/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciMethodData.hpp"
#include "ci/ciTypeFlow.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "compiler/compileLog.hpp"
#include "libadt/dict.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/typeArrayKlass.hpp"
#include "opto/matcher.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
// Dictionary of types shared among compilations.
Dict* Type::_shared_type_dict = NULL;
// Array which maps compiler types to Basic Types
const Type::TypeInfo Type::_type_info[Type::lastype] = {
{ Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
{ Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
{ Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
{ Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
{ Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
{ Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
{ Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
{ Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
{ Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
{ Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
#ifdef SPARC
{ Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
{ Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
{ Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
{ Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
{ Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
#elif defined(PPC64)
{ Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
{ Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
{ Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
{ Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
{ Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
#elif defined(S390)
{ Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
{ Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
{ Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
{ Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
{ Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
#else // all other
{ Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
{ Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
{ Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
{ Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
{ Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ
#endif
{ Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
{ Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
{ Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
{ Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
{ Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
{ Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
{ Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
{ Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
{ Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
{ Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
{ Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
{ FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
{ FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
{ FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
{ DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
{ DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
{ DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
{ Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
};
// Map ideal registers (machine types) to ideal types
const Type *Type::mreg2type[_last_machine_leaf];
// Map basic types to canonical Type* pointers.
const Type* Type:: _const_basic_type[T_CONFLICT+1];
// Map basic types to constant-zero Types.
const Type* Type:: _zero_type[T_CONFLICT+1];
// Map basic types to array-body alias types.
const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
//=============================================================================
// Convenience common pre-built types.
const Type *Type::ABIO; // State-of-machine only
const Type *Type::BOTTOM; // All values
const Type *Type::CONTROL; // Control only
const Type *Type::DOUBLE; // All doubles
const Type *Type::FLOAT; // All floats
const Type *Type::HALF; // Placeholder half of doublewide type
const Type *Type::MEMORY; // Abstract store only
const Type *Type::RETURN_ADDRESS;
const Type *Type::TOP; // No values in set
//------------------------------get_const_type---------------------------
const Type* Type::get_const_type(ciType* type) {
if (type == NULL) {
return NULL;
} else if (type->is_primitive_type()) {
return get_const_basic_type(type->basic_type());
} else {
return TypeOopPtr::make_from_klass(type->as_klass());
}
}
//---------------------------array_element_basic_type---------------------------------
// Mapping to the array element's basic type.
BasicType Type::array_element_basic_type() const {
BasicType bt = basic_type();
if (bt == T_INT) {
if (this == TypeInt::INT) return T_INT;
if (this == TypeInt::CHAR) return T_CHAR;
if (this == TypeInt::BYTE) return T_BYTE;
if (this == TypeInt::BOOL) return T_BOOLEAN;
if (this == TypeInt::SHORT) return T_SHORT;
return T_VOID;
}
return bt;
}
// For two instance arrays of same dimension, return the base element types.
// Otherwise or if the arrays have different dimensions, return NULL.
void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
const TypeInstPtr **e1, const TypeInstPtr **e2) {
if (e1) *e1 = NULL;
if (e2) *e2 = NULL;
const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
if (a1tap != NULL && a2tap != NULL) {
// Handle multidimensional arrays
const TypePtr* a1tp = a1tap->elem()->make_ptr();
const TypePtr* a2tp = a2tap->elem()->make_ptr();
while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
a1tap = a1tp->is_aryptr();
a2tap = a2tp->is_aryptr();
a1tp = a1tap->elem()->make_ptr();
a2tp = a2tap->elem()->make_ptr();
}
if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
if (e1) *e1 = a1tp->is_instptr();
if (e2) *e2 = a2tp->is_instptr();
}
}
}
//---------------------------get_typeflow_type---------------------------------
// Import a type produced by ciTypeFlow.
const Type* Type::get_typeflow_type(ciType* type) {
switch (type->basic_type()) {
case ciTypeFlow::StateVector::T_BOTTOM:
assert(type == ciTypeFlow::StateVector::bottom_type(), "");
return Type::BOTTOM;
case ciTypeFlow::StateVector::T_TOP:
assert(type == ciTypeFlow::StateVector::top_type(), "");
return Type::TOP;
case ciTypeFlow::StateVector::T_NULL:
assert(type == ciTypeFlow::StateVector::null_type(), "");
return TypePtr::NULL_PTR;
case ciTypeFlow::StateVector::T_LONG2:
// The ciTypeFlow pass pushes a long, then the half.
// We do the same.
assert(type == ciTypeFlow::StateVector::long2_type(), "");
return TypeInt::TOP;
case ciTypeFlow::StateVector::T_DOUBLE2:
// The ciTypeFlow pass pushes double, then the half.
