/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/jvmtiRawMonitor.hpp"
#include "runtime/atomic.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/thread.inline.hpp"
JvmtiRawMonitor::QNode::QNode(Thread* thread) : _next(NULL), _prev(NULL),
_event(thread->_ParkEvent),
_notified(0), _t_state(TS_RUN) {
}
GrowableArray<JvmtiRawMonitor*>* JvmtiPendingMonitors::_monitors =
new (ResourceObj::C_HEAP, mtInternal) GrowableArray<JvmtiRawMonitor*>(1, true);
void JvmtiPendingMonitors::transition_raw_monitors() {
assert((Threads::number_of_threads()==1),
"Java thread has not been created yet or more than one java thread "
"is running. Raw monitor transition will not work");
JavaThread* current_java_thread = JavaThread::current();
assert(current_java_thread->thread_state() == _thread_in_vm, "Must be in vm");
for (int i = 0; i < count(); i++) {
JvmtiRawMonitor* rmonitor = monitors()->at(i);
rmonitor->raw_enter(current_java_thread);
}
// pending monitors are converted to real monitor so delete them all.
dispose();
}
//
// class JvmtiRawMonitor
//
JvmtiRawMonitor::JvmtiRawMonitor(const char* name) : _owner(NULL),
_recursions(0),
_entry_list(NULL),
_wait_set(NULL),
_waiters(0),
_magic(JVMTI_RM_MAGIC),
_name(NULL) {
#ifdef ASSERT
_name = strcpy(NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtInternal), name);
#endif
}
JvmtiRawMonitor::~JvmtiRawMonitor() {
#ifdef ASSERT
FreeHeap(_name);
#endif
_magic = 0;
}
bool
JvmtiRawMonitor::is_valid() {
int value = 0;
// This object might not be a JvmtiRawMonitor so we can't assume
// the _magic field is properly aligned. Get the value in a safe
// way and then check against JVMTI_RM_MAGIC.
switch (sizeof(_magic)) {
case 2:
value = Bytes::get_native_u2((address)&_magic);
break;
case 4:
value = Bytes::get_native_u4((address)&_magic);
break;
case 8:
value = Bytes::get_native_u8((address)&_magic);
break;
default:
guarantee(false, "_magic field is an unexpected size");
}
return value == JVMTI_RM_MAGIC;
}
// -------------------------------------------------------------------------
// The JVMTI raw monitor subsystem is entirely distinct from normal
// java-synchronization or jni-synchronization. JVMTI raw monitors are not
// associated with objects. They can be implemented in any manner
// that makes sense. The original implementors decided to piggy-back
// the raw-monitor implementation on the existing Java ObjectMonitor mechanism.
// Now we just use a simplified form of that ObjectMonitor code.
//
// Note that we use the single RawMonitor_lock to protect queue operations for
// _all_ raw monitors. This is a scalability impediment, but since raw monitor usage
// is fairly rare, this is not of concern. The RawMonitor_lock can not
// be held indefinitely. The critical sections must be short and bounded.
//
// -------------------------------------------------------------------------
void JvmtiRawMonitor::simple_enter(Thread* self) {
for (;;) {
if (Atomic::replace_if_null(&_owner, self)) {
return;
}
QNode node(self);
self->_ParkEvent->reset(); // strictly optional
node._t_state = QNode::TS_ENTER;
RawMonitor_lock->lock_without_safepoint_check();
node._next = _entry_list;
_entry_list = &node;
OrderAccess::fence();
if (_owner == NULL && Atomic::replace_if_null(&_owner, self)) {
_entry_list = node._next;
RawMonitor_lock->unlock();
return;
}
RawMonitor_lock->unlock();
while (node._t_state == QNode::TS_ENTER) {
self->_ParkEvent->park();
}
}
}
void JvmtiRawMonitor::simple_exit(Thread* self) {
guarantee(_owner == self, "invariant");
Atomic::release_store(&_owner, (Thread*)NULL);
OrderAccess::fence();
if (_entry_list == NULL) {
return;
}
RawMonitor_lock->lock_without_safepoint_check();
QNode* w = _entry_list;
if (w != NULL) {
_entry_list = w->_next;
}
RawMonitor_lock->unlock();
if (w != NULL) {
guarantee(w ->_t_state == QNode::TS_ENTER, "invariant");
// Once we set _t_state to TS_RUN the waiting thread can complete
// simple_enter and 'w' is pointing into random stack space. So we have
// to ensure we extract the ParkEvent (which is in type-stable memory)
// before we set the state, and then don't access 'w'.
ParkEvent* ev = w->_event;
OrderAccess::loadstore();
w->_t_state = QNode::TS_RUN;
OrderAccess::fence();
ev->unpark();
}
return;
}
inline void JvmtiRawMonitor::enqueue_waiter(QNode& node) {
node._notified = 0;
node._t_state = QNode::TS_WAIT;
RawMonitor_lock->lock_without_safepoint_check();
node._next = _wait_set;
_wait_set = &node;
RawMonitor_lock->unlock();
}
inline void JvmtiRawMonitor::dequeue_waiter(QNode& node) {
// If thread still resides on the waitset then unlink it.
// Double-checked locking -- the usage is safe in this context
// as _t_state is volatile and the lock-unlock operators are
// serializing (barrier-equivalent).
if (node._t_state == QNode::TS_WAIT) {
RawMonitor_lock->lock_without_safepoint_check();
if (node._t_state == QNode::TS_WAIT) {
// Simple O(n) unlink, but performance isn't critical here.
