JDK14/Java14源码在线阅读

/*
 * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "jni.h"
#include "jvm.h"
#include "classfile/classFileStream.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/vmSymbols.hpp"
#include "jfr/jfrEvents.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/fieldStreams.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayOop.inline.hpp"
#include "prims/unsafe.hpp"
#include "runtime/globals.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/reflection.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vm_version.hpp"
#include "services/threadService.hpp"
#include "utilities/align.hpp"
#include "utilities/copy.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/macros.hpp"

/**
 * Implementation of the jdk.internal.misc.Unsafe class
 */


#define MAX_OBJECT_SIZE \
  ( arrayOopDesc::header_size(T_DOUBLE) * HeapWordSize \
    + ((julong)max_jint * sizeof(double)) )


#define UNSAFE_ENTRY(result_type, header) \
  JVM_ENTRY(static result_type, header)

#define UNSAFE_LEAF(result_type, header) \
  JVM_LEAF(static result_type, header)

#define UNSAFE_END JVM_END


static inline void* addr_from_java(jlong addr) {
  // This assert fails in a variety of ways on 32-bit systems.
  // It is impossible to predict whether native code that converts
  // pointers to longs will sign-extend or zero-extend the addresses.
  //assert(addr == (uintptr_t)addr, "must not be odd high bits");
  return (void*)(uintptr_t)addr;
}

static inline jlong addr_to_java(void* p) {
  assert(p == (void*)(uintptr_t)p, "must not be odd high bits");
  return (uintptr_t)p;
}


// Note: The VM's obj_field and related accessors use byte-scaled
// ("unscaled") offsets, just as the unsafe methods do.

// However, the method Unsafe.fieldOffset explicitly declines to
// guarantee this.  The field offset values manipulated by the Java user
// through the Unsafe API are opaque cookies that just happen to be byte
// offsets.  We represent this state of affairs by passing the cookies
// through conversion functions when going between the VM and the Unsafe API.
// The conversion functions just happen to be no-ops at present.

static inline jlong field_offset_to_byte_offset(jlong field_offset) {
  return field_offset;
}

static inline jlong field_offset_from_byte_offset(jlong byte_offset) {
  return byte_offset;
}

static inline void assert_field_offset_sane(oop p, jlong field_offset) {
#ifdef ASSERT
  jlong byte_offset = field_offset_to_byte_offset(field_offset);

  if (p != NULL) {
    assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset");
    if (byte_offset == (jint)byte_offset) {
      void* ptr_plus_disp = (address)p + byte_offset;
      assert(p->field_addr_raw((jint)byte_offset) == ptr_plus_disp,
             "raw [ptr+disp] must be consistent with oop::field_addr_raw");
    }
    jlong p_size = HeapWordSize * (jlong)(p->size());
    assert(byte_offset < p_size, "Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, (int64_t)byte_offset, (int64_t)p_size);
  }
#endif
}

static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
  assert_field_offset_sane(p, field_offset);
  jlong byte_offset = field_offset_to_byte_offset(field_offset);

  if (p != NULL) {
    p = Access<>::resolve(p);
  }

  if (sizeof(char*) == sizeof(jint)) {   // (this constant folds!)
    return (address)p + (jint) byte_offset;
  } else {
    return (address)p +        byte_offset;
  }
}

// Externally callable versions:
// (Use these in compiler intrinsics which emulate unsafe primitives.)
jlong Unsafe_field_offset_to_byte_offset(jlong field_offset) {
  return field_offset;
}
jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) {
  return byte_offset;
}


///// Data read/writes on the Java heap and in native (off-heap) memory

/**
 * Helper class to wrap memory accesses in JavaThread::doing_unsafe_access()
 */
class GuardUnsafeAccess {
  JavaThread* _thread;

public:
  GuardUnsafeAccess(JavaThread* thread) : _thread(thread) {
    // native/off-heap access which may raise SIGBUS if accessing
    // memory mapped file data in a region of the file which has
    // been truncated and is now invalid.
    _thread->set_doing_unsafe_access(true);
  }

  ~GuardUnsafeAccess() {
    _thread->set_doing_unsafe_access(false);
  }
};

/**
 * Helper class for accessing memory.
 *
 * Normalizes values and wraps accesses in
 * JavaThread::doing_unsafe_access() if needed.
 */
template <typename T>
class MemoryAccess : StackObj {
  JavaThread* _thread;
  oop _obj;
  ptrdiff_t _offset;

