/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "aot/aotLoader.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/classFileStream.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/metadataOnStackMark.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/verifier.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/oopMapCache.hpp"
#include "interpreter/rewriter.hpp"
#include "logging/logStream.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/annotations.hpp"
#include "oops/constantPool.hpp"
#include "oops/fieldStreams.inline.hpp"
#include "oops/klassVtable.hpp"
#include "oops/oop.inline.hpp"
#include "oops/recordComponent.hpp"
#include "prims/jvmtiImpl.hpp"
#include "prims/jvmtiRedefineClasses.hpp"
#include "prims/jvmtiThreadState.inline.hpp"
#include "prims/resolvedMethodTable.hpp"
#include "prims/methodComparator.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/relocator.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/events.hpp"
Array<Method*>* VM_RedefineClasses::_old_methods = NULL;
Array<Method*>* VM_RedefineClasses::_new_methods = NULL;
Method** VM_RedefineClasses::_matching_old_methods = NULL;
Method** VM_RedefineClasses::_matching_new_methods = NULL;
Method** VM_RedefineClasses::_deleted_methods = NULL;
Method** VM_RedefineClasses::_added_methods = NULL;
int VM_RedefineClasses::_matching_methods_length = 0;
int VM_RedefineClasses::_deleted_methods_length = 0;
int VM_RedefineClasses::_added_methods_length = 0;
bool VM_RedefineClasses::_has_redefined_Object = false;
bool VM_RedefineClasses::_has_null_class_loader = false;
VM_RedefineClasses::VM_RedefineClasses(jint class_count,
const jvmtiClassDefinition *class_defs,
JvmtiClassLoadKind class_load_kind) {
_class_count = class_count;
_class_defs = class_defs;
_class_load_kind = class_load_kind;
_any_class_has_resolved_methods = false;
_res = JVMTI_ERROR_NONE;
_the_class = NULL;
_has_redefined_Object = false;
_has_null_class_loader = false;
}
static inline InstanceKlass* get_ik(jclass def) {
oop mirror = JNIHandles::resolve_non_null(def);
return InstanceKlass::cast(java_lang_Class::as_Klass(mirror));
}
// If any of the classes are being redefined, wait
// Parallel constant pool merging leads to indeterminate constant pools.
void VM_RedefineClasses::lock_classes() {
MonitorLocker ml(RedefineClasses_lock);
bool has_redefined;
do {
has_redefined = false;
// Go through classes each time until none are being redefined.
for (int i = 0; i < _class_count; i++) {
if (get_ik(_class_defs[i].klass)->is_being_redefined()) {
ml.wait();
has_redefined = true;
break; // for loop
}
}
} while (has_redefined);
for (int i = 0; i < _class_count; i++) {
get_ik(_class_defs[i].klass)->set_is_being_redefined(true);
}
ml.notify_all();
}
void VM_RedefineClasses::unlock_classes() {
MonitorLocker ml(RedefineClasses_lock);
for (int i = 0; i < _class_count; i++) {
assert(get_ik(_class_defs[i].klass)->is_being_redefined(),
"should be being redefined to get here");
get_ik(_class_defs[i].klass)->set_is_being_redefined(false);
}
ml.notify_all();
}
bool VM_RedefineClasses::doit_prologue() {
if (_class_count == 0) {
_res = JVMTI_ERROR_NONE;
return false;
}
if (_class_defs == NULL) {
_res = JVMTI_ERROR_NULL_POINTER;
return false;
}
for (int i = 0; i < _class_count; i++) {
if (_class_defs[i].klass == NULL) {
_res = JVMTI_ERROR_INVALID_CLASS;
return false;
}
if (_class_defs[i].class_byte_count == 0) {
_res = JVMTI_ERROR_INVALID_CLASS_FORMAT;
return false;
}
if (_class_defs[i].class_bytes == NULL) {
_res = JVMTI_ERROR_NULL_POINTER;
return false;
}
oop mirror = JNIHandles::resolve_non_null(_class_defs[i].klass);
// classes for primitives and arrays and vm unsafe anonymous classes cannot be redefined
// check here so following code can assume these classes are InstanceKlass
if (!is_modifiable_class(mirror)) {
_res = JVMTI_ERROR_UNMODIFIABLE_CLASS;
return false;
}
}
// Start timer after all the sanity checks; not quite accurate, but
// better than adding a bunch of stop() calls.
if (log_is_enabled(Info, redefine, class, timer)) {
_timer_vm_op_prologue.start();
}
lock_classes();
// We first load new class versions in the prologue, because somewhere down the
// call chain it is required that the current thread is a Java thread.
_res = load_new_class_versions(Thread::current());
if (_res != JVMTI_ERROR_NONE) {
// free any successfully created classes, since none are redefined
for (int i = 0; i < _class_count; i++) {
if (_scratch_classes[i] != NULL) {
ClassLoaderData* cld = _scratch_classes[i]->class_loader_data();
// Free the memory for this class at class unloading time. Not before
// because CMS might think this is still live.
InstanceKlass* ik = get_ik(_class_defs[i].klass);
if (ik->get_cached_class_file() == _scratch_classes[i]->get_cached_class_file()) {
// Don't double-free cached_class_file copied from the original class if error.
_scratch_classes[i]->set_cached_class_file(NULL);
}
cld->add_to_deallocate_list(InstanceKlass::cast(_scratch_classes[i]));
}
}
// Free os::malloc allocated memory in load_new_class_version.
os::free(_scratch_classes);
_timer_vm_op_prologue.stop();
unlock_classes();
return false;
}
_timer_vm_op_prologue.stop();
return true;
}
void VM_RedefineClasses::doit() {
Thread *thread = Thread::current();
#if INCLUDE_CDS
if (UseSharedSpaces) {
// Sharing is enabled so we remap the shared readonly space to
// shared readwrite, private just in case we need to redefine
// a shared class. We do the remap during the doit() phase of
// the safepoint to be safer.
if (!MetaspaceShared::remap_shared_readonly_as_readwrite()) {
log_info(redefine, class, load)("failed to remap shared readonly space to readwrite, private");
_res = JVMTI_ERROR_INTERNAL;
return;
}
}
#endif
// Mark methods seen on stack and everywhere else so old methods are not
// cleaned up if they're on the stack.
MetadataOnStackMark md_on_stack(/*walk_all_metadata*/true, /*redefinition_walk*/true);
HandleMark hm(thread); // make sure any handles created are deleted
// before the stack walk again.
for (int i = 0; i < _class_count; i++) {
redefine_single_class(_class_defs[i].klass, _scratch_classes[i], thread);
}
// Flush all compiled code that depends on the classes redefined.
flush_dependent_code();
// Adjust constantpool caches and vtables for all classes
// that reference methods of the evolved classes.
// Have to do this after all classes are redefined and all methods that
// are redefined are marked as old.
AdjustAndCleanMetadata adjust_and_clean_metadata(thread);
ClassLoaderDataGraph::classes_do(&adjust_and_clean_metadata);
// JSR-292 support
if (_any_class_has_resolved_methods) {
bool trace_name_printed = false;
ResolvedMethodTable::adjust_method_entries(&trace_name_printed);
}
// Increment flag indicating that some invariants are no longer true.
// See jvmtiExport.hpp for detailed explanation.
JvmtiExport::increment_redefinition_count();
// check_class() is optionally called for product bits, but is
// always called for non-product bits.
#ifdef PRODUCT
if (log_is_enabled(Trace, redefine, class, obsolete, metadata)) {
#endif
log_trace(redefine, class, obsolete, metadata)("calling check_class");
CheckClass check_class(thread);
ClassLoaderDataGraph::classes_do(&check_class);
#ifdef PRODUCT
}
#endif
// Clean up any metadata now unreferenced while MetadataOnStackMark is set.
ClassLoaderDataGraph::clean_deallocate_lists(false);
}
void VM_RedefineClasses::doit_epilogue() {
unlock_classes();
// Free os::malloc allocated memory.
os::free(_scratch_classes);
// Reset the_class to null for error printing.
_the_class = NULL;
if (log_is_enabled(Info, redefine, class, timer)) {
// Used to have separate timers for "doit" and "all", but the timer
// overhead skewed the measurements.
julong doit_time = _timer_rsc_phase1.milliseconds() +
_timer_rsc_phase2.milliseconds();
julong all_time = _timer_vm_op_prologue.milliseconds() + doit_time;
log_info(redefine, class, timer)
("vm_op: all=" JULONG_FORMAT " prologue=" JULONG_FORMAT " doit=" JULONG_FORMAT,
all_time, (julong)_timer_vm_op_prologue.milliseconds(), doit_time);
log_info(redefine, class, timer)
("redefine_single_class: phase1=" JULONG_FORMAT " phase2=" JULONG_FORMAT,
(julong)_timer_rsc_phase1.milliseconds(), (julong)_timer_rsc_phase2.milliseconds());
}
}
bool VM_RedefineClasses::is_modifiable_class(oop klass_mirror) {
// classes for primitives cannot be redefined
if (java_lang_Class::is_primitive(klass_mirror)) {
return false;
}
Klass* k = java_lang_Class::as_Klass(klass_mirror);
// classes for arrays cannot be redefined
if (k == NULL || !k->is_instance_klass()) {
return false;
}
// Cannot redefine or retransform an unsafe anonymous class.
if (InstanceKlass::cast(k)->is_unsafe_anonymous()) {
return false;
}
return true;
}
// Append the current entry at scratch_i in scratch_cp to *merge_cp_p
// where the end of *merge_cp_p is specified by *merge_cp_length_p. For
// direct CP entries, there is just the current entry to append. For
// indirect and double-indirect CP entries, there are zero or more
// referenced CP entries along with the current entry to append.
// Indirect and double-indirect CP entries are handled by recursive
// calls to append_entry() as needed. The referenced CP entries are
// always appended to *merge_cp_p before the referee CP entry. These
// referenced CP entries may already exist in *merge_cp_p in which case
// there is nothing extra to append and only the current entry is
// appended.
void VM_RedefineClasses::append_entry(const constantPoolHandle& scratch_cp,
int scratch_i, constantPoolHandle *merge_cp_p, int *merge_cp_length_p,
TRAPS) {
// append is different depending on entry tag type
switch (scratch_cp->tag_at(scratch_i).value()) {
// The old verifier is implemented outside the VM. It loads classes,
// but does not resolve constant pool entries directly so we never
// see Class entries here with the old verifier. Similarly the old
// verifier does not like Class entries in the input constant pool.
// The split-verifier is implemented in the VM so it can optionally
// and directly resolve constant pool entries to load classes. The
// split-verifier can accept either Class entries or UnresolvedClass
// entries in the input constant pool. We revert the appended copy
// back to UnresolvedClass so that either verifier will be happy
// with the constant pool entry.
//
// this is an indirect CP entry so it needs special handling
case JVM_CONSTANT_Class:
case JVM_CONSTANT_UnresolvedClass:
{
int name_i = scratch_cp->klass_name_index_at(scratch_i);
int new_name_i = find_or_append_indirect_entry(scratch_cp, name_i, merge_cp_p,
merge_cp_length_p, THREAD);
if (new_name_i != name_i) {
log_trace(redefine, class, constantpool)
("Class entry@%d name_index change: %d to %d",
*merge_cp_length_p, name_i, new_name_i);
}
(*merge_cp_p)->temp_unresolved_klass_at_put(*merge_cp_length_p, new_name_i);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// these are direct CP entries so they can be directly appended,
// but double and long take two constant pool entries
case JVM_CONSTANT_Double: // fall through
case JVM_CONSTANT_Long:
{
ConstantPool::copy_entry_to(scratch_cp, scratch_i, *merge_cp_p, *merge_cp_length_p,
THREAD);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p) += 2;
} break;
// these are direct CP entries so they can be directly appended
case JVM_CONSTANT_Float: // fall through
case JVM_CONSTANT_Integer: // fall through
case JVM_CONSTANT_Utf8: // fall through
// This was an indirect CP entry, but it has been changed into
// Symbol*s so this entry can be directly appended.
case JVM_CONSTANT_String: // fall through
{
ConstantPool::copy_entry_to(scratch_cp, scratch_i, *merge_cp_p, *merge_cp_length_p,
THREAD);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// this is an indirect CP entry so it needs special handling
case JVM_CONSTANT_NameAndType:
{
int name_ref_i = scratch_cp->name_ref_index_at(scratch_i);
int new_name_ref_i = find_or_append_indirect_entry(scratch_cp, name_ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
int signature_ref_i = scratch_cp->signature_ref_index_at(scratch_i);
int new_signature_ref_i = find_or_append_indirect_entry(scratch_cp, signature_ref_i,
merge_cp_p, merge_cp_length_p,
THREAD);
// If the referenced entries already exist in *merge_cp_p, then
// both new_name_ref_i and new_signature_ref_i will both be 0.
// In that case, all we are appending is the current entry.
if (new_name_ref_i != name_ref_i) {
log_trace(redefine, class, constantpool)
("NameAndType entry@%d name_ref_index change: %d to %d",
*merge_cp_length_p, name_ref_i, new_name_ref_i);
}
if (new_signature_ref_i != signature_ref_i) {
log_trace(redefine, class, constantpool)
("NameAndType entry@%d signature_ref_index change: %d to %d",
*merge_cp_length_p, signature_ref_i, new_signature_ref_i);
}
(*merge_cp_p)->name_and_type_at_put(*merge_cp_length_p,
new_name_ref_i, new_signature_ref_i);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// this is a double-indirect CP entry so it needs special handling
case JVM_CONSTANT_Fieldref: // fall through
case JVM_CONSTANT_InterfaceMethodref: // fall through
case JVM_CONSTANT_Methodref:
{
int klass_ref_i = scratch_cp->uncached_klass_ref_index_at(scratch_i);
int new_klass_ref_i = find_or_append_indirect_entry(scratch_cp, klass_ref_i,
merge_cp_p, merge_cp_length_p, THREAD);
int name_and_type_ref_i = scratch_cp->uncached_name_and_type_ref_index_at(scratch_i);
int new_name_and_type_ref_i = find_or_append_indirect_entry(scratch_cp, name_and_type_ref_i,
merge_cp_p, merge_cp_length_p, THREAD);
const char *entry_name = NULL;
switch (scratch_cp->tag_at(scratch_i).value()) {
case JVM_CONSTANT_Fieldref:
entry_name = "Fieldref";
(*merge_cp_p)->field_at_put(*merge_cp_length_p, new_klass_ref_i,
new_name_and_type_ref_i);
break;
case JVM_CONSTANT_InterfaceMethodref:
entry_name = "IFMethodref";
(*merge_cp_p)->interface_method_at_put(*merge_cp_length_p,
new_klass_ref_i, new_name_and_type_ref_i);
break;
case JVM_CONSTANT_Methodref:
entry_name = "Methodref";
(*merge_cp_p)->method_at_put(*merge_cp_length_p, new_klass_ref_i,
new_name_and_type_ref_i);
break;
default:
guarantee(false, "bad switch");
break;
}
if (klass_ref_i != new_klass_ref_i) {
log_trace(redefine, class, constantpool)
("%s entry@%d class_index changed: %d to %d", entry_name, *merge_cp_length_p, klass_ref_i, new_klass_ref_i);
}
if (name_and_type_ref_i != new_name_and_type_ref_i) {
log_trace(redefine, class, constantpool)
("%s entry@%d name_and_type_index changed: %d to %d",
entry_name, *merge_cp_length_p, name_and_type_ref_i, new_name_and_type_ref_i);
}
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// this is an indirect CP entry so it needs special handling
case JVM_CONSTANT_MethodType:
{
int ref_i = scratch_cp->method_type_index_at(scratch_i);
int new_ref_i = find_or_append_indirect_entry(scratch_cp, ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
if (new_ref_i != ref_i) {
log_trace(redefine, class, constantpool)
("MethodType entry@%d ref_index change: %d to %d", *merge_cp_length_p, ref_i, new_ref_i);
}
(*merge_cp_p)->method_type_index_at_put(*merge_cp_length_p, new_ref_i);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// this is an indirect CP entry so it needs special handling
case JVM_CONSTANT_MethodHandle:
{
int ref_kind = scratch_cp->method_handle_ref_kind_at(scratch_i);
int ref_i = scratch_cp->method_handle_index_at(scratch_i);
int new_ref_i = find_or_append_indirect_entry(scratch_cp, ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
if (new_ref_i != ref_i) {
log_trace(redefine, class, constantpool)
("MethodHandle entry@%d ref_index change: %d to %d", *merge_cp_length_p, ref_i, new_ref_i);
}
(*merge_cp_p)->method_handle_index_at_put(*merge_cp_length_p, ref_kind, new_ref_i);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// this is an indirect CP entry so it needs special handling
case JVM_CONSTANT_Dynamic: // fall through
case JVM_CONSTANT_InvokeDynamic:
{
// Index of the bootstrap specifier in the operands array
int old_bs_i = scratch_cp->bootstrap_methods_attribute_index(scratch_i);
int new_bs_i = find_or_append_operand(scratch_cp, old_bs_i, merge_cp_p,
merge_cp_length_p, THREAD);
// The bootstrap method NameAndType_info index
int old_ref_i = scratch_cp->bootstrap_name_and_type_ref_index_at(scratch_i);
int new_ref_i = find_or_append_indirect_entry(scratch_cp, old_ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
if (new_bs_i != old_bs_i) {
log_trace(redefine, class, constantpool)
("Dynamic entry@%d bootstrap_method_attr_index change: %d to %d",
*merge_cp_length_p, old_bs_i, new_bs_i);
}
if (new_ref_i != old_ref_i) {
log_trace(redefine, class, constantpool)
("Dynamic entry@%d name_and_type_index change: %d to %d", *merge_cp_length_p, old_ref_i, new_ref_i);
}
if (scratch_cp->tag_at(scratch_i).is_dynamic_constant())
(*merge_cp_p)->dynamic_constant_at_put(*merge_cp_length_p, new_bs_i, new_ref_i);
else
(*merge_cp_p)->invoke_dynamic_at_put(*merge_cp_length_p, new_bs_i, new_ref_i);
if (scratch_i != *merge_cp_length_p) {
// The new entry in *merge_cp_p is at a different index than
// the new entry in scratch_cp so we need to map the index values.