// Our convention is the same.
assert(type == ciTypeFlow::StateVector::double2_type(), "");
return Type::TOP;
case T_ADDRESS:
assert(type->is_return_address(), "");
return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
default:
// make sure we did not mix up the cases:
assert(type != ciTypeFlow::StateVector::bottom_type(), "");
assert(type != ciTypeFlow::StateVector::top_type(), "");
assert(type != ciTypeFlow::StateVector::null_type(), "");
assert(type != ciTypeFlow::StateVector::long2_type(), "");
assert(type != ciTypeFlow::StateVector::double2_type(), "");
assert(!type->is_return_address(), "");
return Type::get_const_type(type);
}
}
//-----------------------make_from_constant------------------------------------
const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
int stable_dimension, bool is_narrow_oop,
bool is_autobox_cache) {
switch (constant.basic_type()) {
case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
case T_CHAR: return TypeInt::make(constant.as_char());
case T_BYTE: return TypeInt::make(constant.as_byte());
case T_SHORT: return TypeInt::make(constant.as_short());
case T_INT: return TypeInt::make(constant.as_int());
case T_LONG: return TypeLong::make(constant.as_long());
case T_FLOAT: return TypeF::make(constant.as_float());
case T_DOUBLE: return TypeD::make(constant.as_double());
case T_ARRAY:
case T_OBJECT: {
const Type* con_type = NULL;
ciObject* oop_constant = constant.as_object();
if (oop_constant->is_null_object()) {
con_type = Type::get_zero_type(T_OBJECT);
} else {
guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
}
if (stable_dimension > 0) {
assert(FoldStableValues, "sanity");
assert(!con_type->is_zero_type(), "default value for stable field");
con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
}
}
if (is_narrow_oop) {
con_type = con_type->make_narrowoop();
}
return con_type;
}
case T_ILLEGAL:
// Invalid ciConstant returned due to OutOfMemoryError in the CI
assert(Compile::current()->env()->failing(), "otherwise should not see this");
return NULL;
default:
// Fall through to failure
return NULL;
}
}
static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
BasicType conbt = con.basic_type();
switch (conbt) {
case T_BOOLEAN: conbt = T_BYTE; break;
case T_ARRAY: conbt = T_OBJECT; break;
default: break;
}
switch (loadbt) {
case T_BOOLEAN: loadbt = T_BYTE; break;
case T_NARROWOOP: loadbt = T_OBJECT; break;
case T_ARRAY: loadbt = T_OBJECT; break;
case T_ADDRESS: loadbt = T_OBJECT; break;
default: break;
}
if (conbt == loadbt) {
if (is_unsigned && conbt == T_BYTE) {
// LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
return ciConstant(T_INT, con.as_int() & 0xFF);
} else {
return con;
}
}
if (conbt == T_SHORT && loadbt == T_CHAR) {
// LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
return ciConstant(T_INT, con.as_int() & 0xFFFF);
}
return ciConstant(); // T_ILLEGAL
}
// Try to constant-fold a stable array element.
const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
BasicType loadbt, bool is_unsigned_load) {
// Decode the results of GraphKit::array_element_address.
ciConstant element_value = array->element_value_by_offset(off);
if (element_value.basic_type() == T_ILLEGAL) {
return NULL; // wrong offset
}
ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
if (con.is_valid() && // not a mismatched access
!con.is_null_or_zero()) { // not a default value
bool is_narrow_oop = (loadbt == T_NARROWOOP);
return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
}
return NULL;
}
const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
ciField* field;
ciType* type = holder->java_mirror_type();
if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
// Static field
field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
} else {
// Instance field
field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
}
if (field == NULL) {
return NULL; // Wrong offset
}
return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
}
const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
BasicType loadbt, bool is_unsigned_load) {
if (!field->is_constant()) {
return NULL; // Non-constant field
}
ciConstant field_value;
if (field->is_static()) {
// final static field
field_value = field->constant_value();
} else if (holder != NULL) {
// final or stable non-static field
// Treat final non-static fields of trusted classes (classes in
// java.lang.invoke and sun.invoke packages and subpackages) as
// compile time constants.
field_value = field->constant_value_of(holder);
}
if (!field_value.is_valid()) {
return NULL; // Not a constant
}
ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
bool is_narrow_oop = (loadbt == T_NARROWOOP);
const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
stable_dimension, is_narrow_oop,
field->is_autobox_cache());
if (con_type != NULL && field->is_call_site_target()) {
ciCallSite* call_site = holder->as_call_site();
if (!call_site->is_fully_initialized_constant_call_site()) {
ciMethodHandle* target = con.as_object()->as_method_handle();
Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
}
}
return con_type;
}
//------------------------------make-------------------------------------------
// Create a simple Type, with default empty symbol sets. Then hashcons it
// and look for an existing copy in the type dictionary.