  // Resolves and returns the address of the memory access.
  // This raw memory access may fault, so we make sure it happens within the
  // guarded scope by making the access volatile at least. Since the store
  // of Thread::set_doing_unsafe_access() is also volatile, these accesses
  // can not be reordered by the compiler. Therefore, if the access triggers
  // a fault, we will know that Thread::doing_unsafe_access() returns true.
  volatile T* addr() {
    void* addr = index_oop_from_field_offset_long(_obj, _offset);
    return static_cast<volatile T*>(addr);
  }

  template <typename U>
  U normalize_for_write(U x) {
    return x;
  }

  jboolean normalize_for_write(jboolean x) {
    return x & 1;
  }

  template <typename U>
  U normalize_for_read(U x) {
    return x;
  }

  jboolean normalize_for_read(jboolean x) {
    return x != 0;
  }

public:
  MemoryAccess(JavaThread* thread, jobject obj, jlong offset)
    : _thread(thread), _obj(JNIHandles::resolve(obj)), _offset((ptrdiff_t)offset) {
    assert_field_offset_sane(_obj, offset);
  }

  T get() {
    if (_obj == NULL) {
      GuardUnsafeAccess guard(_thread);
      T ret = RawAccess<>::load(addr());
      return normalize_for_read(ret);
    } else {
      T ret = HeapAccess<>::load_at(_obj, _offset);
      return normalize_for_read(ret);
    }
  }

  void put(T x) {
    if (_obj == NULL) {
      GuardUnsafeAccess guard(_thread);
      RawAccess<>::store(addr(), normalize_for_write(x));
    } else {
      HeapAccess<>::store_at(_obj, _offset, normalize_for_write(x));
    }
  }


  T get_volatile() {
    if (_obj == NULL) {
      GuardUnsafeAccess guard(_thread);
      volatile T ret = RawAccess<MO_SEQ_CST>::load(addr());
      return normalize_for_read(ret);
    } else {
      T ret = HeapAccess<MO_SEQ_CST>::load_at(_obj, _offset);
      return normalize_for_read(ret);
    }
  }

  void put_volatile(T x) {
    if (_obj == NULL) {
      GuardUnsafeAccess guard(_thread);
      RawAccess<MO_SEQ_CST>::store(addr(), normalize_for_write(x));
    } else {
      HeapAccess<MO_SEQ_CST>::store_at(_obj, _offset, normalize_for_write(x));
    }
  }
};

// These functions allow a null base pointer with an arbitrary address.
// But if the base pointer is non-null, the offset should make some sense.
// That is, it should be in the range [0, MAX_OBJECT_SIZE].
UNSAFE_ENTRY(jobject, Unsafe_GetReference(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  oop v = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_load_at(p, offset);
  return JNIHandles::make_local(env, v);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_PutReference(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
  oop x = JNIHandles::resolve(x_h);
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  HeapAccess<ON_UNKNOWN_OOP_REF>::oop_store_at(p, offset, x);
} UNSAFE_END

UNSAFE_ENTRY(jobject, Unsafe_GetReferenceVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  oop v = HeapAccess<MO_SEQ_CST | ON_UNKNOWN_OOP_REF>::oop_load_at(p, offset);
  return JNIHandles::make_local(env, v);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_PutReferenceVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
  oop x = JNIHandles::resolve(x_h);
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  HeapAccess<MO_SEQ_CST | ON_UNKNOWN_OOP_REF>::oop_store_at(p, offset, x);
} UNSAFE_END

UNSAFE_ENTRY(jobject, Unsafe_GetUncompressedObject(JNIEnv *env, jobject unsafe, jlong addr)) {
  oop v = *(oop*) (address) addr;
  return JNIHandles::make_local(env, v);
} UNSAFE_END

#define DEFINE_GETSETOOP(java_type, Type) \
 \
UNSAFE_ENTRY(java_type, Unsafe_Get##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
  return MemoryAccess<java_type>(thread, obj, offset).get(); \
} UNSAFE_END \
 \
UNSAFE_ENTRY(void, Unsafe_Put##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
  MemoryAccess<java_type>(thread, obj, offset).put(x); \
} UNSAFE_END \
 \
// END DEFINE_GETSETOOP.

DEFINE_GETSETOOP(jboolean, Boolean)
DEFINE_GETSETOOP(jbyte, Byte)
DEFINE_GETSETOOP(jshort, Short);
DEFINE_GETSETOOP(jchar, Char);
DEFINE_GETSETOOP(jint, Int);
DEFINE_GETSETOOP(jlong, Long);
DEFINE_GETSETOOP(jfloat, Float);
DEFINE_GETSETOOP(jdouble, Double);

#undef DEFINE_GETSETOOP

#define DEFINE_GETSETOOP_VOLATILE(java_type, Type) \
 \
UNSAFE_ENTRY(java_type, Unsafe_Get##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
  return MemoryAccess<java_type>(thread, obj, offset).get_volatile(); \
} UNSAFE_END \
 \
UNSAFE_ENTRY(void, Unsafe_Put##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
  MemoryAccess<java_type>(thread, obj, offset).put_volatile(x); \
} UNSAFE_END \
 \
// END DEFINE_GETSETOOP_VOLATILE.

DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean)
DEFINE_GETSETOOP_VOLATILE(jbyte, Byte)
DEFINE_GETSETOOP_VOLATILE(jshort, Short);
DEFINE_GETSETOOP_VOLATILE(jchar, Char);
DEFINE_GETSETOOP_VOLATILE(jint, Int);
DEFINE_GETSETOOP_VOLATILE(jlong, Long);
DEFINE_GETSETOOP_VOLATILE(jfloat, Float);
DEFINE_GETSETOOP_VOLATILE(jdouble, Double);

#undef DEFINE_GETSETOOP_VOLATILE

UNSAFE_LEAF(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) {
  OrderAccess::acquire();
} UNSAFE_END

UNSAFE_LEAF(void, Unsafe_StoreFence(JNIEnv *env, jobject unsafe)) {
  OrderAccess::release();
} UNSAFE_END

UNSAFE_LEAF(void, Unsafe_FullFence(JNIEnv *env, jobject unsafe)) {
  OrderAccess::fence();
} UNSAFE_END

////// Allocation requests

UNSAFE_ENTRY(jobject, Unsafe_AllocateInstance(JNIEnv *env, jobject unsafe, jclass cls)) {
  ThreadToNativeFromVM ttnfv(thread);
  return env->AllocObject(cls);
} UNSAFE_END

UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory0(JNIEnv *env, jobject unsafe, jlong size)) {
  size_t sz = (size_t)size;

  sz = align_up(sz, HeapWordSize);
  void* x = os::malloc(sz, mtOther);

  return addr_to_java(x);
} UNSAFE_END

UNSAFE_ENTRY(jlong, Unsafe_ReallocateMemory0(JNIEnv *env, jobject unsafe, jlong addr, jlong size)) {
  void* p = addr_from_java(addr);
  size_t sz = (size_t)size;
  sz = align_up(sz, HeapWordSize);

  void* x = os::realloc(p, sz, mtOther);

  return addr_to_java(x);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_FreeMemory0(JNIEnv *env, jobject unsafe, jlong addr)) {
  void* p = addr_from_java(addr);

  os::free(p);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_SetMemory0(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong size, jbyte value)) {
  size_t sz = (size_t)size;

  oop base = JNIHandles::resolve(obj);
  void* p = index_oop_from_field_offset_long(base, offset);

  Copy::fill_to_memory_atomic(p, sz, value);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_CopyMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size)) {
  size_t sz = (size_t)size;

  oop srcp = JNIHandles::resolve(srcObj);
  oop dstp = JNIHandles::resolve(dstObj);

  void* src = index_oop_from_field_offset_long(srcp, srcOffset);
  void* dst = index_oop_from_field_offset_long(dstp, dstOffset);
  {
    GuardUnsafeAccess guard(thread);
    if (StubRoutines::unsafe_arraycopy() != NULL) {
      StubRoutines::UnsafeArrayCopy_stub()(src, dst, sz);
    } else {
      Copy::conjoint_memory_atomic(src, dst, sz);
    }
  }
} UNSAFE_END

// This function is a leaf since if the source and destination are both in native memory
// the copy may potentially be very large, and we don't want to disable GC if we can avoid it.
// If either source or destination (or both) are on the heap, the function will enter VM using
// JVM_ENTRY_FROM_LEAF
UNSAFE_LEAF(void, Unsafe_CopySwapMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size, jlong elemSize)) {
  size_t sz = (size_t)size;
  size_t esz = (size_t)elemSize;

  if (srcObj == NULL && dstObj == NULL) {
    // Both src & dst are in native memory
    address src = (address)srcOffset;
    address dst = (address)dstOffset;

    {
      JavaThread* thread = JavaThread::thread_from_jni_environment(env);
      GuardUnsafeAccess guard(thread);
      Copy::conjoint_swap(src, dst, sz, esz);
    }
  } else {
    // At least one of src/dst are on heap, transition to VM to access raw pointers

    JVM_ENTRY_FROM_LEAF(env, void, Unsafe_CopySwapMemory0) {
      oop srcp = JNIHandles::resolve(srcObj);
      oop dstp = JNIHandles::resolve(dstObj);

      address src = (address)index_oop_from_field_offset_long(srcp, srcOffset);
      address dst = (address)index_oop_from_field_offset_long(dstp, dstOffset);

      {
        GuardUnsafeAccess guard(thread);
        Copy::conjoint_swap(src, dst, sz, esz);
      }
    } JVM_END
  }
} UNSAFE_END