map_index(scratch_cp, scratch_i, *merge_cp_length_p);
}
(*merge_cp_length_p)++;
} break;
// At this stage, Class or UnresolvedClass could be in scratch_cp, but not
// ClassIndex
case JVM_CONSTANT_ClassIndex: // fall through
// Invalid is used as the tag for the second constant pool entry
// occupied by JVM_CONSTANT_Double or JVM_CONSTANT_Long. It should
// not be seen by itself.
case JVM_CONSTANT_Invalid: // fall through
// At this stage, String could be here, but not StringIndex
case JVM_CONSTANT_StringIndex: // fall through
// At this stage JVM_CONSTANT_UnresolvedClassInError should not be
// here
case JVM_CONSTANT_UnresolvedClassInError: // fall through
default:
{
// leave a breadcrumb
jbyte bad_value = scratch_cp->tag_at(scratch_i).value();
ShouldNotReachHere();
} break;
} // end switch tag value
} // end append_entry()
int VM_RedefineClasses::find_or_append_indirect_entry(const constantPoolHandle& scratch_cp,
int ref_i, constantPoolHandle *merge_cp_p, int *merge_cp_length_p, TRAPS) {
int new_ref_i = ref_i;
bool match = (ref_i < *merge_cp_length_p) &&
scratch_cp->compare_entry_to(ref_i, *merge_cp_p, ref_i, THREAD);
if (!match) {
// forward reference in *merge_cp_p or not a direct match
int found_i = scratch_cp->find_matching_entry(ref_i, *merge_cp_p, THREAD);
if (found_i != 0) {
guarantee(found_i != ref_i, "compare_entry_to() and find_matching_entry() do not agree");
// Found a matching entry somewhere else in *merge_cp_p so just need a mapping entry.
new_ref_i = found_i;
map_index(scratch_cp, ref_i, found_i);
} else {
// no match found so we have to append this entry to *merge_cp_p
append_entry(scratch_cp, ref_i, merge_cp_p, merge_cp_length_p, THREAD);
// The above call to append_entry() can only append one entry
// so the post call query of *merge_cp_length_p is only for
// the sake of consistency.
new_ref_i = *merge_cp_length_p - 1;
}
}
return new_ref_i;
} // end find_or_append_indirect_entry()
// Append a bootstrap specifier into the merge_cp operands that is semantically equal
// to the scratch_cp operands bootstrap specifier passed by the old_bs_i index.
// Recursively append new merge_cp entries referenced by the new bootstrap specifier.
void VM_RedefineClasses::append_operand(const constantPoolHandle& scratch_cp, int old_bs_i,
constantPoolHandle *merge_cp_p, int *merge_cp_length_p, TRAPS) {
int old_ref_i = scratch_cp->operand_bootstrap_method_ref_index_at(old_bs_i);
int new_ref_i = find_or_append_indirect_entry(scratch_cp, old_ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
if (new_ref_i != old_ref_i) {
log_trace(redefine, class, constantpool)
("operands entry@%d bootstrap method ref_index change: %d to %d", _operands_cur_length, old_ref_i, new_ref_i);
}
Array<u2>* merge_ops = (*merge_cp_p)->operands();
int new_bs_i = _operands_cur_length;
// We have _operands_cur_length == 0 when the merge_cp operands is empty yet.
// However, the operand_offset_at(0) was set in the extend_operands() call.
int new_base = (new_bs_i == 0) ? (*merge_cp_p)->operand_offset_at(0)
: (*merge_cp_p)->operand_next_offset_at(new_bs_i - 1);
int argc = scratch_cp->operand_argument_count_at(old_bs_i);
ConstantPool::operand_offset_at_put(merge_ops, _operands_cur_length, new_base);
merge_ops->at_put(new_base++, new_ref_i);
merge_ops->at_put(new_base++, argc);
for (int i = 0; i < argc; i++) {
int old_arg_ref_i = scratch_cp->operand_argument_index_at(old_bs_i, i);
int new_arg_ref_i = find_or_append_indirect_entry(scratch_cp, old_arg_ref_i, merge_cp_p,
merge_cp_length_p, THREAD);
merge_ops->at_put(new_base++, new_arg_ref_i);
if (new_arg_ref_i != old_arg_ref_i) {
log_trace(redefine, class, constantpool)
("operands entry@%d bootstrap method argument ref_index change: %d to %d",
_operands_cur_length, old_arg_ref_i, new_arg_ref_i);
}
}
if (old_bs_i != _operands_cur_length) {
// The bootstrap specifier in *merge_cp_p is at a different index than
// that in scratch_cp so we need to map the index values.
map_operand_index(old_bs_i, new_bs_i);
}
_operands_cur_length++;
} // end append_operand()
int VM_RedefineClasses::find_or_append_operand(const constantPoolHandle& scratch_cp,
int old_bs_i, constantPoolHandle *merge_cp_p, int *merge_cp_length_p, TRAPS) {
int new_bs_i = old_bs_i; // bootstrap specifier index
bool match = (old_bs_i < _operands_cur_length) &&
scratch_cp->compare_operand_to(old_bs_i, *merge_cp_p, old_bs_i, THREAD);
if (!match) {
// forward reference in *merge_cp_p or not a direct match
int found_i = scratch_cp->find_matching_operand(old_bs_i, *merge_cp_p,
_operands_cur_length, THREAD);
if (found_i != -1) {
guarantee(found_i != old_bs_i, "compare_operand_to() and find_matching_operand() disagree");
// found a matching operand somewhere else in *merge_cp_p so just need a mapping
new_bs_i = found_i;
map_operand_index(old_bs_i, found_i);
} else {
// no match found so we have to append this bootstrap specifier to *merge_cp_p
append_operand(scratch_cp, old_bs_i, merge_cp_p, merge_cp_length_p, THREAD);
new_bs_i = _operands_cur_length - 1;
}
}
return new_bs_i;
} // end find_or_append_operand()
void VM_RedefineClasses::finalize_operands_merge(const constantPoolHandle& merge_cp, TRAPS) {
if (merge_cp->operands() == NULL) {
return;
}
// Shrink the merge_cp operands
merge_cp->shrink_operands(_operands_cur_length, CHECK);
if (log_is_enabled(Trace, redefine, class, constantpool)) {
// don't want to loop unless we are tracing
int count = 0;
for (int i = 1; i < _operands_index_map_p->length(); i++) {
int value = _operands_index_map_p->at(i);
if (value != -1) {
log_trace(redefine, class, constantpool)("operands_index_map[%d]: old=%d new=%d", count, i, value);
count++;
}
}
}
// Clean-up
_operands_index_map_p = NULL;
_operands_cur_length = 0;
_operands_index_map_count = 0;
} // end finalize_operands_merge()
// Symbol* comparator for qsort
// The caller must have an active ResourceMark.
static int symcmp(const void* a, const void* b) {
char* astr = (*(Symbol**)a)->as_C_string();
char* bstr = (*(Symbol**)b)->as_C_string();
return strcmp(astr, bstr);
}
static jvmtiError check_nest_attributes(InstanceKlass* the_class,
InstanceKlass* scratch_class) {
// Check whether the class NestHost attribute has been changed.
Thread* thread = Thread::current();
ResourceMark rm(thread);
u2 the_nest_host_idx = the_class->nest_host_index();
u2 scr_nest_host_idx = scratch_class->nest_host_index();
if (the_nest_host_idx != 0 && scr_nest_host_idx != 0) {
Symbol* the_sym = the_class->constants()->klass_name_at(the_nest_host_idx);
Symbol* scr_sym = scratch_class->constants()->klass_name_at(scr_nest_host_idx);
if (the_sym != scr_sym) {
log_trace(redefine, class, nestmates)
("redefined class %s attribute change error: NestHost class: %s replaced with: %s",
the_class->external_name(), the_sym->as_C_string(), scr_sym->as_C_string());
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
} else if ((the_nest_host_idx == 0) ^ (scr_nest_host_idx == 0)) {
const char* action_str = (the_nest_host_idx != 0) ? "removed" : "added";
log_trace(redefine, class, nestmates)
("redefined class %s attribute change error: NestHost attribute %s",
the_class->external_name(), action_str);
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
// Check whether the class NestMembers attribute has been changed.
Array<u2>* the_nest_members = the_class->nest_members();
Array<u2>* scr_nest_members = scratch_class->nest_members();
bool the_members_exists = the_nest_members != Universe::the_empty_short_array();
bool scr_members_exists = scr_nest_members != Universe::the_empty_short_array();
int members_len = the_nest_members->length();
if (the_members_exists && scr_members_exists) {
if (members_len != scr_nest_members->length()) {
log_trace(redefine, class, nestmates)
("redefined class %s attribute change error: NestMember len=%d changed to len=%d",
the_class->external_name(), members_len, scr_nest_members->length());
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
// The order of entries in the NestMembers array is not specified so we
// have to explicitly check for the same contents. We do this by copying
// the referenced symbols into their own arrays, sorting them and then
// comparing each element pair.
Symbol** the_syms = NEW_RESOURCE_ARRAY_RETURN_NULL(Symbol*, members_len);
Symbol** scr_syms = NEW_RESOURCE_ARRAY_RETURN_NULL(Symbol*, members_len);
if (the_syms == NULL || scr_syms == NULL) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
for (int i = 0; i < members_len; i++) {
int the_cp_index = the_nest_members->at(i);
int scr_cp_index = scr_nest_members->at(i);
the_syms[i] = the_class->constants()->klass_name_at(the_cp_index);
scr_syms[i] = scratch_class->constants()->klass_name_at(scr_cp_index);
}
qsort(the_syms, members_len, sizeof(Symbol*), symcmp);
qsort(scr_syms, members_len, sizeof(Symbol*), symcmp);
for (int i = 0; i < members_len; i++) {
if (the_syms[i] != scr_syms[i]) {
log_trace(redefine, class, nestmates)
("redefined class %s attribute change error: NestMembers[%d]: %s changed to %s",
the_class->external_name(), i, the_syms[i]->as_C_string(), scr_syms[i]->as_C_string());
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
}
} else if (the_members_exists ^ scr_members_exists) {
const char* action_str = (the_members_exists) ? "removed" : "added";
log_trace(redefine, class, nestmates)
("redefined class %s attribute change error: NestMembers attribute %s",
the_class->external_name(), action_str);
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
return JVMTI_ERROR_NONE;
}
// Return an error status if the class Record attribute was changed.
static jvmtiError check_record_attribute(InstanceKlass* the_class, InstanceKlass* scratch_class) {
// Get lists of record components.
Array<RecordComponent*>* the_record = the_class->record_components();
Array<RecordComponent*>* scr_record = scratch_class->record_components();
bool the_record_exists = the_record != NULL;
bool scr_record_exists = scr_record != NULL;
if (the_record_exists && scr_record_exists) {
int the_num_components = the_record->length();
int scr_num_components = scr_record->length();
if (the_num_components != scr_num_components) {
log_trace(redefine, class, record)
("redefined class %s attribute change error: Record num_components=%d changed to num_components=%d",
the_class->external_name(), the_num_components, scr_num_components);
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
// Compare each field in each record component.
ConstantPool* the_cp = the_class->constants();
ConstantPool* scr_cp = scratch_class->constants();
for (int x = 0; x < the_num_components; x++) {
RecordComponent* the_component = the_record->at(x);
RecordComponent* scr_component = scr_record->at(x);
const Symbol* const the_name = the_cp->symbol_at(the_component->name_index());
const Symbol* const scr_name = scr_cp->symbol_at(scr_component->name_index());
const Symbol* const the_descr = the_cp->symbol_at(the_component->descriptor_index());
const Symbol* const scr_descr = scr_cp->symbol_at(scr_component->descriptor_index());
if (the_name != scr_name || the_descr != scr_descr) {
log_trace(redefine, class, record)
("redefined class %s attribute change error: Record name_index, descriptor_index, and/or attributes_count changed",
the_class->external_name());
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
int the_gen_sig = the_component->generic_signature_index();
int scr_gen_sig = scr_component->generic_signature_index();
const Symbol* const the_gen_sig_sym = (the_gen_sig == 0 ? NULL :
the_cp->symbol_at(the_component->generic_signature_index()));
const Symbol* const scr_gen_sig_sym = (scr_gen_sig == 0 ? NULL :
scr_cp->symbol_at(scr_component->generic_signature_index()));
if (the_gen_sig_sym != scr_gen_sig_sym) {
log_trace(redefine, class, record)
("redefined class %s attribute change error: Record generic_signature attribute changed",
the_class->external_name());
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
// It's okay if a record component's annotations were changed.
}
} else if (the_record_exists ^ scr_record_exists) {
const char* action_str = (the_record_exists) ? "removed" : "added";
log_trace(redefine, class, record)
("redefined class %s attribute change error: Record attribute %s",
the_class->external_name(), action_str);
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_ATTRIBUTE_CHANGED;
}
return JVMTI_ERROR_NONE;
}
static bool can_add_or_delete(Method* m) {
// Compatibility mode
return (AllowRedefinitionToAddDeleteMethods &&
(m->is_private() && (m->is_static() || m->is_final())));
}
jvmtiError VM_RedefineClasses::compare_and_normalize_class_versions(
InstanceKlass* the_class,
InstanceKlass* scratch_class) {
int i;
// Check superclasses, or rather their names, since superclasses themselves can be
// requested to replace.
// Check for NULL superclass first since this might be java.lang.Object
if (the_class->super() != scratch_class->super() &&
(the_class->super() == NULL || scratch_class->super() == NULL ||
the_class->super()->name() !=
scratch_class->super()->name())) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED;
}
// Check if the number, names and order of directly implemented interfaces are the same.
// I think in principle we should just check if the sets of names of directly implemented
// interfaces are the same, i.e. the order of declaration (which, however, if changed in the
// .java file, also changes in .class file) should not matter. However, comparing sets is
// technically a bit more difficult, and, more importantly, I am not sure at present that the
// order of interfaces does not matter on the implementation level, i.e. that the VM does not
// rely on it somewhere.
Array<InstanceKlass*>* k_interfaces = the_class->local_interfaces();
Array<InstanceKlass*>* k_new_interfaces = scratch_class->local_interfaces();
int n_intfs = k_interfaces->length();
if (n_intfs != k_new_interfaces->length()) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED;
}
for (i = 0; i < n_intfs; i++) {
if (k_interfaces->at(i)->name() !=
k_new_interfaces->at(i)->name()) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED;
}
}
// Check whether class is in the error init state.
if (the_class->is_in_error_state()) {
// TBD #5057930: special error code is needed in 1.6
return JVMTI_ERROR_INVALID_CLASS;
}
// Check whether the nest-related attributes have been changed.
jvmtiError err = check_nest_attributes(the_class, scratch_class);
if (err != JVMTI_ERROR_NONE) {
return err;
}
// Check whether the Record attribute has been changed.
err = check_record_attribute(the_class, scratch_class);
if (err != JVMTI_ERROR_NONE) {
return err;
}
// Check whether class modifiers are the same.
jushort old_flags = (jushort) the_class->access_flags().get_flags();
jushort new_flags = (jushort) scratch_class->access_flags().get_flags();
if (old_flags != new_flags) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_CLASS_MODIFIERS_CHANGED;
}
// Check if the number, names, types and order of fields declared in these classes
// are the same.