const Type *Type::make( enum TYPES t ) {
return (new Type(t))->hashcons();
}
//------------------------------cmp--------------------------------------------
int Type::cmp( const Type *const t1, const Type *const t2 ) {
if( t1->_base != t2->_base )
return 1; // Missed badly
assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
return !t1->eq(t2); // Return ZERO if equal
}
const Type* Type::maybe_remove_speculative(bool include_speculative) const {
if (!include_speculative) {
return remove_speculative();
}
return this;
}
//------------------------------hash-------------------------------------------
int Type::uhash( const Type *const t ) {
return t->hash();
}
#define SMALLINT ((juint)3) // a value too insignificant to consider widening
#define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
#define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
//--------------------------Initialize_shared----------------------------------
void Type::Initialize_shared(Compile* current) {
// This method does not need to be locked because the first system
// compilations (stub compilations) occur serially. If they are
// changed to proceed in parallel, then this section will need
// locking.
Arena* save = current->type_arena();
Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
current->set_type_arena(shared_type_arena);
_shared_type_dict =
new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
shared_type_arena, 128 );
current->set_type_dict(_shared_type_dict);
// Make shared pre-built types.
CONTROL = make(Control); // Control only
TOP = make(Top); // No values in set
MEMORY = make(Memory); // Abstract store only
ABIO = make(Abio); // State-of-machine only
RETURN_ADDRESS=make(Return_Address);
FLOAT = make(FloatBot); // All floats
DOUBLE = make(DoubleBot); // All doubles
BOTTOM = make(Bottom); // Everything
HALF = make(Half); // Placeholder half of doublewide type
TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
TypeF::ONE = TypeF::make(1.0); // Float 1
TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
TypeD::ONE = TypeD::make(1.0); // Double 1
TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
TypeInt::MINUS_1 = TypeInt::make(-1); // -1
TypeInt::ZERO = TypeInt::make( 0); // 0
TypeInt::ONE = TypeInt::make( 1); // 1
TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
TypeInt::TYPE_DOMAIN = TypeInt::INT;
// CmpL is overloaded both as the bytecode computation returning
// a trinary (-1,0,+1) integer result AND as an efficient long
// compare returning optimizer ideal-type flags.
assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
TypeLong::MINUS_1 = TypeLong::make(-1); // -1
TypeLong::ZERO = TypeLong::make( 0); // 0
TypeLong::ONE = TypeLong::make( 1); // 1
TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
TypeLong::TYPE_DOMAIN = TypeLong::LONG;
const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
fboth[0] = Type::CONTROL;
fboth[1] = Type::CONTROL;
TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
ffalse[0] = Type::CONTROL;
ffalse[1] = Type::TOP;
TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
fneither[0] = Type::TOP;
fneither[1] = Type::TOP;
TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
ftrue[0] = Type::TOP;
ftrue[1] = Type::CONTROL;
TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
floop[0] = Type::CONTROL;
floop[1] = TypeInt::INT;
TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
const Type **fmembar = TypeTuple::fields(0);
TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
fsc[0] = TypeInt::CC;
fsc[1] = Type::MEMORY;
TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
false, 0, oopDesc::mark_offset_in_bytes());
TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
false, 0, oopDesc::klass_offset_in_bytes());
TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
mreg2type[Op_Node] = Type::BOTTOM;
mreg2type[Op_Set ] = 0;
mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
mreg2type[Op_RegI] = TypeInt::INT;
mreg2type[Op_RegP] = TypePtr::BOTTOM;
mreg2type[Op_RegF] = Type::FLOAT;
mreg2type[Op_RegD] = Type::DOUBLE;
mreg2type[Op_RegL] = TypeLong::LONG;
mreg2type[Op_RegFlags] = TypeInt::CC;
TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
#ifdef _LP64
if (UseCompressedOops) {
assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
} else
#endif
{
// There is no shared klass for Object[]. See note in TypeAryPtr::klass().
TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
}
TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
// Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
const Type **fi2c = TypeTuple::fields(2);
fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
const Type **intpair = TypeTuple::fields(2);
intpair[0] = TypeInt::INT;
intpair[1] = TypeInt::INT;
TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
const Type **longpair = TypeTuple::fields(2);
longpair[0] = TypeLong::LONG;
longpair[1] = TypeLong::LONG;
TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
const Type **intccpair = TypeTuple::fields(2);
intccpair[0] = TypeInt::INT;
intccpair[1] = TypeInt::CC;
TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
const Type **longccpair = TypeTuple::fields(2);
longccpair[0] = TypeLong::LONG;
longccpair[1] = TypeInt::CC;
TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
_const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
_const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
_const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
_const_basic_type[T_CHAR] = TypeInt::CHAR;
_const_basic_type[T_BYTE] = TypeInt::BYTE;
_const_basic_type[T_SHORT] = TypeInt::SHORT;
_const_basic_type[T_INT] = TypeInt::INT;
_const_basic_type[T_LONG] = TypeLong::LONG;
_const_basic_type[T_FLOAT] = Type::FLOAT;
_const_basic_type[T_DOUBLE] = Type::DOUBLE;
_const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
_const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
_const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
_const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
_const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
_zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
_zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
_zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
_zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
_zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
_zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
_zero_type[T_INT] = TypeInt::ZERO;
_zero_type[T_LONG] = TypeLong::ZERO;
_zero_type[T_FLOAT] = TypeF::ZERO;
_zero_type[T_DOUBLE] = TypeD::ZERO;
_zero_type[T_OBJECT] = TypePtr::NULL_PTR;
_zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
_zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
_zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
// get_zero_type() should not happen for T_CONFLICT
_zero_type[T_CONFLICT]= NULL;
// Vector predefined types, it needs initialized _const_basic_type[].
if (Matcher::vector_size_supported(T_BYTE,4)) {
TypeVect::VECTS = TypeVect::make(T_BYTE,4);
}
if (Matcher::vector_size_supported(T_FLOAT,2)) {
TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
}
if (Matcher::vector_size_supported(T_FLOAT,4)) {
TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
}
if (Matcher::vector_size_supported(T_FLOAT,8)) {
TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
}
if (Matcher::vector_size_supported(T_FLOAT,16)) {
TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
}
mreg2type[Op_VecS] = TypeVect::VECTS;
mreg2type[Op_VecD] = TypeVect::VECTD;
mreg2type[Op_VecX] = TypeVect::VECTX;
mreg2type[Op_VecY] = TypeVect::VECTY;
mreg2type[Op_VecZ] = TypeVect::VECTZ;
// Restore working type arena.
current->set_type_arena(save);
current->set_type_dict(NULL);
}
//------------------------------Initialize-------------------------------------
void Type::Initialize(Compile* current) {
assert(current->type_arena() != NULL, "must have created type arena");
if (_shared_type_dict == NULL) {
Initialize_shared(current);
}
Arena* type_arena = current->type_arena();
// Create the hash-cons'ing dictionary with top-level storage allocation
Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
current->set_type_dict(tdic);
// Transfer the shared types.
DictI i(_shared_type_dict);
for( ; i.test(); ++i ) {
Type* t = (Type*)i._value;
tdic->Insert(t,t); // New Type, insert into Type table
}
}
//------------------------------hashcons---------------------------------------
// Do the hash-cons trick. If the Type already exists in the type table,
// delete the current Type and return the existing Type. Otherwise stick the
// current Type in the Type table.
const Type *Type::hashcons(void) {
debug_only(base()); // Check the assertion in Type::base().
// Look up the Type in the Type dictionary
Dict *tdic = type_dict();
Type* old = (Type*)(tdic->Insert(this, this, false));
if( old ) { // Pre-existing Type?
if( old != this ) // Yes, this guy is not the pre-existing?
delete this; // Yes, Nuke this guy
assert( old->_dual, "" );
return old; // Return pre-existing
}
// Every type has a dual (to make my lattice symmetric).
// Since we just discovered a new Type, compute its dual right now.