UNSAFE_LEAF (void, Unsafe_WriteBack0(JNIEnv *env, jobject unsafe, jlong line)) {
  assert(VM_Version::supports_data_cache_line_flush(), "should not get here");
#ifdef ASSERT
  if (TraceMemoryWriteback) {
    tty->print_cr("Unsafe: writeback 0x%p", addr_from_java(line));
  }
#endif

  assert(StubRoutines::data_cache_writeback() != NULL, "sanity");
  (StubRoutines::DataCacheWriteback_stub())(addr_from_java(line));
} UNSAFE_END

static void doWriteBackSync0(bool is_pre)
{
  assert(StubRoutines::data_cache_writeback_sync() != NULL, "sanity");
  (StubRoutines::DataCacheWritebackSync_stub())(is_pre);
}

UNSAFE_LEAF (void, Unsafe_WriteBackPreSync0(JNIEnv *env, jobject unsafe)) {
  assert(VM_Version::supports_data_cache_line_flush(), "should not get here");
#ifdef ASSERT
  if (TraceMemoryWriteback) {
      tty->print_cr("Unsafe: writeback pre-sync");
  }
#endif

  doWriteBackSync0(true);
} UNSAFE_END

UNSAFE_LEAF (void, Unsafe_WriteBackPostSync0(JNIEnv *env, jobject unsafe)) {
  assert(VM_Version::supports_data_cache_line_flush(), "should not get here");
#ifdef ASSERT
  if (TraceMemoryWriteback) {
    tty->print_cr("Unsafe: writeback pre-sync");
  }
#endif

  doWriteBackSync0(false);
} UNSAFE_END

////// Random queries

static jlong find_field_offset(jclass clazz, jstring name, TRAPS) {
  assert(clazz != NULL, "clazz must not be NULL");
  assert(name != NULL, "name must not be NULL");

  ResourceMark rm(THREAD);
  char *utf_name = java_lang_String::as_utf8_string(JNIHandles::resolve_non_null(name));

  InstanceKlass* k = InstanceKlass::cast(java_lang_Class::as_Klass(JNIHandles::resolve_non_null(clazz)));

  jint offset = -1;
  for (JavaFieldStream fs(k); !fs.done(); fs.next()) {
    Symbol *name = fs.name();
    if (name->equals(utf_name)) {
      offset = fs.offset();
      break;
    }
  }
  if (offset < 0) {
    THROW_0(vmSymbols::java_lang_InternalError());
  }
  return field_offset_from_byte_offset(offset);
}

static jlong find_field_offset(jobject field, int must_be_static, TRAPS) {
  assert(field != NULL, "field must not be NULL");

  oop reflected   = JNIHandles::resolve_non_null(field);
  oop mirror      = java_lang_reflect_Field::clazz(reflected);
  Klass* k        = java_lang_Class::as_Klass(mirror);
  int slot        = java_lang_reflect_Field::slot(reflected);
  int modifiers   = java_lang_reflect_Field::modifiers(reflected);

  if (must_be_static >= 0) {
    int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0);
    if (must_be_static != really_is_static) {
      THROW_0(vmSymbols::java_lang_IllegalArgumentException());
    }
  }

  int offset = InstanceKlass::cast(k)->field_offset(slot);
  return field_offset_from_byte_offset(offset);
}

UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
  return find_field_offset(field, 0, THREAD);
} UNSAFE_END

UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset1(JNIEnv *env, jobject unsafe, jclass c, jstring name)) {
  return find_field_offset(c, name, THREAD);
} UNSAFE_END

UNSAFE_ENTRY(jlong, Unsafe_StaticFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
  return find_field_offset(field, 1, THREAD);
} UNSAFE_END

UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBase0(JNIEnv *env, jobject unsafe, jobject field)) {
  assert(field != NULL, "field must not be NULL");

  // Note:  In this VM implementation, a field address is always a short
  // offset from the base of a a klass metaobject.  Thus, the full dynamic
  // range of the return type is never used.  However, some implementations
  // might put the static field inside an array shared by many classes,
  // or even at a fixed address, in which case the address could be quite
  // large.  In that last case, this function would return NULL, since
  // the address would operate alone, without any base pointer.

  oop reflected   = JNIHandles::resolve_non_null(field);
  oop mirror      = java_lang_reflect_Field::clazz(reflected);
  int modifiers   = java_lang_reflect_Field::modifiers(reflected);

  if ((modifiers & JVM_ACC_STATIC) == 0) {
    THROW_0(vmSymbols::java_lang_IllegalArgumentException());
  }

  return JNIHandles::make_local(env, mirror);
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_EnsureClassInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
  assert(clazz != NULL, "clazz must not be NULL");

  oop mirror = JNIHandles::resolve_non_null(clazz);