JavaFieldStream old_fs(the_class);
JavaFieldStream new_fs(scratch_class);
for (; !old_fs.done() && !new_fs.done(); old_fs.next(), new_fs.next()) {
// access
old_flags = old_fs.access_flags().as_short();
new_flags = new_fs.access_flags().as_short();
if ((old_flags ^ new_flags) & JVM_RECOGNIZED_FIELD_MODIFIERS) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED;
}
// offset
if (old_fs.offset() != new_fs.offset()) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED;
}
// name and signature
Symbol* name_sym1 = the_class->constants()->symbol_at(old_fs.name_index());
Symbol* sig_sym1 = the_class->constants()->symbol_at(old_fs.signature_index());
Symbol* name_sym2 = scratch_class->constants()->symbol_at(new_fs.name_index());
Symbol* sig_sym2 = scratch_class->constants()->symbol_at(new_fs.signature_index());
if (name_sym1 != name_sym2 || sig_sym1 != sig_sym2) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED;
}
}
// If both streams aren't done then we have a differing number of
// fields.
if (!old_fs.done() || !new_fs.done()) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED;
}
// Do a parallel walk through the old and new methods. Detect
// cases where they match (exist in both), have been added in
// the new methods, or have been deleted (exist only in the
// old methods). The class file parser places methods in order
// by method name, but does not order overloaded methods by
// signature. In order to determine what fate befell the methods,
// this code places the overloaded new methods that have matching
// old methods in the same order as the old methods and places
// new overloaded methods at the end of overloaded methods of
// that name. The code for this order normalization is adapted
// from the algorithm used in InstanceKlass::find_method().
// Since we are swapping out of order entries as we find them,
// we only have to search forward through the overloaded methods.
// Methods which are added and have the same name as an existing
// method (but different signature) will be put at the end of
// the methods with that name, and the name mismatch code will
// handle them.
Array<Method*>* k_old_methods(the_class->methods());
Array<Method*>* k_new_methods(scratch_class->methods());
int n_old_methods = k_old_methods->length();
int n_new_methods = k_new_methods->length();
Thread* thread = Thread::current();
int ni = 0;
int oi = 0;
while (true) {
Method* k_old_method;
Method* k_new_method;
enum { matched, added, deleted, undetermined } method_was = undetermined;
if (oi >= n_old_methods) {
if (ni >= n_new_methods) {
break; // we've looked at everything, done
}
// New method at the end
k_new_method = k_new_methods->at(ni);
method_was = added;
} else if (ni >= n_new_methods) {
// Old method, at the end, is deleted
k_old_method = k_old_methods->at(oi);
method_was = deleted;
} else {
// There are more methods in both the old and new lists
k_old_method = k_old_methods->at(oi);
k_new_method = k_new_methods->at(ni);
if (k_old_method->name() != k_new_method->name()) {
// Methods are sorted by method name, so a mismatch means added
// or deleted
if (k_old_method->name()->fast_compare(k_new_method->name()) > 0) {
method_was = added;
} else {
method_was = deleted;
}
} else if (k_old_method->signature() == k_new_method->signature()) {
// Both the name and signature match
method_was = matched;
} else {
// The name matches, but the signature doesn't, which means we have to
// search forward through the new overloaded methods.
int nj; // outside the loop for post-loop check
for (nj = ni + 1; nj < n_new_methods; nj++) {
Method* m = k_new_methods->at(nj);
if (k_old_method->name() != m->name()) {
// reached another method name so no more overloaded methods
method_was = deleted;
break;
}
if (k_old_method->signature() == m->signature()) {
// found a match so swap the methods
k_new_methods->at_put(ni, m);
k_new_methods->at_put(nj, k_new_method);
k_new_method = m;
method_was = matched;
break;
}
}
if (nj >= n_new_methods) {
// reached the end without a match; so method was deleted
method_was = deleted;
}
}
}
switch (method_was) {
case matched:
// methods match, be sure modifiers do too
old_flags = (jushort) k_old_method->access_flags().get_flags();
new_flags = (jushort) k_new_method->access_flags().get_flags();
if ((old_flags ^ new_flags) & ~(JVM_ACC_NATIVE)) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_METHOD_MODIFIERS_CHANGED;
}
{
u2 new_num = k_new_method->method_idnum();
u2 old_num = k_old_method->method_idnum();
if (new_num != old_num) {
Method* idnum_owner = scratch_class->method_with_idnum(old_num);
if (idnum_owner != NULL) {
// There is already a method assigned this idnum -- switch them
// Take current and original idnum from the new_method
idnum_owner->set_method_idnum(new_num);
idnum_owner->set_orig_method_idnum(k_new_method->orig_method_idnum());
}
// Take current and original idnum from the old_method
k_new_method->set_method_idnum(old_num);
k_new_method->set_orig_method_idnum(k_old_method->orig_method_idnum());
if (thread->has_pending_exception()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
}
}
log_trace(redefine, class, normalize)
("Method matched: new: %s [%d] == old: %s [%d]",
k_new_method->name_and_sig_as_C_string(), ni, k_old_method->name_and_sig_as_C_string(), oi);
// advance to next pair of methods
++oi;
++ni;
break;
case added:
// method added, see if it is OK
if (!can_add_or_delete(k_new_method)) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_METHOD_ADDED;
}
{
u2 num = the_class->next_method_idnum();
if (num == ConstMethod::UNSET_IDNUM) {
// cannot add any more methods
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_METHOD_ADDED;
}
u2 new_num = k_new_method->method_idnum();
Method* idnum_owner = scratch_class->method_with_idnum(num);
if (idnum_owner != NULL) {
// There is already a method assigned this idnum -- switch them
// Take current and original idnum from the new_method
idnum_owner->set_method_idnum(new_num);
idnum_owner->set_orig_method_idnum(k_new_method->orig_method_idnum());
}
k_new_method->set_method_idnum(num);
k_new_method->set_orig_method_idnum(num);
if (thread->has_pending_exception()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
}
log_trace(redefine, class, normalize)
("Method added: new: %s [%d]", k_new_method->name_and_sig_as_C_string(), ni);
++ni; // advance to next new method
break;
case deleted:
// method deleted, see if it is OK
if (!can_add_or_delete(k_old_method)) {
return JVMTI_ERROR_UNSUPPORTED_REDEFINITION_METHOD_DELETED;
}
log_trace(redefine, class, normalize)
("Method deleted: old: %s [%d]", k_old_method->name_and_sig_as_C_string(), oi);
++oi; // advance to next old method
break;
default:
ShouldNotReachHere();
}
}
return JVMTI_ERROR_NONE;
}
// Find new constant pool index value for old constant pool index value
// by seaching the index map. Returns zero (0) if there is no mapped
// value for the old constant pool index.
int VM_RedefineClasses::find_new_index(int old_index) {
if (_index_map_count == 0) {
// map is empty so nothing can be found
return 0;
}
if (old_index < 1 || old_index >= _index_map_p->length()) {
// The old_index is out of range so it is not mapped. This should
// not happen in regular constant pool merging use, but it can
// happen if a corrupt annotation is processed.
return 0;
}
int value = _index_map_p->at(old_index);
if (value == -1) {
// the old_index is not mapped
return 0;
}
return value;
} // end find_new_index()
// Find new bootstrap specifier index value for old bootstrap specifier index
// value by seaching the index map. Returns unused index (-1) if there is
// no mapped value for the old bootstrap specifier index.
int VM_RedefineClasses::find_new_operand_index(int old_index) {
if (_operands_index_map_count == 0) {
// map is empty so nothing can be found
return -1;
}
if (old_index == -1 || old_index >= _operands_index_map_p->length()) {
// The old_index is out of range so it is not mapped.
// This should not happen in regular constant pool merging use.
return -1;
}
int value = _operands_index_map_p->at(old_index);
if (value == -1) {
// the old_index is not mapped
return -1;
}
return value;
} // end find_new_operand_index()
// Returns true if the current mismatch is due to a resolved/unresolved
// class pair. Otherwise, returns false.
bool VM_RedefineClasses::is_unresolved_class_mismatch(const constantPoolHandle& cp1,
int index1, const constantPoolHandle& cp2, int index2) {
jbyte t1 = cp1->tag_at(index1).value();
if (t1 != JVM_CONSTANT_Class && t1 != JVM_CONSTANT_UnresolvedClass) {
return false; // wrong entry type; not our special case
}
jbyte t2 = cp2->tag_at(index2).value();
if (t2 != JVM_CONSTANT_Class && t2 != JVM_CONSTANT_UnresolvedClass) {
return false; // wrong entry type; not our special case
}
if (t1 == t2) {
return false; // not a mismatch; not our special case
}
char *s1 = cp1->klass_name_at(index1)->as_C_string();
char *s2 = cp2->klass_name_at(index2)->as_C_string();
if (strcmp(s1, s2) != 0) {
return false; // strings don't match; not our special case
}
return true; // made it through the gauntlet; this is our special case
} // end is_unresolved_class_mismatch()
jvmtiError VM_RedefineClasses::load_new_class_versions(TRAPS) {
// For consistency allocate memory using os::malloc wrapper.
_scratch_classes = (InstanceKlass**)
os::malloc(sizeof(InstanceKlass*) * _class_count, mtClass);
if (_scratch_classes == NULL) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
// Zero initialize the _scratch_classes array.
for (int i = 0; i < _class_count; i++) {
_scratch_classes[i] = NULL;
}
ResourceMark rm(THREAD);
JvmtiThreadState *state = JvmtiThreadState::state_for(JavaThread::current());
// state can only be NULL if the current thread is exiting which
// should not happen since we're trying to do a RedefineClasses
guarantee(state != NULL, "exiting thread calling load_new_class_versions");
for (int i = 0; i < _class_count; i++) {
// Create HandleMark so that any handles created while loading new class
// versions are deleted. Constant pools are deallocated while merging
// constant pools
HandleMark hm(THREAD);
InstanceKlass* the_class = get_ik(_class_defs[i].klass);
Symbol* the_class_sym = the_class->name();
log_debug(redefine, class, load)
("loading name=%s kind=%d (avail_mem=" UINT64_FORMAT "K)",
the_class->external_name(), _class_load_kind, os::available_memory() >> 10);
ClassFileStream st((u1*)_class_defs[i].class_bytes,
_class_defs[i].class_byte_count,
"__VM_RedefineClasses__",
ClassFileStream::verify);
// Parse the stream.
Handle the_class_loader(THREAD, the_class->class_loader());
Handle protection_domain(THREAD, the_class->protection_domain());
// Set redefined class handle in JvmtiThreadState class.
// This redefined class is sent to agent event handler for class file
// load hook event.
state->set_class_being_redefined(the_class, _class_load_kind);
InstanceKlass* scratch_class = SystemDictionary::parse_stream(
the_class_sym,
the_class_loader,
protection_domain,
&st,
THREAD);
// Clear class_being_redefined just to be sure.
state->clear_class_being_redefined();
// TODO: if this is retransform, and nothing changed we can skip it
// Need to clean up allocated InstanceKlass if there's an error so assign
// the result here. Caller deallocates all the scratch classes in case of
// an error.
_scratch_classes[i] = scratch_class;
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)("parse_stream exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_UnsupportedClassVersionError()) {
return JVMTI_ERROR_UNSUPPORTED_VERSION;
} else if (ex_name == vmSymbols::java_lang_ClassFormatError()) {
return JVMTI_ERROR_INVALID_CLASS_FORMAT;
} else if (ex_name == vmSymbols::java_lang_ClassCircularityError()) {
return JVMTI_ERROR_CIRCULAR_CLASS_DEFINITION;
} else if (ex_name == vmSymbols::java_lang_NoClassDefFoundError()) {
// The message will be "XXX (wrong name: YYY)"
return JVMTI_ERROR_NAMES_DONT_MATCH;
} else if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else { // Just in case more exceptions can be thrown..
return JVMTI_ERROR_FAILS_VERIFICATION;
}
}
// Ensure class is linked before redefine
if (!the_class->is_linked()) {
the_class->link_class(THREAD);
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)("link_class exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else {
return JVMTI_ERROR_INTERNAL;
}
}
}
// Do the validity checks in compare_and_normalize_class_versions()
// before verifying the byte codes. By doing these checks first, we
// limit the number of functions that require redirection from
// the_class to scratch_class. In particular, we don't have to
// modify JNI GetSuperclass() and thus won't change its performance.
jvmtiError res = compare_and_normalize_class_versions(the_class,
scratch_class);
if (res != JVMTI_ERROR_NONE) {
return res;
}
// verify what the caller passed us
{
// The bug 6214132 caused the verification to fail.
// Information about the_class and scratch_class is temporarily
// recorded into jvmtiThreadState. This data is used to redirect
// the_class to scratch_class in the JVM_* functions called by the
// verifier. Please, refer to jvmtiThreadState.hpp for the detailed
// description.
RedefineVerifyMark rvm(the_class, scratch_class, state);
Verifier::verify(scratch_class, true, THREAD);
}
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)("verify_byte_codes exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else {
// tell the caller the bytecodes are bad
return JVMTI_ERROR_FAILS_VERIFICATION;
}
}
res = merge_cp_and_rewrite(the_class, scratch_class, THREAD);
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)("merge_cp_and_rewrite exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else {
return JVMTI_ERROR_INTERNAL;
}
}
if (VerifyMergedCPBytecodes) {
// verify what we have done during constant pool merging
{
RedefineVerifyMark rvm(the_class, scratch_class, state);
Verifier::verify(scratch_class, true, THREAD);
}
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)
("verify_byte_codes post merge-CP exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else {
// tell the caller that constant pool merging screwed up
return JVMTI_ERROR_INTERNAL;
}
}
}
Rewriter::rewrite(scratch_class, THREAD);
if (!HAS_PENDING_EXCEPTION) {
scratch_class->link_methods(THREAD);
}
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)
("Rewriter::rewrite or link_methods exception: '%s'", ex_name->as_C_string());
CLEAR_PENDING_EXCEPTION;
if (ex_name == vmSymbols::java_lang_OutOfMemoryError()) {
return JVMTI_ERROR_OUT_OF_MEMORY;
} else {
return JVMTI_ERROR_INTERNAL;
}
}
log_debug(redefine, class, load)
("loaded name=%s (avail_mem=" UINT64_FORMAT "K)", the_class->external_name(), os::available_memory() >> 10);
}
return JVMTI_ERROR_NONE;
}
// Map old_index to new_index as needed. scratch_cp is only needed
// for log calls.
void VM_RedefineClasses::map_index(const constantPoolHandle& scratch_cp,
int old_index, int new_index) {
if (find_new_index(old_index) != 0) {
// old_index is already mapped
return;
}
if (old_index == new_index) {
// no mapping is needed
return;
}
_index_map_p->at_put(old_index, new_index);
_index_map_count++;
log_trace(redefine, class, constantpool)
("mapped tag %d at index %d to %d", scratch_cp->tag_at(old_index).value(), old_index, new_index);
} // end map_index()
// Map old_index to new_index as needed.
void VM_RedefineClasses::map_operand_index(int old_index, int new_index) {
if (find_new_operand_index(old_index) != -1) {
// old_index is already mapped
return;
}
if (old_index == new_index) {
// no mapping is needed
return;
}
_operands_index_map_p->at_put(old_index, new_index);
_operands_index_map_count++;
log_trace(redefine, class, constantpool)("mapped bootstrap specifier at index %d to %d", old_index, new_index);
} // end map_index()
// Merge old_cp and scratch_cp and return the results of the merge via
// merge_cp_p. The number of entries in *merge_cp_p is returned via
// merge_cp_length_p. The entries in old_cp occupy the same locations
// in *merge_cp_p. Also creates a map of indices from entries in
// scratch_cp to the corresponding entry in *merge_cp_p. Index map
// entries are only created for entries in scratch_cp that occupy a
// different location in *merged_cp_p.
bool VM_RedefineClasses::merge_constant_pools(const constantPoolHandle& old_cp,
const constantPoolHandle& scratch_cp, constantPoolHandle *merge_cp_p,
int *merge_cp_length_p, TRAPS) {
if (merge_cp_p == NULL) {
assert(false, "caller must provide scratch constantPool");
return false; // robustness
}
if (merge_cp_length_p == NULL) {
assert(false, "caller must provide scratch CP length");
return false; // robustness
}
// Worst case we need old_cp->length() + scratch_cp()->length(),
// but the caller might be smart so make sure we have at least
// the minimum.
if ((*merge_cp_p)->length() < old_cp->length()) {
assert(false, "merge area too small");
return false; // robustness
}
log_info(redefine, class, constantpool)("old_cp_len=%d, scratch_cp_len=%d", old_cp->length(), scratch_cp->length());
{
// Pass 0:
// The old_cp is copied to *merge_cp_p; this means that any code
// using old_cp does not have to change. This work looks like a
// perfect fit for ConstantPool*::copy_cp_to(), but we need to
// handle one special case:
// - revert JVM_CONSTANT_Class to JVM_CONSTANT_UnresolvedClass
// This will make verification happy.
int old_i; // index into old_cp
// index zero (0) is not used in constantPools
for (old_i = 1; old_i < old_cp->length(); old_i++) {
// leave debugging crumb
jbyte old_tag = old_cp->tag_at(old_i).value();
switch (old_tag) {
case JVM_CONSTANT_Class:
case JVM_CONSTANT_UnresolvedClass:
// revert the copy to JVM_CONSTANT_UnresolvedClass
// May be resolving while calling this so do the same for
// JVM_CONSTANT_UnresolvedClass (klass_name_at() deals with transition)
(*merge_cp_p)->temp_unresolved_klass_at_put(old_i,
old_cp->klass_name_index_at(old_i));
break;
case JVM_CONSTANT_Double:
case JVM_CONSTANT_Long:
// just copy the entry to *merge_cp_p, but double and long take
// two constant pool entries
ConstantPool::copy_entry_to(old_cp, old_i, *merge_cp_p, old_i, CHECK_0);
old_i++;
break;
default:
// just copy the entry to *merge_cp_p
ConstantPool::copy_entry_to(old_cp, old_i, *merge_cp_p, old_i, CHECK_0);
break;
}
} // end for each old_cp entry
ConstantPool::copy_operands(old_cp, *merge_cp_p, CHECK_0);
(*merge_cp_p)->extend_operands(scratch_cp, CHECK_0);
// We don't need to sanity check that *merge_cp_length_p is within
// *merge_cp_p bounds since we have the minimum on-entry check above.