QNode* p;
QNode* q = NULL;
for (p = _wait_set; p != &node; p = p->_next) {
q = p;
}
guarantee(p == &node, "invariant");
if (q == NULL) {
guarantee (p == _wait_set, "invariant");
_wait_set = p->_next;
} else {
guarantee(p == q->_next, "invariant");
q->_next = p->_next;
}
node._t_state = QNode::TS_RUN;
}
RawMonitor_lock->unlock();
}
guarantee(node._t_state == QNode::TS_RUN, "invariant");
}
// simple_wait is not quite so simple as we have to deal with the interaction
// with the Thread interrupt state, which resides in the java.lang.Thread object.
// That state must only be accessed while _thread_in_vm and requires proper thread-state
// transitions. However, we cannot perform such transitions whilst we hold the RawMonitor,
// else we can deadlock with the VMThread (which may also use RawMonitors as part of
// executing various callbacks).
// Returns M_OK usually, but M_INTERRUPTED if the thread is a JavaThread and was
// interrupted.
int JvmtiRawMonitor::simple_wait(Thread* self, jlong millis) {
guarantee(_owner == self , "invariant");
guarantee(_recursions == 0, "invariant");
QNode node(self);
enqueue_waiter(node);
simple_exit(self);
guarantee(_owner != self, "invariant");
int ret = M_OK;
if (self->is_Java_thread()) {
JavaThread* jt = (JavaThread*) self;
// Transition to VM so we can check interrupt state
ThreadInVMfromNative tivm(jt);
if (jt->is_interrupted(true)) {
ret = M_INTERRUPTED;
} else {
ThreadBlockInVM tbivm(jt);
jt->set_suspend_equivalent();
if (millis <= 0) {
self->_ParkEvent->park();
} else {
self->_ParkEvent->park(millis);
}
// Return to VM before post-check of interrupt state
}
if (jt->is_interrupted(true)) {
ret = M_INTERRUPTED;
}
} else {
if (millis <= 0) {
self->_ParkEvent->park();
} else {
self->_ParkEvent->park(millis);
}
}
dequeue_waiter(node);
simple_enter(self);
guarantee(_owner == self, "invariant");
guarantee(_recursions == 0, "invariant");
return ret;
}
void JvmtiRawMonitor::simple_notify(Thread* self, bool all) {
guarantee(_owner == self, "invariant");
if (_wait_set == NULL) {
return;
}
// We have two options:
// A. Transfer the threads from the _wait_set to the _entry_list
// B. Remove the thread from the _wait_set and unpark() it.
//
// We use (B), which is crude and results in lots of futile
// context switching. In particular (B) induces lots of contention.
ParkEvent* ev = NULL; // consider using a small auto array ...
RawMonitor_lock->lock_without_safepoint_check();
for (;;) {
QNode* w = _wait_set;
if (w == NULL) break;
_wait_set = w->_next;
if (ev != NULL) {
ev->unpark();
ev = NULL;
}
ev = w->_event;
OrderAccess::loadstore();
w->_t_state = QNode::TS_RUN;
OrderAccess::storeload();
if (!all) {
break;
}
}
RawMonitor_lock->unlock();
if (ev != NULL) {
ev->unpark();
}
return;
}
// Any JavaThread will enter here with state _thread_blocked
void JvmtiRawMonitor::raw_enter(Thread* self) {
void* contended;
JavaThread* jt = NULL;
// don't enter raw monitor if thread is being externally suspended, it will
// surprise the suspender if a "suspended" thread can still enter monitor
if (self->is_Java_thread()) {
jt = (JavaThread*)self;
jt->SR_lock()->lock_without_safepoint_check();
while (jt->is_external_suspend()) {
jt->SR_lock()->unlock();
jt->java_suspend_self();
jt->SR_lock()->lock_without_safepoint_check();
}
// guarded by SR_lock to avoid racing with new external suspend requests.
contended = Atomic::cmpxchg(&_owner, (Thread*)NULL, jt);
jt->SR_lock()->unlock();
} else {
contended = Atomic::cmpxchg(&_owner, (Thread*)NULL, self);
}
if (contended == self) {
_recursions++;
return;
}
if (contended == NULL) {
guarantee(_owner == self, "invariant");
guarantee(_recursions == 0, "invariant");
return;
}
self->set_current_pending_raw_monitor(this);
if (!self->is_Java_thread()) {
simple_enter(self);
} else {
guarantee(jt->thread_state() == _thread_blocked, "invariant");
for (;;) {
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or
// java_suspend_self()
simple_enter(jt);
// were we externally suspended while we were waiting?
if (!jt->handle_special_suspend_equivalent_condition()) {
break;
}
// This thread was externally suspended
// We have reentered the contended monitor, but while we were
// waiting another thread suspended us. We don't want to reenter
// the monitor while suspended because that would surprise the
// thread that suspended us.
//
// Drop the lock
simple_exit(jt);
jt->java_suspend_self();
}
}
self->set_current_pending_raw_monitor(NULL);
guarantee(_owner == self, "invariant");
guarantee(_recursions == 0, "invariant");
}
int JvmtiRawMonitor::raw_exit(Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
if (_recursions > 0) {
_recursions--;
} else {
simple_exit(self);
}
return M_OK;
}
int JvmtiRawMonitor::raw_wait(jlong millis, Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
int ret = M_OK;
// To avoid spurious wakeups we reset the parkevent. This is strictly optional.
// The caller must be able to tolerate spurious returns from raw_wait().
self->_ParkEvent->reset();
OrderAccess::fence();
intptr_t save = _recursions;
_recursions = 0;
_waiters++;
ret = simple_wait(self, millis);
/**代码未完, 请加载全部代码(NowJava.com).**/