  Klass* klass = java_lang_Class::as_Klass(mirror);
  if (klass != NULL && klass->should_be_initialized()) {
    InstanceKlass* k = InstanceKlass::cast(klass);
    k->initialize(CHECK);
  }
}
UNSAFE_END

UNSAFE_ENTRY(jboolean, Unsafe_ShouldBeInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
  assert(clazz != NULL, "clazz must not be NULL");

  oop mirror = JNIHandles::resolve_non_null(clazz);
  Klass* klass = java_lang_Class::as_Klass(mirror);

  if (klass != NULL && klass->should_be_initialized()) {
    return true;
  }

  return false;
}
UNSAFE_END

static void getBaseAndScale(int& base, int& scale, jclass clazz, TRAPS) {
  assert(clazz != NULL, "clazz must not be NULL");

  oop mirror = JNIHandles::resolve_non_null(clazz);
  Klass* k = java_lang_Class::as_Klass(mirror);

  if (k == NULL || !k->is_array_klass()) {
    THROW(vmSymbols::java_lang_InvalidClassException());
  } else if (k->is_objArray_klass()) {
    base  = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
    scale = heapOopSize;
  } else if (k->is_typeArray_klass()) {
    TypeArrayKlass* tak = TypeArrayKlass::cast(k);
    base  = tak->array_header_in_bytes();
    assert(base == arrayOopDesc::base_offset_in_bytes(tak->element_type()), "array_header_size semantics ok");
    scale = (1 << tak->log2_element_size());
  } else {
    ShouldNotReachHere();
  }
}

UNSAFE_ENTRY(jint, Unsafe_ArrayBaseOffset0(JNIEnv *env, jobject unsafe, jclass clazz)) {
  int base = 0, scale = 0;
  getBaseAndScale(base, scale, clazz, CHECK_0);

  return field_offset_from_byte_offset(base);
} UNSAFE_END


UNSAFE_ENTRY(jint, Unsafe_ArrayIndexScale0(JNIEnv *env, jobject unsafe, jclass clazz)) {
  int base = 0, scale = 0;
  getBaseAndScale(base, scale, clazz, CHECK_0);

  // This VM packs both fields and array elements down to the byte.
  // But watch out:  If this changes, so that array references for
  // a given primitive type (say, T_BOOLEAN) use different memory units
  // than fields, this method MUST return zero for such arrays.
  // For example, the VM used to store sub-word sized fields in full
  // words in the object layout, so that accessors like getByte(Object,int)
  // did not really do what one might expect for arrays.  Therefore,
  // this function used to report a zero scale factor, so that the user
  // would know not to attempt to access sub-word array elements.
  // // Code for unpacked fields:
  // if (scale < wordSize)  return 0;

  // The following allows for a pretty general fieldOffset cookie scheme,
  // but requires it to be linear in byte offset.
  return field_offset_from_byte_offset(scale) - field_offset_from_byte_offset(0);
} UNSAFE_END


static inline void throw_new(JNIEnv *env, const char *ename) {
  jclass cls = env->FindClass(ename);
  if (env->ExceptionCheck()) {
    env->ExceptionClear();
    tty->print_cr("Unsafe: cannot throw %s because FindClass has failed", ename);
    return;
  }

  env->ThrowNew(cls, NULL);
}

static jclass Unsafe_DefineClass_impl(JNIEnv *env, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd) {
  // Code lifted from JDK 1.3 ClassLoader.c

  jbyte *body;
  char *utfName = NULL;
  jclass result = 0;
  char buf[128];

  assert(data != NULL, "Class bytes must not be NULL");
  assert(length >= 0, "length must not be negative: %d", length);

  if (UsePerfData) {
    ClassLoader::unsafe_defineClassCallCounter()->inc();
  }

  body = NEW_C_HEAP_ARRAY_RETURN_NULL(jbyte, length, mtInternal);
  if (body == NULL) {
    throw_new(env, "java/lang/OutOfMemoryError");
    return 0;
  }

  env->GetByteArrayRegion(data, offset, length, body);
  if (env->ExceptionOccurred()) {
    goto free_body;
  }

  if (name != NULL) {
    uint len = env->GetStringUTFLength(name);
    int unicode_len = env->GetStringLength(name);

    if (len >= sizeof(buf)) {
      utfName = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len + 1, mtInternal);
      if (utfName == NULL) {
        throw_new(env, "java/lang/OutOfMemoryError");
        goto free_body;
      }
    } else {
      utfName = buf;
    }

    env->GetStringUTFRegion(name, 0, unicode_len, utfName);

    for (uint i = 0; i < len; i++) {
      if (utfName[i] == '.')   utfName[i] = '/';
    }
  }