(*merge_cp_length_p) = old_i;
}
// merge_cp_len should be the same as old_cp->length() at this point
// so this trace message is really a "warm-and-breathing" message.
log_debug(redefine, class, constantpool)("after pass 0: merge_cp_len=%d", *merge_cp_length_p);
int scratch_i; // index into scratch_cp
{
// Pass 1a:
// Compare scratch_cp entries to the old_cp entries that we have
// already copied to *merge_cp_p. In this pass, we are eliminating
// exact duplicates (matching entry at same index) so we only
// compare entries in the common indice range.
int increment = 1;
int pass1a_length = MIN2(old_cp->length(), scratch_cp->length());
for (scratch_i = 1; scratch_i < pass1a_length; scratch_i += increment) {
switch (scratch_cp->tag_at(scratch_i).value()) {
case JVM_CONSTANT_Double:
case JVM_CONSTANT_Long:
// double and long take two constant pool entries
increment = 2;
break;
default:
increment = 1;
break;
}
bool match = scratch_cp->compare_entry_to(scratch_i, *merge_cp_p,
scratch_i, CHECK_0);
if (match) {
// found a match at the same index so nothing more to do
continue;
} else if (is_unresolved_class_mismatch(scratch_cp, scratch_i,
*merge_cp_p, scratch_i)) {
// The mismatch in compare_entry_to() above is because of a
// resolved versus unresolved class entry at the same index
// with the same string value. Since Pass 0 reverted any
// class entries to unresolved class entries in *merge_cp_p,
// we go with the unresolved class entry.
continue;
}
int found_i = scratch_cp->find_matching_entry(scratch_i, *merge_cp_p,
CHECK_0);
if (found_i != 0) {
guarantee(found_i != scratch_i,
"compare_entry_to() and find_matching_entry() do not agree");
// Found a matching entry somewhere else in *merge_cp_p so
// just need a mapping entry.
map_index(scratch_cp, scratch_i, found_i);
continue;
}
// The find_matching_entry() call above could fail to find a match
// due to a resolved versus unresolved class or string entry situation
// like we solved above with the is_unresolved_*_mismatch() calls.
// However, we would have to call is_unresolved_*_mismatch() over
// all of *merge_cp_p (potentially) and that doesn't seem to be
// worth the time.
// No match found so we have to append this entry and any unique
// referenced entries to *merge_cp_p.
append_entry(scratch_cp, scratch_i, merge_cp_p, merge_cp_length_p,
CHECK_0);
}
}
log_debug(redefine, class, constantpool)
("after pass 1a: merge_cp_len=%d, scratch_i=%d, index_map_len=%d",
*merge_cp_length_p, scratch_i, _index_map_count);
if (scratch_i < scratch_cp->length()) {
// Pass 1b:
// old_cp is smaller than scratch_cp so there are entries in
// scratch_cp that we have not yet processed. We take care of
// those now.
int increment = 1;
for (; scratch_i < scratch_cp->length(); scratch_i += increment) {
switch (scratch_cp->tag_at(scratch_i).value()) {
case JVM_CONSTANT_Double:
case JVM_CONSTANT_Long:
// double and long take two constant pool entries
increment = 2;
break;
default:
increment = 1;
break;
}
int found_i =
scratch_cp->find_matching_entry(scratch_i, *merge_cp_p, CHECK_0);
if (found_i != 0) {
// Found a matching entry somewhere else in *merge_cp_p so
// just need a mapping entry.
map_index(scratch_cp, scratch_i, found_i);
continue;
}
// No match found so we have to append this entry and any unique
// referenced entries to *merge_cp_p.
append_entry(scratch_cp, scratch_i, merge_cp_p, merge_cp_length_p,
CHECK_0);
}
log_debug(redefine, class, constantpool)
("after pass 1b: merge_cp_len=%d, scratch_i=%d, index_map_len=%d",
*merge_cp_length_p, scratch_i, _index_map_count);
}
finalize_operands_merge(*merge_cp_p, THREAD);
return true;
} // end merge_constant_pools()
// Scoped object to clean up the constant pool(s) created for merging
class MergeCPCleaner {
ClassLoaderData* _loader_data;
ConstantPool* _cp;
ConstantPool* _scratch_cp;
public:
MergeCPCleaner(ClassLoaderData* loader_data, ConstantPool* merge_cp) :
_loader_data(loader_data), _cp(merge_cp), _scratch_cp(NULL) {}
~MergeCPCleaner() {
_loader_data->add_to_deallocate_list(_cp);
if (_scratch_cp != NULL) {
_loader_data->add_to_deallocate_list(_scratch_cp);
}
}
void add_scratch_cp(ConstantPool* scratch_cp) { _scratch_cp = scratch_cp; }
};
// Merge constant pools between the_class and scratch_class and
// potentially rewrite bytecodes in scratch_class to use the merged
// constant pool.
jvmtiError VM_RedefineClasses::merge_cp_and_rewrite(
InstanceKlass* the_class, InstanceKlass* scratch_class,
TRAPS) {
// worst case merged constant pool length is old and new combined
int merge_cp_length = the_class->constants()->length()
+ scratch_class->constants()->length();
// Constant pools are not easily reused so we allocate a new one
// each time.
// merge_cp is created unsafe for concurrent GC processing. It
// should be marked safe before discarding it. Even though
// garbage, if it crosses a card boundary, it may be scanned
// in order to find the start of the first complete object on the card.
ClassLoaderData* loader_data = the_class->class_loader_data();
ConstantPool* merge_cp_oop =
ConstantPool::allocate(loader_data,
merge_cp_length,
CHECK_(JVMTI_ERROR_OUT_OF_MEMORY));
MergeCPCleaner cp_cleaner(loader_data, merge_cp_oop);
HandleMark hm(THREAD); // make sure handles are cleared before
// MergeCPCleaner clears out merge_cp_oop
constantPoolHandle merge_cp(THREAD, merge_cp_oop);
// Get constants() from the old class because it could have been rewritten
// while we were at a safepoint allocating a new constant pool.
constantPoolHandle old_cp(THREAD, the_class->constants());
constantPoolHandle scratch_cp(THREAD, scratch_class->constants());
// If the length changed, the class was redefined out from under us. Return
// an error.
if (merge_cp_length != the_class->constants()->length()
+ scratch_class->constants()->length()) {
return JVMTI_ERROR_INTERNAL;
}
// Update the version number of the constant pools (may keep scratch_cp)
merge_cp->increment_and_save_version(old_cp->version());
scratch_cp->increment_and_save_version(old_cp->version());
ResourceMark rm(THREAD);
_index_map_count = 0;
_index_map_p = new intArray(scratch_cp->length(), scratch_cp->length(), -1);
_operands_cur_length = ConstantPool::operand_array_length(old_cp->operands());
_operands_index_map_count = 0;
int operands_index_map_len = ConstantPool::operand_array_length(scratch_cp->operands());
_operands_index_map_p = new intArray(operands_index_map_len, operands_index_map_len, -1);
// reference to the cp holder is needed for copy_operands()
merge_cp->set_pool_holder(scratch_class);
bool result = merge_constant_pools(old_cp, scratch_cp, &merge_cp,
&merge_cp_length, THREAD);
merge_cp->set_pool_holder(NULL);
if (!result) {
// The merge can fail due to memory allocation failure or due
// to robustness checks.
return JVMTI_ERROR_INTERNAL;
}
if (old_cp->has_dynamic_constant()) {
merge_cp->set_has_dynamic_constant();
scratch_cp->set_has_dynamic_constant();
}
log_info(redefine, class, constantpool)("merge_cp_len=%d, index_map_len=%d", merge_cp_length, _index_map_count);
if (_index_map_count == 0) {
// there is nothing to map between the new and merged constant pools
if (old_cp->length() == scratch_cp->length()) {
// The old and new constant pools are the same length and the
// index map is empty. This means that the three constant pools
// are equivalent (but not the same). Unfortunately, the new
// constant pool has not gone through link resolution nor have
// the new class bytecodes gone through constant pool cache
// rewriting so we can't use the old constant pool with the new
// class.
// toss the merged constant pool at return
} else if (old_cp->length() < scratch_cp->length()) {
// The old constant pool has fewer entries than the new constant
// pool and the index map is empty. This means the new constant
// pool is a superset of the old constant pool. However, the old
// class bytecodes have already gone through constant pool cache
// rewriting so we can't use the new constant pool with the old
// class.
// toss the merged constant pool at return
} else {
// The old constant pool has more entries than the new constant
// pool and the index map is empty. This means that both the old
// and merged constant pools are supersets of the new constant
// pool.
// Replace the new constant pool with a shrunken copy of the
// merged constant pool
set_new_constant_pool(loader_data, scratch_class, merge_cp, merge_cp_length,
CHECK_(JVMTI_ERROR_OUT_OF_MEMORY));
// The new constant pool replaces scratch_cp so have cleaner clean it up.
// It can't be cleaned up while there are handles to it.
cp_cleaner.add_scratch_cp(scratch_cp());
}
} else {
if (log_is_enabled(Trace, redefine, class, constantpool)) {
// don't want to loop unless we are tracing
int count = 0;
for (int i = 1; i < _index_map_p->length(); i++) {
int value = _index_map_p->at(i);
if (value != -1) {
log_trace(redefine, class, constantpool)("index_map[%d]: old=%d new=%d", count, i, value);
count++;
}
}
}
// We have entries mapped between the new and merged constant pools
// so we have to rewrite some constant pool references.
if (!rewrite_cp_refs(scratch_class, THREAD)) {
return JVMTI_ERROR_INTERNAL;
}
// Replace the new constant pool with a shrunken copy of the
// merged constant pool so now the rewritten bytecodes have
// valid references; the previous new constant pool will get
// GCed.
set_new_constant_pool(loader_data, scratch_class, merge_cp, merge_cp_length,
CHECK_(JVMTI_ERROR_OUT_OF_MEMORY));
// The new constant pool replaces scratch_cp so have cleaner clean it up.
// It can't be cleaned up while there are handles to it.
cp_cleaner.add_scratch_cp(scratch_cp());
}
return JVMTI_ERROR_NONE;
} // end merge_cp_and_rewrite()
// Rewrite constant pool references in klass scratch_class.
bool VM_RedefineClasses::rewrite_cp_refs(InstanceKlass* scratch_class,
TRAPS) {
// rewrite constant pool references in the nest attributes:
if (!rewrite_cp_refs_in_nest_attributes(scratch_class)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the Record attribute:
if (!rewrite_cp_refs_in_record_attribute(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the methods:
if (!rewrite_cp_refs_in_methods(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the class_annotations:
if (!rewrite_cp_refs_in_class_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the fields_annotations:
if (!rewrite_cp_refs_in_fields_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the methods_annotations:
if (!rewrite_cp_refs_in_methods_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the methods_parameter_annotations:
if (!rewrite_cp_refs_in_methods_parameter_annotations(scratch_class,
THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the methods_default_annotations:
if (!rewrite_cp_refs_in_methods_default_annotations(scratch_class,
THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the class_type_annotations:
if (!rewrite_cp_refs_in_class_type_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the fields_type_annotations:
if (!rewrite_cp_refs_in_fields_type_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// rewrite constant pool references in the methods_type_annotations:
if (!rewrite_cp_refs_in_methods_type_annotations(scratch_class, THREAD)) {
// propagate failure back to caller
return false;
}
// There can be type annotations in the Code part of a method_info attribute.
// These annotations are not accessible, even by reflection.
// Currently they are not even parsed by the ClassFileParser.
// If runtime access is added they will also need to be rewritten.
// rewrite source file name index:
u2 source_file_name_idx = scratch_class->source_file_name_index();
if (source_file_name_idx != 0) {
u2 new_source_file_name_idx = find_new_index(source_file_name_idx);
if (new_source_file_name_idx != 0) {
scratch_class->set_source_file_name_index(new_source_file_name_idx);
}
}
// rewrite class generic signature index:
u2 generic_signature_index = scratch_class->generic_signature_index();
if (generic_signature_index != 0) {
u2 new_generic_signature_index = find_new_index(generic_signature_index);
if (new_generic_signature_index != 0) {
scratch_class->set_generic_signature_index(new_generic_signature_index);
}
}
return true;
} // end rewrite_cp_refs()
// Rewrite constant pool references in the NestHost and NestMembers attributes.
bool VM_RedefineClasses::rewrite_cp_refs_in_nest_attributes(
InstanceKlass* scratch_class) {
u2 cp_index = scratch_class->nest_host_index();
if (cp_index != 0) {
scratch_class->set_nest_host_index(find_new_index(cp_index));
}
Array<u2>* nest_members = scratch_class->nest_members();
for (int i = 0; i < nest_members->length(); i++) {
u2 cp_index = nest_members->at(i);
nest_members->at_put(i, find_new_index(cp_index));
}
return true;
}
// Rewrite constant pool references in the Record attribute.
bool VM_RedefineClasses::rewrite_cp_refs_in_record_attribute(
InstanceKlass* scratch_class, TRAPS) {
Array<RecordComponent*>* components = scratch_class->record_components();
if (components != NULL) {
for (int i = 0; i < components->length(); i++) {
RecordComponent* component = components->at(i);
u2 cp_index = component->name_index();
component->set_name_index(find_new_index(cp_index));
cp_index = component->descriptor_index();
component->set_descriptor_index(find_new_index(cp_index));
cp_index = component->generic_signature_index();
if (cp_index != 0) {
component->set_generic_signature_index(find_new_index(cp_index));
}
AnnotationArray* annotations = component->annotations();
if (annotations != NULL && annotations->length() != 0) {
int byte_i = 0; // byte index into annotations
if (!rewrite_cp_refs_in_annotations_typeArray(annotations, byte_i, THREAD)) {
log_debug(redefine, class, annotation)("bad record_component_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
AnnotationArray* type_annotations = component->type_annotations();
if (type_annotations != NULL && type_annotations->length() != 0) {
int byte_i = 0; // byte index into annotations
if (!rewrite_cp_refs_in_annotations_typeArray(type_annotations, byte_i, THREAD)) {
log_debug(redefine, class, annotation)("bad record_component_type_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
}
}
return true;
}
// Rewrite constant pool references in the methods.
bool VM_RedefineClasses::rewrite_cp_refs_in_methods(
InstanceKlass* scratch_class, TRAPS) {
Array<Method*>* methods = scratch_class->methods();
if (methods == NULL || methods->length() == 0) {
// no methods so nothing to do
return true;
}
// rewrite constant pool references in the methods:
for (int i = methods->length() - 1; i >= 0; i--) {
methodHandle method(THREAD, methods->at(i));
methodHandle new_method;
rewrite_cp_refs_in_method(method, &new_method, THREAD);
if (!new_method.is_null()) {
// the method has been replaced so save the new method version
// even in the case of an exception. original method is on the
// deallocation list.
methods->at_put(i, new_method());
}
if (HAS_PENDING_EXCEPTION) {
Symbol* ex_name = PENDING_EXCEPTION->klass()->name();
log_info(redefine, class, load, exceptions)("rewrite_cp_refs_in_method exception: '%s'", ex_name->as_C_string());
// Need to clear pending exception here as the super caller sets
// the JVMTI_ERROR_INTERNAL if the returned value is false.
