NULL;
{
ThreadBlockInVMWithDeadlockCheck tbivmdc(jt, &in_flight_mutex);
OSThreadWaitState osts(self->osthread(), false /* not Object.wait() */);
if (as_suspend_equivalent) {
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or
// java_suspend_self()
}
wait_status = _lock.wait(timeout);
in_flight_mutex = this; // save for ~ThreadBlockInVMWithDeadlockCheck
// were we externally suspended while we were waiting?
if (as_suspend_equivalent && jt->handle_special_suspend_equivalent_condition()) {
// Our event wait has finished and we own the lock, but
// while we were waiting another thread suspended us. We don't
// want to hold the lock while suspended because that
// would surprise the thread that suspended us.
_lock.unlock();
jt->java_suspend_self();
_lock.lock();
}
}
if (in_flight_mutex != NULL) {
// Not unlocked by ~ThreadBlockInVMWithDeadlockCheck
assert_owner(NULL);
// Conceptually reestablish ownership of the lock.
set_owner(self);
} else {
lock(self);
}
return wait_status != 0; // return true IFF timeout
}
Mutex::~Mutex() {
assert_owner(NULL);
}
// Only Threads_lock, Heap_lock and SR_lock may be safepoint_check_sometimes.
bool is_sometimes_ok(const char* name) {
return (strcmp(name, "Threads_lock") == 0 || strcmp(name, "Heap_lock") == 0 || strcmp(name, "SR_lock") == 0);
}
Mutex::Mutex(int Rank, const char * name, bool allow_vm_block,
SafepointCheckRequired safepoint_check_required) : _owner(NULL) {
assert(os::mutex_init_done(), "Too early!");
if (name == NULL) {
strcpy(_name, "UNKNOWN");
} else {
strncpy(_name, name, MUTEX_NAME_LEN - 1);
_name[MUTEX_NAME_LEN - 1] = '\0';
}
#ifdef ASSERT
_allow_vm_block = allow_vm_block;
_rank = Rank;
_safepoint_check_required = safepoint_check_required;
assert(_safepoint_check_required != _safepoint_check_sometimes || is_sometimes_ok(name),
"Lock has _safepoint_check_sometimes %s", name);
assert(_rank > special || _safepoint_check_required == _safepoint_check_never,
"Special locks or below should never safepoint");
#endif
}
Monitor::Monitor(int Rank, const char * name, bool allow_vm_block,
SafepointCheckRequired safepoint_check_required) :
Mutex(Rank, name, allow_vm_block, safepoint_check_required) {}
bool Mutex::owned_by_self() const {
return _owner == Thread::current();
}
void Mutex::print_on_error(outputStream* st) const {
st->print("[" PTR_FORMAT, p2i(this));
st->print("] %s", _name);
st->print(" - owner thread: " PTR_FORMAT, p2i(_owner));
}
// ----------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
const char* print_safepoint_check(Mutex::SafepointCheckRequired safepoint_check) {
switch (safepoint_check) {
case Mutex::_safepoint_check_never: return "safepoint_check_never";
case Mutex::_safepoint_check_sometimes: return "safepoint_check_sometimes";
case Mutex::_safepoint_check_always: return "safepoint_check_always";
default: return "";
}
}
void Mutex::print_on(outputStream* st) const {
st->print("Mutex: [" PTR_FORMAT "] %s - owner: " PTR_FORMAT,
p2i(this), _name, p2i(_owner));
if (_allow_vm_block) {
st->print("%s", " allow_vm_block");
}
st->print(" %s", print_safepoint_check(_safepoint_check_required));
st->cr();
}
#endif
#ifdef ASSERT
void Mutex::assert_owner(Thread * expected) {
const char* msg = "invalid owner";
if (expected == NULL) {
msg = "should be un-owned";
}
else if (expected == Thread::current()) {
msg = "should be owned by current thread";
}
assert(_owner == expected,
"%s: owner=" INTPTR_FORMAT ", should be=" INTPTR_FORMAT,
msg, p2i(_owner), p2i(expected));
}
Mutex* Mutex::get_least_ranked_lock(Mutex* locks) {
Mutex *res, *tmp;
for (res = tmp = locks; tmp != NULL; tmp = tmp->next()) {
if (tmp->rank() < res->rank()) {
res = tmp;
}
}
if (!SafepointSynchronize::is_at_safepoint()) {
// In this case, we expect the held locks to be
// in increasing rank order (modulo any native ranks)
for (tmp = locks; tmp != NULL; tmp = tmp->next()) {
if (tmp->next() != NULL) {
assert(tmp->rank() == Mutex::native ||
tmp->rank() <= tmp->next()->rank(), "mutex rank anomaly?");
}
}
}
return res;
}
Mutex* Mutex::get_least_ranked_lock_besides_this(Mutex* locks) {
Mutex *res, *tmp;
for (res = NULL, tmp = locks; tmp != NULL; tmp = tmp->next()) {
if (tmp != this && (res == NULL || tmp->rank() < res->rank())) {
res = tmp;
}
}
if (!SafepointSynchronize::is_at_safepoint()) {
// In this case, we expect the held locks to be
// in increasing rank order (modulo any native ranks)
for (tmp = locks; tmp != NULL; tmp = tmp->next()) {
if (tmp->next() != NULL) {
assert(tmp->rank() == Mutex::native ||
tmp->rank() <= tmp->next()->rank(), "mutex rank anomaly?");
}
}
}
return res;
}
bool Mutex::contains(Mutex* locks, Mutex* lock) {
for (; locks != NULL; locks = locks->next()) {
if (locks == lock) {
return true;
}
}
return false;
}
// NSV implied with locking allow_vm_block or !safepoint_check locks.
void Mutex::no_safepoint_verifier(Thread* thread, bool enable) {
// The tty_lock is special because it is released for the safepoint by
// the safepoint mechanism.
if (this == tty_lock) {
return;
}
if (_allow_vm_block) {
if (enable) {
thread->_no_safepoint_count++;
} else {
thread->_no_safepoint_count--;
}
}
}
// Called immediately after lock acquisition or release as a diagnostic
// to track the lock-set of the thread and test for rank violations that
// might indicate exposure to deadlock.
// Rather like an EventListener for _owner (:>).
void Mutex::set_owner_implementation(Thread *new_owner) {
// This function is solely responsible for maintaining
// and checking the invariant that threads and locks
// are in a 1/N relation, with some some locks unowned.
// It uses the Mutex::_owner, Mutex::_next, and
// Thread::_owned_locks fields, and no other function
// changes those fields.
// It is illegal to set the mutex from one non-NULL
// owner to another--it must be owned by NULL as an
// intermediate state.
if (new_owner != NULL) {
// the thread is acquiring this lock
assert(new_owner == Thread::current(), "Should I be doing this?");
assert(_owner == NULL, "setting the owner thread of an already owned mutex");
_owner = new_owner; // set the owner
// link "this" into the owned locks list
Mutex* locks = get_least_ranked_lock(new_owner->owned_locks());
// Mutex::set_owner_implementation is a friend of Thread
assert(this->rank() >= 0, "bad lock rank");
// Deadlock avoidance rules require us to acquire Mutexes only in
// a global total order. For example m1 is the lowest ranked mutex
// that the thread holds and m2 is the mutex the thread is trying
/**代码未完, 请加载全部代码(NowJava.com).**/