  result = JVM_DefineClass(env, utfName, loader, body, length, pd);

  if (utfName && utfName != buf) {
    FREE_C_HEAP_ARRAY(char, utfName);
  }

 free_body:
  FREE_C_HEAP_ARRAY(jbyte, body);
  return result;
}


UNSAFE_ENTRY(jclass, Unsafe_DefineClass0(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd)) {
  ThreadToNativeFromVM ttnfv(thread);

  return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd);
} UNSAFE_END


// define a class but do not make it known to the class loader or system dictionary
// - host_class:  supplies context for linkage, access control, protection domain, and class loader
//                if host_class is itself anonymous then it is replaced with its host class.
// - data:  bytes of a class file, a raw memory address (length gives the number of bytes)
// - cp_patches:  where non-null entries exist, they replace corresponding CP entries in data

// When you load an anonymous class U, it works as if you changed its name just before loading,
// to a name that you will never use again.  Since the name is lost, no other class can directly
// link to any member of U.  Just after U is loaded, the only way to use it is reflectively,
// through java.lang.Class methods like Class.newInstance.

// The package of an anonymous class must either match its host's class's package or be in the
// unnamed package.  If it is in the unnamed package then it will be put in its host class's
// package.
//

// Access checks for linkage sites within U continue to follow the same rules as for named classes.
// An anonymous class also has special privileges to access any member of its host class.
// This is the main reason why this loading operation is unsafe.  The purpose of this is to
// allow language implementations to simulate "open classes"; a host class in effect gets
// new code when an anonymous class is loaded alongside it.  A less convenient but more
// standard way to do this is with reflection, which can also be set to ignore access
// restrictions.

// Access into an anonymous class is possible only through reflection.  Therefore, there
// are no special access rules for calling into an anonymous class.  The relaxed access
// rule for the host class is applied in the opposite direction:  A host class reflectively
// access one of its anonymous classes.

// If you load the same bytecodes twice, you get two different classes.  You can reload
// the same bytecodes with or without varying CP patches.

// By using the CP patching array, you can have a new anonymous class U2 refer to an older one U1.
// The bytecodes for U2 should refer to U1 by a symbolic name (doesn't matter what the name is).
// The CONSTANT_Class entry for that name can be patched to refer directly to U1.

// This allows, for example, U2 to use U1 as a superclass or super-interface, or as
// an outer class (so that U2 is an anonymous inner class of anonymous U1).
// It is not possible for a named class, or an older anonymous class, to refer by
// name (via its CP) to a newer anonymous class.

// CP patching may also be used to modify (i.e., hack) the names of methods, classes,
// or type descriptors used in the loaded anonymous class.

// Finally, CP patching may be used to introduce "live" objects into the constant pool,
// instead of "dead" strings.  A compiled statement like println((Object)"hello") can
// be changed to println(greeting), where greeting is an arbitrary object created before
// the anonymous class is loaded.  This is useful in dynamic languages, in which
// various kinds of metaobjects must be introduced as constants into bytecode.
// Note the cast (Object), which tells the verifier to expect an arbitrary object,
// not just a literal string.  For such ldc instructions, the verifier uses the
// type Object instead of String, if the loaded constant is not in fact a String.

static InstanceKlass*
Unsafe_DefineAnonymousClass_impl(JNIEnv *env,
                                 jclass host_class, jbyteArray data, jobjectArray cp_patches_jh,
                                 u1** temp_alloc,
                                 TRAPS) {
  assert(host_class != NULL, "host_class must not be NULL");
  assert(data != NULL, "data must not be NULL");

  if (UsePerfData) {
    ClassLoader::unsafe_defineClassCallCounter()->inc();
  }

  jint length = typeArrayOop(JNIHandles::resolve_non_null(data))->length();
  assert(length >= 0, "class_bytes_length must not be negative: %d", length);

  int class_bytes_length = (int) length;

  u1* class_bytes = NEW_C_HEAP_ARRAY_RETURN_NULL(u1, length, mtInternal);
  if (class_bytes == NULL) {
    THROW_0(vmSymbols::java_lang_OutOfMemoryError());
  }

  // caller responsible to free it:
  *temp_alloc = class_bytes;

  ArrayAccess<>::arraycopy_to_native(arrayOop(JNIHandles::resolve_non_null(data)), typeArrayOopDesc::element_offset<jbyte>(0),
                                     reinterpret_cast<jbyte*>(class_bytes), length);

  objArrayHandle cp_patches_h;
  if (cp_patches_jh != NULL) {
    oop p = JNIHandles::resolve_non_null(cp_patches_jh);
    assert(p->is_objArray(), "cp_patches must be an object[]");
    cp_patches_h = objArrayHandle(THREAD, (objArrayOop)p);
  }

  const Klass* host_klass = java_lang_Class::as_Klass(JNIHandles::resolve_non_null(host_class));