CLEAR_PENDING_EXCEPTION;
return false;
}
}
return true;
}
// Rewrite constant pool references in the specific method. This code
// was adapted from Rewriter::rewrite_method().
void VM_RedefineClasses::rewrite_cp_refs_in_method(methodHandle method,
methodHandle *new_method_p, TRAPS) {
*new_method_p = methodHandle(); // default is no new method
// We cache a pointer to the bytecodes here in code_base. If GC
// moves the Method*, then the bytecodes will also move which
// will likely cause a crash. We create a NoSafepointVerifier
// object to detect whether we pass a possible safepoint in this
// code block.
NoSafepointVerifier nsv;
// Bytecodes and their length
address code_base = method->code_base();
int code_length = method->code_size();
int bc_length;
for (int bci = 0; bci < code_length; bci += bc_length) {
address bcp = code_base + bci;
Bytecodes::Code c = (Bytecodes::Code)(*bcp);
bc_length = Bytecodes::length_for(c);
if (bc_length == 0) {
// More complicated bytecodes report a length of zero so
// we have to try again a slightly different way.
bc_length = Bytecodes::length_at(method(), bcp);
}
assert(bc_length != 0, "impossible bytecode length");
switch (c) {
case Bytecodes::_ldc:
{
int cp_index = *(bcp + 1);
int new_index = find_new_index(cp_index);
if (StressLdcRewrite && new_index == 0) {
// If we are stressing ldc -> ldc_w rewriting, then we
// always need a new_index value.
new_index = cp_index;
}
if (new_index != 0) {
// the original index is mapped so we have more work to do
if (!StressLdcRewrite && new_index <= max_jubyte) {
// The new value can still use ldc instead of ldc_w
// unless we are trying to stress ldc -> ldc_w rewriting
log_trace(redefine, class, constantpool)
("%s@" INTPTR_FORMAT " old=%d, new=%d", Bytecodes::name(c), p2i(bcp), cp_index, new_index);
*(bcp + 1) = new_index;
} else {
log_trace(redefine, class, constantpool)
("%s->ldc_w@" INTPTR_FORMAT " old=%d, new=%d", Bytecodes::name(c), p2i(bcp), cp_index, new_index);
// the new value needs ldc_w instead of ldc
u_char inst_buffer[4]; // max instruction size is 4 bytes
bcp = (address)inst_buffer;
// construct new instruction sequence
*bcp = Bytecodes::_ldc_w;
bcp++;
// Rewriter::rewrite_method() does not rewrite ldc -> ldc_w.
// See comment below for difference between put_Java_u2()
// and put_native_u2().
Bytes::put_Java_u2(bcp, new_index);
Relocator rc(method, NULL /* no RelocatorListener needed */);
methodHandle m;
{
PauseNoSafepointVerifier pnsv(&nsv);
// ldc is 2 bytes and ldc_w is 3 bytes
m = rc.insert_space_at(bci, 3, inst_buffer, CHECK);
}
// return the new method so that the caller can update
// the containing class
*new_method_p = method = m;
// switch our bytecode processing loop from the old method
// to the new method
code_base = method->code_base();
code_length = method->code_size();
bcp = code_base + bci;
c = (Bytecodes::Code)(*bcp);
bc_length = Bytecodes::length_for(c);
assert(bc_length != 0, "sanity check");
} // end we need ldc_w instead of ldc
} // end if there is a mapped index
} break;
// these bytecodes have a two-byte constant pool index
case Bytecodes::_anewarray : // fall through
case Bytecodes::_checkcast : // fall through
case Bytecodes::_getfield : // fall through
case Bytecodes::_getstatic : // fall through
case Bytecodes::_instanceof : // fall through
case Bytecodes::_invokedynamic : // fall through
case Bytecodes::_invokeinterface: // fall through
case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokevirtual : // fall through
case Bytecodes::_ldc_w : // fall through
case Bytecodes::_ldc2_w : // fall through
case Bytecodes::_multianewarray : // fall through
case Bytecodes::_new : // fall through
case Bytecodes::_putfield : // fall through
case Bytecodes::_putstatic :
{
address p = bcp + 1;
int cp_index = Bytes::get_Java_u2(p);
int new_index = find_new_index(cp_index);
if (new_index != 0) {
// the original index is mapped so update w/ new value
log_trace(redefine, class, constantpool)
("%s@" INTPTR_FORMAT " old=%d, new=%d", Bytecodes::name(c),p2i(bcp), cp_index, new_index);
// Rewriter::rewrite_method() uses put_native_u2() in this
// situation because it is reusing the constant pool index
// location for a native index into the ConstantPoolCache.
// Since we are updating the constant pool index prior to
// verification and ConstantPoolCache initialization, we
// need to keep the new index in Java byte order.
Bytes::put_Java_u2(p, new_index);
}
} break;
default:
break;
}
} // end for each bytecode
// We also need to rewrite the parameter name indexes, if there is
// method parameter data present
if(method->has_method_parameters()) {
const int len = method->method_parameters_length();
MethodParametersElement* elem = method->method_parameters_start();
for (int i = 0; i < len; i++) {
const u2 cp_index = elem[i].name_cp_index;
const u2 new_cp_index = find_new_index(cp_index);
if (new_cp_index != 0) {
elem[i].name_cp_index = new_cp_index;
}
}
}
} // end rewrite_cp_refs_in_method()
// Rewrite constant pool references in the class_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_class_annotations(
InstanceKlass* scratch_class, TRAPS) {
AnnotationArray* class_annotations = scratch_class->class_annotations();
if (class_annotations == NULL || class_annotations->length() == 0) {
// no class_annotations so nothing to do
return true;
}
log_debug(redefine, class, annotation)("class_annotations length=%d", class_annotations->length());
int byte_i = 0; // byte index into class_annotations
return rewrite_cp_refs_in_annotations_typeArray(class_annotations, byte_i,
THREAD);
}
// Rewrite constant pool references in an annotations typeArray. This
// "structure" is adapted from the RuntimeVisibleAnnotations_attribute
// that is described in section 4.8.15 of the 2nd-edition of the VM spec:
//
// annotations_typeArray {
// u2 num_annotations;
// annotation annotations[num_annotations];
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_annotations_typeArray(
AnnotationArray* annotations_typeArray, int &byte_i_ref, TRAPS) {
if ((byte_i_ref + 2) > annotations_typeArray->length()) {
// not enough room for num_annotations field
log_debug(redefine, class, annotation)("length() is too small for num_annotations field");
return false;
}
u2 num_annotations = Bytes::get_Java_u2((address)
annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("num_annotations=%d", num_annotations);
int calc_num_annotations = 0;
for (; calc_num_annotations < num_annotations; calc_num_annotations++) {
if (!rewrite_cp_refs_in_annotation_struct(annotations_typeArray,
byte_i_ref, THREAD)) {
log_debug(redefine, class, annotation)("bad annotation_struct at %d", calc_num_annotations);
// propagate failure back to caller
return false;
}
}
assert(num_annotations == calc_num_annotations, "sanity check");
return true;
} // end rewrite_cp_refs_in_annotations_typeArray()
// Rewrite constant pool references in the annotation struct portion of
// an annotations_typeArray. This "structure" is from section 4.8.15 of
// the 2nd-edition of the VM spec:
//
// struct annotation {
// u2 type_index;
// u2 num_element_value_pairs;
// {
// u2 element_name_index;
// element_value value;
// } element_value_pairs[num_element_value_pairs];
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_annotation_struct(
AnnotationArray* annotations_typeArray, int &byte_i_ref, TRAPS) {
if ((byte_i_ref + 2 + 2) > annotations_typeArray->length()) {
// not enough room for smallest annotation_struct
log_debug(redefine, class, annotation)("length() is too small for annotation_struct");
return false;
}
u2 type_index = rewrite_cp_ref_in_annotation_data(annotations_typeArray,
byte_i_ref, "type_index", THREAD);
u2 num_element_value_pairs = Bytes::get_Java_u2((address)
annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)
("type_index=%d num_element_value_pairs=%d", type_index, num_element_value_pairs);
int calc_num_element_value_pairs = 0;
for (; calc_num_element_value_pairs < num_element_value_pairs;
calc_num_element_value_pairs++) {
if ((byte_i_ref + 2) > annotations_typeArray->length()) {
// not enough room for another element_name_index, let alone
// the rest of another component
log_debug(redefine, class, annotation)("length() is too small for element_name_index");
return false;
}
u2 element_name_index = rewrite_cp_ref_in_annotation_data(
annotations_typeArray, byte_i_ref,
"element_name_index", THREAD);
log_debug(redefine, class, annotation)("element_name_index=%d", element_name_index);
if (!rewrite_cp_refs_in_element_value(annotations_typeArray,
byte_i_ref, THREAD)) {
log_debug(redefine, class, annotation)("bad element_value at %d", calc_num_element_value_pairs);
// propagate failure back to caller
return false;
}
} // end for each component
assert(num_element_value_pairs == calc_num_element_value_pairs,
"sanity check");
return true;
} // end rewrite_cp_refs_in_annotation_struct()
// Rewrite a constant pool reference at the current position in
// annotations_typeArray if needed. Returns the original constant
// pool reference if a rewrite was not needed or the new constant
// pool reference if a rewrite was needed.
u2 VM_RedefineClasses::rewrite_cp_ref_in_annotation_data(
AnnotationArray* annotations_typeArray, int &byte_i_ref,
const char * trace_mesg, TRAPS) {
address cp_index_addr = (address)
annotations_typeArray->adr_at(byte_i_ref);
u2 old_cp_index = Bytes::get_Java_u2(cp_index_addr);
u2 new_cp_index = find_new_index(old_cp_index);
if (new_cp_index != 0) {
log_debug(redefine, class, annotation)("mapped old %s=%d", trace_mesg, old_cp_index);
Bytes::put_Java_u2(cp_index_addr, new_cp_index);
old_cp_index = new_cp_index;
}
byte_i_ref += 2;
return old_cp_index;
}
// Rewrite constant pool references in the element_value portion of an
// annotations_typeArray. This "structure" is from section 4.8.15.1 of
// the 2nd-edition of the VM spec:
//
// struct element_value {
// u1 tag;
// union {
// u2 const_value_index;
// {
// u2 type_name_index;
// u2 const_name_index;
// } enum_const_value;
// u2 class_info_index;
// annotation annotation_value;
// struct {
// u2 num_values;
// element_value values[num_values];
// } array_value;
// } value;
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_element_value(
AnnotationArray* annotations_typeArray, int &byte_i_ref, TRAPS) {
if ((byte_i_ref + 1) > annotations_typeArray->length()) {
// not enough room for a tag let alone the rest of an element_value
log_debug(redefine, class, annotation)("length() is too small for a tag");
return false;
}
u1 tag = annotations_typeArray->at(byte_i_ref);
byte_i_ref++;
log_debug(redefine, class, annotation)("tag='%c'", tag);
switch (tag) {
// These BaseType tag values are from Table 4.2 in VM spec:
case JVM_SIGNATURE_BYTE:
case JVM_SIGNATURE_CHAR:
case JVM_SIGNATURE_DOUBLE:
case JVM_SIGNATURE_FLOAT:
case JVM_SIGNATURE_INT:
case JVM_SIGNATURE_LONG:
case JVM_SIGNATURE_SHORT:
case JVM_SIGNATURE_BOOLEAN:
// The remaining tag values are from Table 4.8 in the 2nd-edition of
// the VM spec:
case 's':
{
// For the above tag values (including the BaseType values),
// value.const_value_index is right union field.
if ((byte_i_ref + 2) > annotations_typeArray->length()) {
// not enough room for a const_value_index
log_debug(redefine, class, annotation)("length() is too small for a const_value_index");
return false;
}
u2 const_value_index = rewrite_cp_ref_in_annotation_data(
annotations_typeArray, byte_i_ref,
"const_value_index", THREAD);
log_debug(redefine, class, annotation)("const_value_index=%d", const_value_index);
} break;
case 'e':
{
// for the above tag value, value.enum_const_value is right union field
if ((byte_i_ref + 4) > annotations_typeArray->length()) {
// not enough room for a enum_const_value
log_debug(redefine, class, annotation)("length() is too small for a enum_const_value");
return false;
}
u2 type_name_index = rewrite_cp_ref_in_annotation_data(
annotations_typeArray, byte_i_ref,
"type_name_index", THREAD);
u2 const_name_index = rewrite_cp_ref_in_annotation_data(
annotations_typeArray, byte_i_ref,
"const_name_index", THREAD);
log_debug(redefine, class, annotation)
("type_name_index=%d const_name_index=%d", type_name_index, const_name_index);
} break;
case 'c':
{
// for the above tag value, value.class_info_index is right union field
if ((byte_i_ref + 2) > annotations_typeArray->length()) {
// not enough room for a class_info_index
log_debug(redefine, class, annotation)("length() is too small for a class_info_index");
return false;
}
u2 class_info_index = rewrite_cp_ref_in_annotation_data(
annotations_typeArray, byte_i_ref,
"class_info_index", THREAD);
log_debug(redefine, class, annotation)("class_info_index=%d", class_info_index);
} break;
case '@':
// For the above tag value, value.attr_value is the right union
// field. This is a nested annotation.
if (!rewrite_cp_refs_in_annotation_struct(annotations_typeArray,
byte_i_ref, THREAD)) {
// propagate failure back to caller
return false;
}
break;
case JVM_SIGNATURE_ARRAY:
{
if ((byte_i_ref + 2) > annotations_typeArray->length()) {
// not enough room for a num_values field
log_debug(redefine, class, annotation)("length() is too small for a num_values field");
return false;
}
// For the above tag value, value.array_value is the right union
// field. This is an array of nested element_value.
u2 num_values = Bytes::get_Java_u2((address)
annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("num_values=%d", num_values);
int calc_num_values = 0;
for (; calc_num_values < num_values; calc_num_values++) {
if (!rewrite_cp_refs_in_element_value(
annotations_typeArray, byte_i_ref, THREAD)) {
log_debug(redefine, class, annotation)("bad nested element_value at %d", calc_num_values);
// propagate failure back to caller
return false;
}
}
assert(num_values == calc_num_values, "sanity check");
} break;
default:
log_debug(redefine, class, annotation)("bad tag=0x%x", tag);
return false;
} // end decode tag field
return true;
} // end rewrite_cp_refs_in_element_value()
// Rewrite constant pool references in a fields_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_fields_annotations(
InstanceKlass* scratch_class, TRAPS) {
Array<AnnotationArray*>* fields_annotations = scratch_class->fields_annotations();
if (fields_annotations == NULL || fields_annotations->length() == 0) {
// no fields_annotations so nothing to do
return true;
}
log_debug(redefine, class, annotation)("fields_annotations length=%d", fields_annotations->length());
for (int i = 0; i < fields_annotations->length(); i++) {
AnnotationArray* field_annotations = fields_annotations->at(i);
if (field_annotations == NULL || field_annotations->length() == 0) {
// this field does not have any annotations so skip it
continue;
}
int byte_i = 0; // byte index into field_annotations
if (!rewrite_cp_refs_in_annotations_typeArray(field_annotations, byte_i,
THREAD)) {
log_debug(redefine, class, annotation)("bad field_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
return true;
} // end rewrite_cp_refs_in_fields_annotations()
// Rewrite constant pool references in a methods_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_methods_annotations(
InstanceKlass* scratch_class, TRAPS) {
for (int i = 0; i < scratch_class->methods()->length(); i++) {
Method* m = scratch_class->methods()->at(i);
AnnotationArray* method_annotations = m->constMethod()->method_annotations();
if (method_annotations == NULL || method_annotations->length() == 0) {
// this method does not have any annotations so skip it
continue;
}
int byte_i = 0; // byte index into method_annotations
if (!rewrite_cp_refs_in_annotations_typeArray(method_annotations, byte_i,
THREAD)) {
log_debug(redefine, class, annotation)("bad method_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
return true;
} // end rewrite_cp_refs_in_methods_annotations()
// Rewrite constant pool references in a methods_parameter_annotations
// field. This "structure" is adapted from the
// RuntimeVisibleParameterAnnotations_attribute described in section
// 4.8.17 of the 2nd-edition of the VM spec:
//
// methods_parameter_annotations_typeArray {
// u1 num_parameters;
// {
// u2 num_annotations;
// annotation annotations[num_annotations];
// } parameter_annotations[num_parameters];
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_methods_parameter_annotations(
InstanceKlass* scratch_class, TRAPS) {
for (int i = 0; i < scratch_class->methods()->length(); i++) {
Method* m = scratch_class->methods()->at(i);
AnnotationArray* method_parameter_annotations = m->constMethod()->parameter_annotations();
if (method_parameter_annotations == NULL
|| method_parameter_annotations->length() == 0) {
// this method does not have any parameter annotations so skip it
continue;
}
if (method_parameter_annotations->length() < 1) {
// not enough room for a num_parameters field
log_debug(redefine, class, annotation)("length() is too small for a num_parameters field at %d", i);
return false;
}
int byte_i = 0; // byte index into method_parameter_annotations
u1 num_parameters = method_parameter_annotations->at(byte_i);
byte_i++;
log_debug(redefine, class, annotation)("num_parameters=%d", num_parameters);
int calc_num_parameters = 0;
for (; calc_num_parameters < num_parameters; calc_num_parameters++) {
if (!rewrite_cp_refs_in_annotations_typeArray(
method_parameter_annotations, byte_i, THREAD)) {
log_debug(redefine, class, annotation)("bad method_parameter_annotations at %d", calc_num_parameters);
// propagate failure back to caller
return false;
}
}
assert(num_parameters == calc_num_parameters, "sanity check");
}
return true;
} // end rewrite_cp_refs_in_methods_parameter_annotations()
// Rewrite constant pool references in a methods_default_annotations
// field. This "structure" is adapted from the AnnotationDefault_attribute
// that is described in section 4.8.19 of the 2nd-edition of the VM spec:
//
// methods_default_annotations_typeArray {
// element_value default_value;
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_methods_default_annotations(
InstanceKlass* scratch_class, TRAPS) {
for (int i = 0; i < scratch_class->methods()->length(); i++) {
Method* m = scratch_class->methods()->at(i);
AnnotationArray* method_default_annotations = m->constMethod()->default_annotations();
if (method_default_annotations == NULL
|| method_default_annotations->length() == 0) {
// this method does not have any default annotations so skip it
continue;
}
int byte_i = 0; // byte index into method_default_annotations
if (!rewrite_cp_refs_in_element_value(
method_default_annotations, byte_i, THREAD)) {
log_debug(redefine, class, annotation)("bad default element_value at %d", i);
// propagate failure back to caller
return false;
}
}
return true;
} // end rewrite_cp_refs_in_methods_default_annotations()
// Rewrite constant pool references in a class_type_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_class_type_annotations(
InstanceKlass* scratch_class, TRAPS) {
AnnotationArray* class_type_annotations = scratch_class->class_type_annotations();
if (class_type_annotations == NULL || class_type_annotations->length() == 0) {
// no class_type_annotations so nothing to do
return true;
}
log_debug(redefine, class, annotation)("class_type_annotations length=%d", class_type_annotations->length());
int byte_i = 0; // byte index into class_type_annotations
return rewrite_cp_refs_in_type_annotations_typeArray(class_type_annotations,
byte_i, "ClassFile", THREAD);
} // end rewrite_cp_refs_in_class_type_annotations()
// Rewrite constant pool references in a fields_type_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_fields_type_annotations(
InstanceKlass* scratch_class, TRAPS) {
Array<AnnotationArray*>* fields_type_annotations = scratch_class->fields_type_annotations();
if (fields_type_annotations == NULL || fields_type_annotations->length() == 0) {
// no fields_type_annotations so nothing to do
return true;
}
log_debug(redefine, class, annotation)("fields_type_annotations length=%d", fields_type_annotations->length());
for (int i = 0; i < fields_type_annotations->length(); i++) {
AnnotationArray* field_type_annotations = fields_type_annotations->at(i);
if (field_type_annotations == NULL || field_type_annotations->length() == 0) {
// this field does not have any annotations so skip it
continue;
}
int byte_i = 0; // byte index into field_type_annotations
if (!rewrite_cp_refs_in_type_annotations_typeArray(field_type_annotations,
byte_i, "field_info", THREAD)) {
log_debug(redefine, class, annotation)("bad field_type_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
return true;
} // end rewrite_cp_refs_in_fields_type_annotations()
// Rewrite constant pool references in a methods_type_annotations field.
bool VM_RedefineClasses::rewrite_cp_refs_in_methods_type_annotations(
InstanceKlass* scratch_class, TRAPS) {
for (int i = 0; i < scratch_class->methods()->length(); i++) {
Method* m = scratch_class->methods()->at(i);
AnnotationArray* method_type_annotations = m->constMethod()->type_annotations();
if (method_type_annotations == NULL || method_type_annotations->length() == 0) {
// this method does not have any annotations so skip it
continue;
}
log_debug(redefine, class, annotation)("methods type_annotations length=%d", method_type_annotations->length());
int byte_i = 0; // byte index into method_type_annotations
if (!rewrite_cp_refs_in_type_annotations_typeArray(method_type_annotations,
byte_i, "method_info", THREAD)) {
log_debug(redefine, class, annotation)("bad method_type_annotations at %d", i);
// propagate failure back to caller
return false;
}
}
return true;
} // end rewrite_cp_refs_in_methods_type_annotations()
// Rewrite constant pool references in a type_annotations
// field. This "structure" is adapted from the
// RuntimeVisibleTypeAnnotations_attribute described in
// section 4.7.20 of the Java SE 8 Edition of the VM spec:
//
// type_annotations_typeArray {
// u2 num_annotations;
// type_annotation annotations[num_annotations];
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_type_annotations_typeArray(
AnnotationArray* type_annotations_typeArray, int &byte_i_ref,
const char * location_mesg, TRAPS) {
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
// not enough room for num_annotations field
log_debug(redefine, class, annotation)("length() is too small for num_annotations field");
return false;
}
u2 num_annotations = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("num_type_annotations=%d", num_annotations);
int calc_num_annotations = 0;
for (; calc_num_annotations < num_annotations; calc_num_annotations++) {
if (!rewrite_cp_refs_in_type_annotation_struct(type_annotations_typeArray,
byte_i_ref, location_mesg, THREAD)) {
log_debug(redefine, class, annotation)("bad type_annotation_struct at %d", calc_num_annotations);
// propagate failure back to caller
return false;
}
}
assert(num_annotations == calc_num_annotations, "sanity check");
if (byte_i_ref != type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)
("read wrong amount of bytes at end of processing type_annotations_typeArray (%d of %d bytes were read)",
byte_i_ref, type_annotations_typeArray->length());
return false;
}
return true;
} // end rewrite_cp_refs_in_type_annotations_typeArray()
// Rewrite constant pool references in a type_annotation
// field. This "structure" is adapted from the
// RuntimeVisibleTypeAnnotations_attribute described in
// section 4.7.20 of the Java SE 8 Edition of the VM spec:
//
// type_annotation {
// u1 target_type;
// union {
// type_parameter_target;
// supertype_target;
// type_parameter_bound_target;
// empty_target;
// method_formal_parameter_target;
// throws_target;
// localvar_target;
// catch_target;
// offset_target;
// type_argument_target;
// } target_info;
// type_path target_path;
// annotation anno;
// }
//
bool VM_RedefineClasses::rewrite_cp_refs_in_type_annotation_struct(
AnnotationArray* type_annotations_typeArray, int &byte_i_ref,
const char * location_mesg, TRAPS) {
if (!skip_type_annotation_target(type_annotations_typeArray,
byte_i_ref, location_mesg, THREAD)) {
return false;
}
if (!skip_type_annotation_type_path(type_annotations_typeArray,
byte_i_ref, THREAD)) {
return false;
}
if (!rewrite_cp_refs_in_annotation_struct(type_annotations_typeArray,
byte_i_ref, THREAD)) {
return false;
}
return true;
} // end rewrite_cp_refs_in_type_annotation_struct()
// Read, verify and skip over the target_type and target_info part
// so that rewriting can continue in the later parts of the struct.
//
// u1 target_type;
// union {
// type_parameter_target;
// supertype_target;
// type_parameter_bound_target;
// empty_target;
// method_formal_parameter_target;
// throws_target;
// localvar_target;
// catch_target;
// offset_target;
// type_argument_target;
// } target_info;
//
bool VM_RedefineClasses::skip_type_annotation_target(
AnnotationArray* type_annotations_typeArray, int &byte_i_ref,
const char * location_mesg, TRAPS) {
if ((byte_i_ref + 1) > type_annotations_typeArray->length()) {
// not enough room for a target_type let alone the rest of a type_annotation
log_debug(redefine, class, annotation)("length() is too small for a target_type");
return false;
}
u1 target_type = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)("target_type=0x%.2x", target_type);
log_debug(redefine, class, annotation)("location=%s", location_mesg);
// Skip over target_info
switch (target_type) {
case 0x00:
// kind: type parameter declaration of generic class or interface
// location: ClassFile
case 0x01:
// kind: type parameter declaration of generic method or constructor
// location: method_info
{
// struct:
// type_parameter_target {
// u1 type_parameter_index;
// }
//
if ((byte_i_ref + 1) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a type_parameter_target");
return false;
}
u1 type_parameter_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)("type_parameter_target: type_parameter_index=%d", type_parameter_index);
} break;
case 0x10:
// kind: type in extends clause of class or interface declaration
// (including the direct superclass of an unsafe anonymous class declaration),
// or in implements clause of interface declaration
// location: ClassFile
{
// struct:
// supertype_target {
// u2 supertype_index;
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a supertype_target");
return false;
}
u2 supertype_index = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("supertype_target: supertype_index=%d", supertype_index);
} break;
case 0x11:
// kind: type in bound of type parameter declaration of generic class or interface
// location: ClassFile
case 0x12:
// kind: type in bound of type parameter declaration of generic method or constructor
// location: method_info
{
// struct:
// type_parameter_bound_target {
// u1 type_parameter_index;
// u1 bound_index;
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a type_parameter_bound_target");
return false;
}
u1 type_parameter_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
u1 bound_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)
("type_parameter_bound_target: type_parameter_index=%d, bound_index=%d", type_parameter_index, bound_index);
} break;
case 0x13:
// kind: type in field declaration
// location: field_info
case 0x14:
// kind: return type of method, or type of newly constructed object
// location: method_info
case 0x15:
// kind: receiver type of method or constructor
// location: method_info
{
// struct:
// empty_target {
// }
//
log_debug(redefine, class, annotation)("empty_target");
} break;
case 0x16:
// kind: type in formal parameter declaration of method, constructor, or lambda expression
// location: method_info
{
// struct:
// formal_parameter_target {
// u1 formal_parameter_index;
// }
//
if ((byte_i_ref + 1) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a formal_parameter_target");
return false;
}
u1 formal_parameter_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)
("formal_parameter_target: formal_parameter_index=%d", formal_parameter_index);
} break;
case 0x17:
// kind: type in throws clause of method or constructor
// location: method_info
{
// struct:
// throws_target {
// u2 throws_type_index
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a throws_target");
return false;
}
u2 throws_type_index = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("throws_target: throws_type_index=%d", throws_type_index);
} break;
case 0x40:
// kind: type in local variable declaration
// location: Code
case 0x41:
// kind: type in resource variable declaration
// location: Code
{
// struct:
// localvar_target {
// u2 table_length;
// struct {
// u2 start_pc;
// u2 length;
// u2 index;
// } table[table_length];
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
// not enough room for a table_length let alone the rest of a localvar_target
log_debug(redefine, class, annotation)("length() is too small for a localvar_target table_length");
return false;
}
u2 table_length = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("localvar_target: table_length=%d", table_length);
int table_struct_size = 2 + 2 + 2; // 3 u2 variables per table entry
int table_size = table_length * table_struct_size;
if ((byte_i_ref + table_size) > type_annotations_typeArray->length()) {
// not enough room for a table
log_debug(redefine, class, annotation)("length() is too small for a table array of length %d", table_length);
return false;
}
// Skip over table
byte_i_ref += table_size;
} break;
case 0x42:
// kind: type in exception parameter declaration
// location: Code
{
// struct:
// catch_target {
// u2 exception_table_index;
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a catch_target");
return false;
}
u2 exception_table_index = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("catch_target: exception_table_index=%d", exception_table_index);
} break;
case 0x43:
// kind: type in instanceof expression
// location: Code
case 0x44:
// kind: type in new expression
// location: Code
case 0x45:
// kind: type in method reference expression using ::new
// location: Code
case 0x46:
// kind: type in method reference expression using ::Identifier
// location: Code
{
// struct:
// offset_target {
// u2 offset;
// }
//
if ((byte_i_ref + 2) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a offset_target");
return false;
}
u2 offset = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
log_debug(redefine, class, annotation)("offset_target: offset=%d", offset);
} break;
case 0x47:
// kind: type in cast expression
// location: Code
case 0x48:
// kind: type argument for generic constructor in new expression or
// explicit constructor invocation statement
// location: Code
case 0x49:
// kind: type argument for generic method in method invocation expression
// location: Code
case 0x4A:
// kind: type argument for generic constructor in method reference expression using ::new
// location: Code
case 0x4B:
// kind: type argument for generic method in method reference expression using ::Identifier
// location: Code
{
// struct:
// type_argument_target {
// u2 offset;
// u1 type_argument_index;
// }
//
if ((byte_i_ref + 3) > type_annotations_typeArray->length()) {
log_debug(redefine, class, annotation)("length() is too small for a type_argument_target");
return false;
}
u2 offset = Bytes::get_Java_u2((address)
type_annotations_typeArray->adr_at(byte_i_ref));
byte_i_ref += 2;
u1 type_argument_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)
("type_argument_target: offset=%d, type_argument_index=%d", offset, type_argument_index);
} break;
default:
log_debug(redefine, class, annotation)("unknown target_type");
#ifdef ASSERT
ShouldNotReachHere();
#endif
return false;
}
return true;
} // end skip_type_annotation_target()
// Read, verify and skip over the type_path part so that rewriting
// can continue in the later parts of the struct.
//
// type_path {
// u1 path_length;
// {
// u1 type_path_kind;
// u1 type_argument_index;
// } path[path_length];
// }
//
bool VM_RedefineClasses::skip_type_annotation_type_path(
AnnotationArray* type_annotations_typeArray, int &byte_i_ref, TRAPS) {
if ((byte_i_ref + 1) > type_annotations_typeArray->length()) {
// not enough room for a path_length let alone the rest of the type_path
log_debug(redefine, class, annotation)("length() is too small for a type_path");
return false;
}
u1 path_length = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)("type_path: path_length=%d", path_length);
int calc_path_length = 0;
for (; calc_path_length < path_length; calc_path_length++) {
if ((byte_i_ref + 1 + 1) > type_annotations_typeArray->length()) {
// not enough room for a path
log_debug(redefine, class, annotation)
("length() is too small for path entry %d of %d", calc_path_length, path_length);
return false;
}
u1 type_path_kind = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
u1 type_argument_index = type_annotations_typeArray->at(byte_i_ref);
byte_i_ref += 1;
log_debug(redefine, class, annotation)
("type_path: path[%d]: type_path_kind=%d, type_argument_index=%d",
calc_path_length, type_path_kind, type_argument_index);
if (type_path_kind > 3 || (type_path_kind != 3 && type_argument_index != 0)) {
// not enough room for a path
log_debug(redefine, class, annotation)("inconsistent type_path values");
return false;
}
}
assert(path_length == calc_path_length, "sanity check");
return true;
} // end skip_type_annotation_type_path()
// Rewrite constant pool references in the method's stackmap table.