  // Make sure it's the real host class, not another anonymous class.
  while (host_klass != NULL && host_klass->is_instance_klass() &&
         InstanceKlass::cast(host_klass)->is_unsafe_anonymous()) {
    host_klass = InstanceKlass::cast(host_klass)->unsafe_anonymous_host();
  }

  // Primitive types have NULL Klass* fields in their java.lang.Class instances.
  if (host_klass == NULL) {
    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Host class is null");
  }

  assert(host_klass->is_instance_klass(), "Host class must be an instance class");

  const char* host_source = host_klass->external_name();
  Handle      host_loader(THREAD, host_klass->class_loader());
  Handle      host_domain(THREAD, host_klass->protection_domain());

  GrowableArray<Handle>* cp_patches = NULL;

  if (cp_patches_h.not_null()) {
    int alen = cp_patches_h->length();

    for (int i = alen-1; i >= 0; i--) {
      oop p = cp_patches_h->obj_at(i);
      if (p != NULL) {
        Handle patch(THREAD, p);

        if (cp_patches == NULL) {
          cp_patches = new GrowableArray<Handle>(i+1, i+1, Handle());
        }

        cp_patches->at_put(i, patch);
      }
    }
  }

  ClassFileStream st(class_bytes, class_bytes_length, host_source, ClassFileStream::verify);

  Symbol* no_class_name = NULL;
  Klass* anonk = SystemDictionary::parse_stream(no_class_name,
                                                host_loader,
                                                host_domain,
                                                &st,
                                                InstanceKlass::cast(host_klass),
                                                cp_patches,
                                                CHECK_NULL);
  if (anonk == NULL) {
    return NULL;
  }

  return InstanceKlass::cast(anonk);
}

UNSAFE_ENTRY(jclass, Unsafe_DefineAnonymousClass0(JNIEnv *env, jobject unsafe, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh)) {
  ResourceMark rm(THREAD);

  jobject res_jh = NULL;
  u1* temp_alloc = NULL;

  InstanceKlass* anon_klass = Unsafe_DefineAnonymousClass_impl(env, host_class, data, cp_patches_jh, &temp_alloc, THREAD);
  if (anon_klass != NULL) {
    res_jh = JNIHandles::make_local(env, anon_klass->java_mirror());
  }

  // try/finally clause:
  FREE_C_HEAP_ARRAY(u1, temp_alloc);

  // The anonymous class loader data has been artificially been kept alive to
  // this point.   The mirror and any instances of this class have to keep
  // it alive afterwards.
  if (anon_klass != NULL) {
    anon_klass->class_loader_data()->dec_keep_alive();
  }

  // let caller initialize it as needed...

  return (jclass) res_jh;
} UNSAFE_END



UNSAFE_ENTRY(void, Unsafe_ThrowException(JNIEnv *env, jobject unsafe, jthrowable thr)) {
  ThreadToNativeFromVM ttnfv(thread);
  env->Throw(thr);
} UNSAFE_END

// JSR166 ------------------------------------------------------------------

UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeReference(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
  oop x = JNIHandles::resolve(x_h);
  oop e = JNIHandles::resolve(e_h);
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  oop res = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x);
  return JNIHandles::make_local(env, res);
} UNSAFE_END

UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
  oop p = JNIHandles::resolve(obj);
  if (p == NULL) {
    volatile jint* addr = (volatile jint*)index_oop_from_field_offset_long(p, offset);
    return RawAccess<>::atomic_cmpxchg(addr, e, x);
  } else {
    assert_field_offset_sane(p, offset);
    return HeapAccess<>::atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x);
  }
} UNSAFE_END

UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
  oop p = JNIHandles::resolve(obj);
  if (p == NULL) {
    volatile jlong* addr = (volatile jlong*)index_oop_from_field_offset_long(p, offset);
    return RawAccess<>::atomic_cmpxchg(addr, e, x);
  } else {
    assert_field_offset_sane(p, offset);
    return HeapAccess<>::atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x);
  }
} UNSAFE_END

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetReference(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
  oop x = JNIHandles::resolve(x_h);
  oop e = JNIHandles::resolve(e_h);
  oop p = JNIHandles::resolve(obj);
  assert_field_offset_sane(p, offset);
  oop ret = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x);
  return ret == e;
} UNSAFE_END

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
  oop p = JNIHandles::resolve(obj);
  if (p == NULL) {
    volatile jint* addr = (volatile jint*)index_oop_from_field_offset_long(p, offset);
    return RawAccess<>::atomic_cmpxchg(addr, e, x) == e;
  } else {
    assert_field_offset_sane(p, offset);
    return HeapAccess<>::atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x) == e;
  }
} UNSAFE_END