// These "structures" are adapted from the StackMapTable_attribute that
// is described in section 4.8.4 of the 6.0 version of the VM spec
// (dated 2005.10.26):
// file:///net/quincunx.sfbay/export/gbracha/ClassFile-Java6.pdf
//
// stack_map {
// u2 number_of_entries;
// stack_map_frame entries[number_of_entries];
// }
//
void VM_RedefineClasses::rewrite_cp_refs_in_stack_map_table(
const methodHandle& method, TRAPS) {
if (!method->has_stackmap_table()) {
return;
}
AnnotationArray* stackmap_data = method->stackmap_data();
address stackmap_p = (address)stackmap_data->adr_at(0);
address stackmap_end = stackmap_p + stackmap_data->length();
assert(stackmap_p + 2 <= stackmap_end, "no room for number_of_entries");
u2 number_of_entries = Bytes::get_Java_u2(stackmap_p);
stackmap_p += 2;
log_debug(redefine, class, stackmap)("number_of_entries=%u", number_of_entries);
// walk through each stack_map_frame
u2 calc_number_of_entries = 0;
for (; calc_number_of_entries < number_of_entries; calc_number_of_entries++) {
// The stack_map_frame structure is a u1 frame_type followed by
// 0 or more bytes of data:
//
// union stack_map_frame {
// same_frame;
// same_locals_1_stack_item_frame;
// same_locals_1_stack_item_frame_extended;
// chop_frame;
// same_frame_extended;
// append_frame;
// full_frame;
// }
assert(stackmap_p + 1 <= stackmap_end, "no room for frame_type");
u1 frame_type = *stackmap_p;
stackmap_p++;
// same_frame {
// u1 frame_type = SAME; /* 0-63 */
// }
if (frame_type <= 63) {
// nothing more to do for same_frame
}
// same_locals_1_stack_item_frame {
// u1 frame_type = SAME_LOCALS_1_STACK_ITEM; /* 64-127 */
// verification_type_info stack[1];
// }
else if (frame_type >= 64 && frame_type <= 127) {
rewrite_cp_refs_in_verification_type_info(stackmap_p, stackmap_end,
calc_number_of_entries, frame_type, THREAD);
}
// reserved for future use
else if (frame_type >= 128 && frame_type <= 246) {
// nothing more to do for reserved frame_types
}
// same_locals_1_stack_item_frame_extended {
// u1 frame_type = SAME_LOCALS_1_STACK_ITEM_EXTENDED; /* 247 */
// u2 offset_delta;
// verification_type_info stack[1];
// }
else if (frame_type == 247) {
stackmap_p += 2;
rewrite_cp_refs_in_verification_type_info(stackmap_p, stackmap_end,
calc_number_of_entries, frame_type, THREAD);
}
// chop_frame {
// u1 frame_type = CHOP; /* 248-250 */
// u2 offset_delta;
// }
else if (frame_type >= 248 && frame_type <= 250) {
stackmap_p += 2;
}
// same_frame_extended {
// u1 frame_type = SAME_FRAME_EXTENDED; /* 251*/
// u2 offset_delta;
// }
else if (frame_type == 251) {
stackmap_p += 2;
}
// append_frame {
// u1 frame_type = APPEND; /* 252-254 */
// u2 offset_delta;
// verification_type_info locals[frame_type - 251];
// }
else if (frame_type >= 252 && frame_type <= 254) {
assert(stackmap_p + 2 <= stackmap_end,
"no room for offset_delta");
stackmap_p += 2;
u1 len = frame_type - 251;
for (u1 i = 0; i < len; i++) {
rewrite_cp_refs_in_verification_type_info(stackmap_p, stackmap_end,
calc_number_of_entries, frame_type, THREAD);
}
}
// full_frame {
// u1 frame_type = FULL_FRAME; /* 255 */
// u2 offset_delta;
// u2 number_of_locals;
// verification_type_info locals[number_of_locals];
// u2 number_of_stack_items;
// verification_type_info stack[number_of_stack_items];
// }
else if (frame_type == 255) {
assert(stackmap_p + 2 + 2 <= stackmap_end,
"no room for smallest full_frame");
stackmap_p += 2;
u2 number_of_locals = Bytes::get_Java_u2(stackmap_p);
stackmap_p += 2;
for (u2 locals_i = 0; locals_i < number_of_locals; locals_i++) {
rewrite_cp_refs_in_verification_type_info(stackmap_p, stackmap_end,
calc_number_of_entries, frame_type, THREAD);
}
// Use the largest size for the number_of_stack_items, but only get
// the right number of bytes.
u2 number_of_stack_items = Bytes::get_Java_u2(stackmap_p);
stackmap_p += 2;
for (u2 stack_i = 0; stack_i < number_of_stack_items; stack_i++) {
rewrite_cp_refs_in_verification_type_info(stackmap_p, stackmap_end,
calc_number_of_entries, frame_type, THREAD);
}
}
} // end while there is a stack_map_frame
assert(number_of_entries == calc_number_of_entries, "sanity check");
} // end rewrite_cp_refs_in_stack_map_table()
// Rewrite constant pool references in the verification type info
// portion of the method's stackmap table. These "structures" are
// adapted from the StackMapTable_attribute that is described in
// section 4.8.4 of the 6.0 version of the VM spec (dated 2005.10.26):
// file:///net/quincunx.sfbay/export/gbracha/ClassFile-Java6.pdf
//
// The verification_type_info structure is a u1 tag followed by 0 or
// more bytes of data:
//
// union verification_type_info {
// Top_variable_info;
// Integer_variable_info;
// Float_variable_info;
// Long_variable_info;
// Double_variable_info;
// Null_variable_info;
// UninitializedThis_variable_info;
// Object_variable_info;
// Uninitialized_variable_info;
// }
//
void VM_RedefineClasses::rewrite_cp_refs_in_verification_type_info(
address& stackmap_p_ref, address stackmap_end, u2 frame_i,
u1 frame_type, TRAPS) {
assert(stackmap_p_ref + 1 <= stackmap_end, "no room for tag");
u1 tag = *stackmap_p_ref;
stackmap_p_ref++;
switch (tag) {
// Top_variable_info {
// u1 tag = ITEM_Top; /* 0 */
// }
// verificationType.hpp has zero as ITEM_Bogus instead of ITEM_Top
case 0: // fall through
// Integer_variable_info {
// u1 tag = ITEM_Integer; /* 1 */
// }
case ITEM_Integer: // fall through
// Float_variable_info {
// u1 tag = ITEM_Float; /* 2 */
// }
case ITEM_Float: // fall through
// Double_variable_info {
// u1 tag = ITEM_Double; /* 3 */
// }
case ITEM_Double: // fall through
// Long_variable_info {
// u1 tag = ITEM_Long; /* 4 */
// }
case ITEM_Long: // fall through
// Null_variable_info {
// u1 tag = ITEM_Null; /* 5 */
// }
case ITEM_Null: // fall through
// UninitializedThis_variable_info {
// u1 tag = ITEM_UninitializedThis; /* 6 */
// }
case ITEM_UninitializedThis:
// nothing more to do for the above tag types
break;
// Object_variable_info {
// u1 tag = ITEM_Object; /* 7 */
// u2 cpool_index;
// }
case ITEM_Object:
{
assert(stackmap_p_ref + 2 <= stackmap_end, "no room for cpool_index");
u2 cpool_index = Bytes::get_Java_u2(stackmap_p_ref);
u2 new_cp_index = find_new_index(cpool_index);
if (new_cp_index != 0) {
log_debug(redefine, class, stackmap)("mapped old cpool_index=%d", cpool_index);
Bytes::put_Java_u2(stackmap_p_ref, new_cp_index);
cpool_index = new_cp_index;
}
stackmap_p_ref += 2;
log_debug(redefine, class, stackmap)
("frame_i=%u, frame_type=%u, cpool_index=%d", frame_i, frame_type, cpool_index);
} break;
// Uninitialized_variable_info {
// u1 tag = ITEM_Uninitialized; /* 8 */
// u2 offset;
// }
case ITEM_Uninitialized:
assert(stackmap_p_ref + 2 <= stackmap_end, "no room for offset");
stackmap_p_ref += 2;
break;
default:
log_debug(redefine, class, stackmap)("frame_i=%u, frame_type=%u, bad tag=0x%x", frame_i, frame_type, tag);
ShouldNotReachHere();
break;
} // end switch (tag)
} // end rewrite_cp_refs_in_verification_type_info()
// Change the constant pool associated with klass scratch_class to
// scratch_cp. If shrink is true, then scratch_cp_length elements
// are copied from scratch_cp to a smaller constant pool and the
// smaller constant pool is associated with scratch_class.
void VM_RedefineClasses::set_new_constant_pool(
ClassLoaderData* loader_data,
InstanceKlass* scratch_class, constantPoolHandle scratch_cp,
int scratch_cp_length, TRAPS) {
assert(scratch_cp->length() >= scratch_cp_length, "sanity check");
// scratch_cp is a merged constant pool and has enough space for a
// worst case merge situation. We want to associate the minimum
// sized constant pool with the klass to save space.
ConstantPool* cp = ConstantPool::allocate(loader_data, scratch_cp_length, CHECK);
constantPoolHandle smaller_cp(THREAD, cp);
// preserve version() value in the smaller copy
int version = scratch_cp->version();
assert(version != 0, "sanity check");
smaller_cp->set_version(version);
// attach klass to new constant pool
// reference to the cp holder is needed for copy_operands()
smaller_cp->set_pool_holder(scratch_class);
if (scratch_cp->has_dynamic_constant()) {
smaller_cp->set_has_dynamic_constant();
}
scratch_cp->copy_cp_to(1, scratch_cp_length - 1, smaller_cp, 1, THREAD);
if (HAS_PENDING_EXCEPTION) {
// Exception is handled in the caller
loader_data->add_to_deallocate_list(smaller_cp());
return;
}
scratch_cp = smaller_cp;
// attach new constant pool to klass
scratch_class->set_constants(scratch_cp());
scratch_cp->initialize_unresolved_klasses(loader_data, CHECK);
int i; // for portability
// update each field in klass to use new constant pool indices as needed
for (JavaFieldStream fs(scratch_class); !fs.done(); fs.next()) {
jshort cur_index = fs.name_index();
jshort new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("field-name_index change: %d to %d", cur_index, new_index);
fs.set_name_index(new_index);
}
cur_index = fs.signature_index();
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("field-signature_index change: %d to %d", cur_index, new_index);
fs.set_signature_index(new_index);
}
cur_index = fs.initval_index();
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("field-initval_index change: %d to %d", cur_index, new_index);
fs.set_initval_index(new_index);
}
cur_index = fs.generic_signature_index();
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("field-generic_signature change: %d to %d", cur_index, new_index);
fs.set_generic_signature_index(new_index);
}
} // end for each field
// Update constant pool indices in the inner classes info to use
// new constant indices as needed. The inner classes info is a
// quadruple:
// (inner_class_info, outer_class_info, inner_name, inner_access_flags)
InnerClassesIterator iter(scratch_class);
for (; !iter.done(); iter.next()) {
int cur_index = iter.inner_class_info_index();
if (cur_index == 0) {
continue; // JVM spec. allows null inner class refs so skip it
}
int new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("inner_class_info change: %d to %d", cur_index, new_index);
iter.set_inner_class_info_index(new_index);
}
cur_index = iter.outer_class_info_index();
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("outer_class_info change: %d to %d", cur_index, new_index);
iter.set_outer_class_info_index(new_index);
}
cur_index = iter.inner_name_index();
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("inner_name change: %d to %d", cur_index, new_index);
iter.set_inner_name_index(new_index);
}
} // end for each inner class
// Attach each method in klass to the new constant pool and update
// to use new constant pool indices as needed:
Array<Method*>* methods = scratch_class->methods();
for (i = methods->length() - 1; i >= 0; i--) {
methodHandle method(THREAD, methods->at(i));
method->set_constants(scratch_cp());
int new_index = find_new_index(method->name_index());
if (new_index != 0) {
log_trace(redefine, class, constantpool)
("method-name_index change: %d to %d", method->name_index(), new_index);
method->set_name_index(new_index);
}
new_index = find_new_index(method->signature_index());
if (new_index != 0) {
log_trace(redefine, class, constantpool)
("method-signature_index change: %d to %d", method->signature_index(), new_index);
method->set_signature_index(new_index);
}
new_index = find_new_index(method->generic_signature_index());
if (new_index != 0) {
log_trace(redefine, class, constantpool)
("method-generic_signature_index change: %d to %d", method->generic_signature_index(), new_index);
method->set_generic_signature_index(new_index);
}
// Update constant pool indices in the method's checked exception
// table to use new constant indices as needed.
int cext_length = method->checked_exceptions_length();
if (cext_length > 0) {
CheckedExceptionElement * cext_table =
method->checked_exceptions_start();
for (int j = 0; j < cext_length; j++) {
int cur_index = cext_table[j].class_cp_index;
int new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("cext-class_cp_index change: %d to %d", cur_index, new_index);
cext_table[j].class_cp_index = (u2)new_index;
}
} // end for each checked exception table entry
} // end if there are checked exception table entries
// Update each catch type index in the method's exception table
// to use new constant pool indices as needed. The exception table
// holds quadruple entries of the form:
// (beg_bci, end_bci, handler_bci, klass_index)
ExceptionTable ex_table(method());
int ext_length = ex_table.length();
for (int j = 0; j < ext_length; j ++) {
int cur_index = ex_table.catch_type_index(j);
int new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("ext-klass_index change: %d to %d", cur_index, new_index);
ex_table.set_catch_type_index(j, new_index);
}
} // end for each exception table entry
// Update constant pool indices in the method's local variable
// table to use new constant indices as needed. The local variable
// table hold sextuple entries of the form:
// (start_pc, length, name_index, descriptor_index, signature_index, slot)
int lvt_length = method->localvariable_table_length();
if (lvt_length > 0) {
LocalVariableTableElement * lv_table =
method->localvariable_table_start();
for (int j = 0; j < lvt_length; j++) {
int cur_index = lv_table[j].name_cp_index;
int new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("lvt-name_cp_index change: %d to %d", cur_index, new_index);
lv_table[j].name_cp_index = (u2)new_index;
}
cur_index = lv_table[j].descriptor_cp_index;
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("lvt-descriptor_cp_index change: %d to %d", cur_index, new_index);
lv_table[j].descriptor_cp_index = (u2)new_index;
}
cur_index = lv_table[j].signature_cp_index;
new_index = find_new_index(cur_index);
if (new_index != 0) {
log_trace(redefine, class, constantpool)("lvt-signature_cp_index change: %d to %d", cur_index, new_index);
lv_table[j].signature_cp_index = (u2)new_index;
}
} // end for each local variable table entry
} // end if there are local variable table entries
rewrite_cp_refs_in_stack_map_table(method, THREAD);
} // end for each method
} // end set_new_constant_pool()
// Unevolving classes may point to methods of the_class directly
// from their constant pool caches, itables, and/or vtables. We
// use the ClassLoaderDataGraph::classes_do() facility and this helper
// to fix up these pointers. MethodData also points to old methods and
// must be cleaned.
// Adjust cpools and vtables closure
void VM_RedefineClasses::AdjustAndCleanMetadata::do_klass(Klass* k) {
// This is a very busy routine. We don't want too much tracing
// printed out.
bool trace_name_printed = false;
// If the class being redefined is java.lang.Object, we need to fix all
// array class vtables also
if (k->is_array_klass() && _has_redefined_Object) {
k->vtable().adjust_method_entries(&trace_name_printed);
} else if (k->is_instance_klass()) {
HandleMark hm(_thread);
InstanceKlass *ik = InstanceKlass::cast(k);
// Clean MethodData of this class's methods so they don't refer to
// old methods that are no longer running.
Array<Method*>* methods = ik->methods();
int num_methods = methods->length();
for (int index = 0; index < num_methods; ++index) {
if (methods->at(index)->method_data() != NULL) {
methods->at(index)->method_data()->clean_weak_method_links();
}
}
// HotSpot specific optimization! HotSpot does not currently
// support delegation from the bootstrap class loader to a
// user-defined class loader. This means that if the bootstrap
// class loader is the initiating class loader, then it will also
// be the defining class loader. This also means that classes
// loaded by the bootstrap class loader cannot refer to classes
// loaded by a user-defined class loader. Note: a user-defined
// class loader can delegate to the bootstrap class loader.
//
// If the current class being redefined has a user-defined class
// loader as its defining class loader, then we can skip all
// classes loaded by the bootstrap class loader.
if (!_has_null_class_loader && ik->class_loader() == NULL) {
return;
}
// Adjust all vtables, default methods and itables, to clean out old methods.
ResourceMark rm(_thread);
if (ik->vtable_length() > 0) {
ik->vtable().adjust_method_entries(&trace_name_printed);
ik->adjust_default_methods(&trace_name_printed);
}
if (ik->itable_length() > 0) {
ik->itable().adjust_method_entries(&trace_name_printed);
}
// The constant pools in other classes (other_cp) can refer to
// old methods. We have to update method information in
// other_cp's cache. If other_cp has a previous version, then we
// have to repeat the process for each previous version. The
// constant pool cache holds the Method*s for non-virtual
// methods and for virtual, final methods.
//
// Special case: if the current class being redefined, then new_cp
// has already been attached to the_class and old_cp has already
// been added as a previous version. The new_cp doesn't have any
// cached references to old methods so it doesn't need to be
// updated. We can simply start with the previous version(s) in
// that case.
ConstantPoolCache* cp_cache;
if (!ik->is_being_redefined()) {
// this klass' constant pool cache may need adjustment
ConstantPool* other_cp = ik->constants();
cp_cache = other_cp->cache();
if (cp_cache != NULL) {
cp_cache->adjust_method_entries(&trace_name_printed);
}
}
// the previous versions' constant pool caches may need adjustment
for (InstanceKlass* pv_node = ik->previous_versions();
pv_node != NULL;
pv_node = pv_node->previous_versions()) {
cp_cache = pv_node->constants()->cache();
if (cp_cache != NULL) {
cp_cache->adjust_method_entries(&trace_name_printed);
}
}
}
}
void VM_RedefineClasses::update_jmethod_ids(Thread* thread) {
for (int j = 0; j < _matching_methods_length; ++j) {
Method* old_method = _matching_old_methods[j];
jmethodID jmid = old_method->find_jmethod_id_or_null();
if (jmid != NULL) {
// There is a jmethodID, change it to point to the new method
methodHandle new_method_h(thread, _matching_new_methods[j]);
Method::change_method_associated_with_jmethod_id(jmid, new_method_h());
assert(Method::resolve_jmethod_id(jmid) == _matching_new_methods[j],
"should be replaced");
}
}
}
int VM_RedefineClasses::check_methods_and_mark_as_obsolete() {
int emcp_method_count = 0;
int obsolete_count = 0;
int old_index = 0;
for (int j = 0; j < _matching_methods_length; ++j, ++old_index) {
Method* old_method = _matching_old_methods[j];
Method* new_method = _matching_new_methods[j];
Method* old_array_method;
// Maintain an old_index into the _old_methods array by skipping
// deleted methods
while ((old_array_method = _old_methods->at(old_index)) != old_method) {
++old_index;
}
if (MethodComparator::methods_EMCP(old_method, new_method)) {
// The EMCP definition from JSR-163 requires the bytecodes to be
// the same with the exception of constant pool indices which may
// differ. However, the constants referred to by those indices
// must be the same.
//
// We use methods_EMCP() for comparison since constant pool
// merging can remove duplicate constant pool entries that were
// present in the old method and removed from the rewritten new
// method. A faster binary comparison function would consider the
// old and new methods to be different when they are actually
// EMCP.
//
// The old and new methods are EMCP and you would think that we
// could get rid of one of them here and now and save some space.
// However, the concept of EMCP only considers the bytecodes and
// the constant pool entries in the comparison. Other things,
// e.g., the line number table (LNT) or the local variable table
// (LVT) don't count in the comparison. So the new (and EMCP)
// method can have a new LNT that we need so we can't just
// overwrite the new method with the old method.
//
// When this routine is called, we have already attached the new
// methods to the_class so the old methods are effectively
// overwritten. However, if an old method is still executing,
// then the old method cannot be collected until sometime after
// the old method call has returned. So the overwriting of old
// methods by new methods will save us space except for those
// (hopefully few) old methods that are still executing.
//
// A method refers to a ConstMethod* and this presents another
// possible avenue to space savings. The ConstMethod* in the
// new method contains possibly new attributes (LNT, LVT, etc).
// At first glance, it seems possible to save space by replacing
// the ConstMethod* in the old method with the ConstMethod*
// from the new method. The old and new methods would share the
// same ConstMethod* and we would save the space occupied by
// the old ConstMethod*. However, the ConstMethod* contains
// a back reference to the containing method. Sharing the
// ConstMethod* between two methods could lead to confusion in
// the code that uses the back reference. This would lead to
// brittle code that could be broken in non-obvious ways now or
// in the future.
//
// Another possibility is to copy the ConstMethod* from the new
// method to the old method and then overwrite the new method with
// the old method. Since the ConstMethod* contains the bytecodes
// for the method embedded in the oop, this option would change
// the bytecodes out from under any threads executing the old
// method and make the thread's bcp invalid. Since EMCP requires
// that the bytecodes be the same modulo constant pool indices, it
// is straight forward to compute the correct new bcp in the new
// ConstMethod* from the old bcp in the old ConstMethod*. The
// time consuming part would be searching all the frames in all
// of the threads to find all of the calls to the old method.
//
// It looks like we will have to live with the limited savings
// that we get from effectively overwriting the old methods
// when the new methods are attached to the_class.
// Count number of methods that are EMCP. The method will be marked
// old but not obsolete if it is EMCP.
emcp_method_count++;
// An EMCP method is _not_ obsolete. An obsolete method has a
// different jmethodID than the current method. An EMCP method
// has the same jmethodID as the current method. Having the
// same jmethodID for all EMCP versions of a method allows for
// a consistent view of the EMCP methods regardless of which
// EMCP method you happen to have in hand. For example, a
// breakpoint set in one EMCP method will work for all EMCP
// versions of the method including the current one.
} else {
// mark obsolete methods as such
old_method->set_is_obsolete();
obsolete_count++;
// obsolete methods need a unique idnum so they become new entries in
// the jmethodID cache in InstanceKlass
assert(old_method->method_idnum() == new_method->method_idnum(), "must match");
u2 num = InstanceKlass::cast(_the_class)->next_method_idnum();
if (num != ConstMethod::UNSET_IDNUM) {
old_method->set_method_idnum(num);
}
// With tracing we try not to "yack" too much. The position of
// this trace assumes there are fewer obsolete methods than
// EMCP methods.
if (log_is_enabled(Trace, redefine, class, obsolete, mark)) {
ResourceMark rm;
log_trace(redefine, class, obsolete, mark)
("mark %s(%s) as obsolete", old_method->name()->as_C_string(), old_method->signature()->as_C_string());
}
}
old_method->set_is_old();
}
for (int i = 0; i < _deleted_methods_length; ++i) {
Method* old_method = _deleted_methods[i];
assert(!old_method->has_vtable_index(),
"cannot delete methods with vtable entries");;
// Mark all deleted methods as old, obsolete and deleted
old_method->set_is_deleted();
old_method->set_is_old();
old_method->set_is_obsolete();
++obsolete_count;
// With tracing we try not to "yack" too much. The position of
// this trace assumes there are fewer obsolete methods than
// EMCP methods.
if (log_is_enabled(Trace, redefine, class, obsolete, mark)) {
ResourceMark rm;
log_trace(redefine, class, obsolete, mark)
("mark deleted %s(%s) as obsolete", old_method->name()->as_C_string(), old_method->signature()->as_C_string());
}
}
assert((emcp_method_count + obsolete_count) == _old_methods->length(),
"sanity check");
log_trace(redefine, class, obsolete, mark)("EMCP_cnt=%d, obsolete_cnt=%d", emcp_method_count, obsolete_count);
return emcp_method_count;
}
// This internal class transfers the native function registration from old methods
// to new methods. It is designed to handle both the simple case of unchanged
// native methods and the complex cases of native method prefixes being added and/or
// removed.
// It expects only to be used during the VM_RedefineClasses op (a safepoint).
//
// This class is used after the new methods have been installed in "the_class".
//
// So, for example, the following must be handled. Where 'm' is a method and
// a number followed by an underscore is a prefix.
//
// Old Name New Name
// Simple transfer to new method m -> m
// Add prefix m -> 1_m
// Remove prefix 1_m -> m
// Simultaneous add of prefixes m -> 3_2_1_m
// Simultaneous removal of prefixes 3_2_1_m -> m
// Simultaneous add and remove 1_m -> 2_m
// Same, caused by prefix removal only 3_2_1_m -> 3_2_m
//
class TransferNativeFunctionRegistration {
private:
InstanceKlass* the_class;
int prefix_count;
char** prefixes;
// Recursively search the binary tree of possibly prefixed method names.
// Iteration could be used if all agents were well behaved. Full tree walk is
// more resilent to agents not cleaning up intermediate methods.
// Branch at each depth in the binary tree is:
// (1) without the prefix.
// (2) with the prefix.
// where 'prefix' is the prefix at that 'depth' (first prefix, second prefix,...)
Method* search_prefix_name_space(int depth, char* name_str, size_t name_len,
Symbol* signature) {
TempNewSymbol name_symbol = SymbolTable::probe(name_str, (int)name_len);
if (name_symbol != NULL) {
Method* method = the_class->lookup_method(name_symbol, signature);
if (method != NULL) {
// Even if prefixed, intermediate methods must exist.
if (method->is_native()) {
// Wahoo, we found a (possibly prefixed) version of the method, return it.
return method;
}
if (depth < prefix_count) {
// Try applying further prefixes (other than this one).
method = search_prefix_name_space(depth+1, name_str, name_len, signature);
if (method != NULL) {
return method; // found
}
// Try adding this prefix to the method name and see if it matches
// another method name.
char* prefix = prefixes[depth];
size_t prefix_len = strlen(prefix);
size_t trial_len = name_len + prefix_len;
char* trial_name_str = NEW_RESOURCE_ARRAY(char, trial_len + 1);
strcpy(trial_name_str, prefix);
strcat(trial_name_str, name_str);
method = search_prefix_name_space(depth+1, trial_name_str, trial_len,
signature);
if (method != NULL) {
// If found along this branch, it was prefixed, mark as such
method->set_is_prefixed_native();
return method; // found
}
}
}
}
return NULL; // This whole branch bore nothing
}
// Return the method name with old prefixes stripped away.
char* method_name_without_prefixes(Method* method) {
Symbol* name = method->name();
char* name_str = name->as_utf8();
// Old prefixing may be defunct, strip prefixes, if any.
for (int i = prefix_count-1; i >= 0; i--) {
char* prefix = prefixes[i];
size_t prefix_len = strlen(prefix);
if (strncmp(prefix, name_str, prefix_len) == 0) {
name_str += prefix_len;
}
}
return name_str;
}
// Strip any prefixes off the old native method, then try to find a
// (possibly prefixed) new native that matches it.
Method* strip_and_search_for_new_native(Method* method) {
ResourceMark rm;
char* name_str = method_name_without_prefixes(method);
return search_prefix_name_space(0, name_str, strlen(name_str),
method->signature());
}
public:
// Construct a native method transfer processor for this class.
TransferNativeFunctionRegistration(InstanceKlass* _the_class) {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
the_class = _the_class;
prefixes = JvmtiExport::get_all_native_method_prefixes(&prefix_count);
}
// Attempt to transfer any of the old or deleted methods that are native
void transfer_registrations(Method** old_methods, int methods_length) {
for (int j = 0; j < methods_length; j++) {
Method* old_method = old_methods[j];
if (old_method->is_native() && old_method->has_native_function()) {
Method* new_method = strip_and_search_for_new_native(old_method);
if (new_method != NULL) {
// Actually set the native function in the new method.
// Redefine does not send events (except CFLH), certainly not this
// behind the scenes re-registration.
new_method->set_native_function(old_method->native_function(),
!Method::native_bind_event_is_interesting);
}
}
}
}
};
// Don't lose the association between a native method and its JNI function.
void VM_RedefineClasses::transfer_old_native_function_registrations(InstanceKlass* the_class) {
TransferNativeFunctionRegistration transfer(the_class);
transfer.transfer_registrations(_deleted_methods, _deleted_methods_length);
transfer.transfer_registrations(_matching_old_methods, _matching_methods_length);
}
// Deoptimize all compiled code that depends on this class.
//
// If the can_redefine_classes capability is obtained in the onload
// phase then the compiler has recorded all dependencies from startup.
// In that case we need only deoptimize and throw away all compiled code
// that depends on the class.
//
// If can_redefine_classes is obtained sometime after the onload
// phase then the dependency information may be incomplete. In that case
// the first call to RedefineClasses causes all compiled code to be
// thrown away. As can_redefine_classes has been obtained then
// all future compilations will record dependencies so second and
// subsequent calls to RedefineClasses need only throw away code
// that depends on the class.
//
// First step is to walk the code cache for each class redefined and mark
// dependent methods. Wait until all classes are processed to deoptimize everything.
void VM_RedefineClasses::mark_dependent_code(InstanceKlass* ik) {
assert_locked_or_safepoint(Compile_lock);
// All dependencies have been recorded from startup or this is a second or
// subsequent use of RedefineClasses
if (JvmtiExport::all_dependencies_are_recorded()) {
CodeCache::mark_for_evol_deoptimization(ik);
}
}
void VM_RedefineClasses::flush_dependent_code() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
bool deopt_needed;
// This is the first redefinition, mark all the nmethods for deoptimization
if (!JvmtiExport::all_dependencies_are_recorded()) {
log_debug(redefine, class, nmethod)("Marked all nmethods for deopt");
CodeCache::mark_all_nmethods_for_evol_deoptimization();
deopt_needed = true;
} else {
int deopt = CodeCache::mark_dependents_for_evol_deoptimization();
log_debug(redefine, class, nmethod)("Marked %d dependent nmethods for deopt", deopt);
deopt_needed = (deopt != 0);
}
if (deopt_needed) {
CodeCache::flush_evol_dependents();
}
// From now on we know that the dependency information is complete
JvmtiExport::set_all_dependencies_are_recorded(true);
}
void VM_RedefineClasses::compute_added_deleted_matching_methods() {
Method* old_method;
Method* new_method;
_matching_old_methods = NEW_RESOURCE_ARRAY(Method*, _old_methods->length());
_matching_new_methods = NEW_RESOURCE_ARRAY(Method*, _old_methods->length());
_added_methods = NEW_RESOURCE_ARRAY(Method*, _new_methods->length());
_deleted_methods = NEW_RESOURCE_ARRAY(Method*, _old_methods->length());
_matching_methods_length = 0;
_deleted_methods_length = 0;
_added_methods_length = 0;
int nj = 0;
int oj = 0;
while (true) {
if (oj >= _old_methods->length()) {
if (nj >= _new_methods->length()) {
break; // we've looked at everything, done
}
// New method at the end
new_method = _new_methods->at(nj);
_added_methods[_added_methods_length++] = new_method;
++nj;
} else if (nj >= _new_methods->length()) {
// Old method, at the end, is deleted
old_method = _old_methods->at(oj);
_deleted_methods[_deleted_methods_length++] = old_method;
++oj;
} else {
old_method = _old_methods->at(oj);
new_method = _new_methods->at(nj);
if (old_method->name() == new_method->name()) {
if (old_method->signature() == new_method->signature()) {
_matching_old_methods[_matching_methods_length ] = old_method;
_matching_new_methods[_matching_methods_length++] = new_method;
++nj;
++oj;
} else {
// added overloaded have already been moved to the end,
// so this is a deleted overloaded method
_deleted_methods[_deleted_methods_length++] = old_method;
++oj;
}
} else { // names don't match
if (old_method->name()->fast_compare(new_method->name()) > 0) {
// new method
_added_methods[_added_methods_length++] = new_method;
++nj;
} else {
// deleted method
_deleted_methods[_deleted_methods_length++] = old_method;
++oj;
}
}
}
}
assert(_matching_methods_length + _deleted_methods_length == _old_methods->length(), "sanity");
assert(_matching_methods_length + _added_methods_length == _new_methods->length(), "sanity");
}
void VM_RedefineClasses::swap_annotations(InstanceKlass* the_class,
InstanceKlass* scratch_class) {
// Swap annotation fields values
Annotations* old_annotations = the_class->annotations();
the_class->set_annotations(scratch_class->annotations());
scratch_class->set_annotations(old_annotations);
}
// Install the redefinition of a class:
// - house keeping (flushing breakpoints and caches, deoptimizing
// dependent compiled code)
// - replacing parts in the_class with parts from scratch_class
// - adding a weak reference to track the obsolete but interesting
// parts of the_class
// - adjusting constant pool caches and vtables in other classes
/**代码未完, 请加载全部代码(NowJava.com).**/