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
  oop p = JNIHandles::resolve(obj);
  if (p == NULL) {
    volatile jlong* addr = (volatile jlong*)index_oop_from_field_offset_long(p, offset);
    return RawAccess<>::atomic_cmpxchg(addr, e, x) == e;
  } else {
    assert_field_offset_sane(p, offset);
    return HeapAccess<>::atomic_cmpxchg_at(p, (ptrdiff_t)offset, e, x) == e;
  }
} UNSAFE_END

static void post_thread_park_event(EventThreadPark* event, const oop obj, jlong timeout_nanos, jlong until_epoch_millis) {
  assert(event != NULL, "invariant");
  assert(event->should_commit(), "invariant");
  event->set_parkedClass((obj != NULL) ? obj->klass() : NULL);
  event->set_timeout(timeout_nanos);
  event->set_until(until_epoch_millis);
  event->set_address((obj != NULL) ? (u8)cast_from_oop<uintptr_t>(obj) : 0);
  event->commit();
}

UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) {
  HOTSPOT_THREAD_PARK_BEGIN((uintptr_t) thread->parker(), (int) isAbsolute, time);
  EventThreadPark event;

  JavaThreadParkedState jtps(thread, time != 0);
  thread->parker()->park(isAbsolute != 0, time);
  if (event.should_commit()) {
    const oop obj = thread->current_park_blocker();
    if (time == 0) {
      post_thread_park_event(&event, obj, min_jlong, min_jlong);
    } else {
      if (isAbsolute != 0) {
        post_thread_park_event(&event, obj, min_jlong, time);
      } else {
        post_thread_park_event(&event, obj, time, min_jlong);
      }
    }
  }
  HOTSPOT_THREAD_PARK_END((uintptr_t) thread->parker());
} UNSAFE_END

UNSAFE_ENTRY(void, Unsafe_Unpark(JNIEnv *env, jobject unsafe, jobject jthread)) {
  Parker* p = NULL;

  if (jthread != NULL) {
    ThreadsListHandle tlh;
    JavaThread* thr = NULL;
    oop java_thread = NULL;
    (void) tlh.cv_internal_thread_to_JavaThread(jthread, &thr, &java_thread);
    if (java_thread != NULL) {
      // This is a valid oop.
      if (thr != NULL) {
        // The JavaThread is alive.
        p = thr->parker();
      }
    }
  } // ThreadsListHandle is destroyed here.

  // 'p' points to type-stable-memory if non-NULL. If the target
  // thread terminates before we get here the new user of this
  // Parker will get a 'spurious' unpark - which is perfectly valid.
  if (p != NULL) {
    HOTSPOT_THREAD_UNPARK((uintptr_t) p);
    p->unpark();
  }
} UNSAFE_END

UNSAFE_ENTRY(jint, Unsafe_GetLoadAverage0(JNIEnv *env, jobject unsafe, jdoubleArray loadavg, jint nelem)) {
  const int max_nelem = 3;
  double la[max_nelem];
  jint ret;

  typeArrayOop a = typeArrayOop(JNIHandles::resolve_non_null(loadavg));
  assert(a->is_typeArray(), "must be type array");

  ret = os::loadavg(la, nelem);
  if (ret == -1) {
    return -1;
  }

  // if successful, ret is the number of samples actually retrieved.
  assert(ret >= 0 && ret <= max_nelem, "Unexpected loadavg return value");
  switch(ret) {
    case 3: a->double_at_put(2, (jdouble)la[2]); // fall through
    case 2: a->double_at_put(1, (jdouble)la[1]); // fall through
    case 1: a->double_at_put(0, (jdouble)la[0]); break;
  }

  return ret;
} UNSAFE_END


/// JVM_RegisterUnsafeMethods

#define ADR "J"

#define LANG "Ljava/lang/"

#define OBJ LANG "Object;"
#define CLS LANG "Class;"
#define FLD LANG "reflect/Field;"
#define THR LANG "Throwable;"

#define DC_Args  LANG "String;[BII" LANG "ClassLoader;" "Ljava/security/ProtectionDomain;"
#define DAC_Args CLS "[B[" OBJ

#define CC (char*)  /*cast a literal from (const char*)*/
#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)

#define DECLARE_GETPUTOOP(Type, Desc) \
    {CC "get" #Type,      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type)}, \
    {CC "put" #Type,      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type)}, \
    {CC "get" #Type "Volatile",      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type##Volatile)}, \
    {CC "put" #Type "Volatile",      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type##Volatile)}


static JNINativeMethod jdk_internal_misc_Unsafe_methods[] = {
    {CC "getReference",         CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetReference)},
    {CC "putReference",         CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_PutReference)},

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java