assert( !_dual, "" ); // No dual yet
_dual = xdual(); // Compute the dual
if (cmp(this, _dual) == 0) { // Handle self-symmetric
if (_dual != this) {
delete _dual;
_dual = this;
}
return this;
}
assert( !_dual->_dual, "" ); // No reverse dual yet
assert( !(*tdic)[_dual], "" ); // Dual not in type system either
// New Type, insert into Type table
tdic->Insert((void*)_dual,(void*)_dual);
((Type*)_dual)->_dual = this; // Finish up being symmetric
#ifdef ASSERT
Type *dual_dual = (Type*)_dual->xdual();
assert( eq(dual_dual), "xdual(xdual()) should be identity" );
delete dual_dual;
#endif
return this; // Return new Type
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool Type::eq( const Type * ) const {
return true; // Nothing else can go wrong
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int Type::hash(void) const {
return _base;
}
//------------------------------is_finite--------------------------------------
// Has a finite value
bool Type::is_finite() const {
return false;
}
//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool Type::is_nan() const {
return false;
}
//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool Type::interface_vs_oop_helper(const Type *t) const {
bool result = false;
const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
const TypePtr* t_ptr = t->make_ptr();
if( this_ptr == NULL || t_ptr == NULL )
return result;
const TypeInstPtr* this_inst = this_ptr->isa_instptr();
const TypeInstPtr* t_inst = t_ptr->isa_instptr();
if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
bool this_interface = this_inst->klass()->is_interface();
bool t_interface = t_inst->klass()->is_interface();
result = this_interface ^ t_interface;
}
return result;
}
bool Type::interface_vs_oop(const Type *t) const {
if (interface_vs_oop_helper(t)) {
return true;
}
// Now check the speculative parts as well
const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
if (this_spec != NULL && t_spec != NULL) {
if (this_spec->interface_vs_oop_helper(t_spec)) {
return true;
}
return false;
}
if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
return true;
}
if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
return true;
}
return false;
}
#endif
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. NOT virtual. It enforces that meet is
// commutative and the lattice is symmetric.
const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
if (isa_narrowoop() && t->isa_narrowoop()) {
const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
return result->make_narrowoop();
}
if (isa_narrowklass() && t->isa_narrowklass()) {
const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
return result->make_narrowklass();
}
const Type *this_t = maybe_remove_speculative(include_speculative);
t = t->maybe_remove_speculative(include_speculative);
const Type *mt = this_t->xmeet(t);
if (isa_narrowoop() || t->isa_narrowoop()) return mt;
if (isa_narrowklass() || t->isa_narrowklass()) return mt;
#ifdef ASSERT
assert(mt == t->xmeet(this_t), "meet not commutative");
const Type* dual_join = mt->_dual;
const Type *t2t = dual_join->xmeet(t->_dual);
const Type *t2this = dual_join->xmeet(this_t->_dual);
// Interface meet Oop is Not Symmetric:
// Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
// Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
tty->print_cr("=== Meet Not Symmetric ===");
tty->print("t = "); t->dump(); tty->cr();
tty->print("this= "); this_t->dump(); tty->cr();
tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
tty->print("t_dual= "); t->_dual->dump(); tty->cr();
tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
fatal("meet not symmetric" );
}
#endif
return mt;
}
//------------------------------xmeet------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *Type::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Meeting TOP with anything?
if( _base == Top ) return t;
// Meeting BOTTOM with anything?
if( _base == Bottom ) return BOTTOM;
// Current "this->_base" is one of: Bad, Multi, Control, Top,
// Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
switch (t->base()) { // Switch on original type
// Cut in half the number of cases I must handle. Only need cases for when
// the given enum "t->type" is less than or equal to the local enum "type".
case FloatCon:
case DoubleCon:
case Int:
case Long:
return t->xmeet(this);
case OopPtr:
return t->xmeet(this);
case InstPtr:
return t->xmeet(this);
case MetadataPtr:
case KlassPtr:
return t->xmeet(this);
case AryPtr:
return t->xmeet(this);
case NarrowOop:
return t->xmeet(this);
case NarrowKlass:
return t->xmeet(this);
case Bad: // Type check
default: // Bogus type not in lattice
typerr(t);
return Type::BOTTOM;
case Bottom: // Ye Olde Default
return t;
case FloatTop:
if( _base == FloatTop ) return this;
case FloatBot: // Float
if( _base == FloatBot || _base == FloatTop ) return FLOAT;
if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
typerr(t);
return Type::BOTTOM;
case DoubleTop:
if( _base == DoubleTop ) return this;
case DoubleBot: // Double
if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
typerr(t);
return Type::BOTTOM;
// These next few cases must match exactly or it is a compile-time error.
case Control: // Control of code
case Abio: // State of world outside of program
case Memory:
if( _base == t->_base ) return this;
typerr(t);
return Type::BOTTOM;
case Top: // Top of the lattice
return this;
}
// The type is unchanged
return this;
}
//-----------------------------filter------------------------------------------
const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
const Type* ft = join_helper(kills, include_speculative);
if (ft->empty())
return Type::TOP; // Canonical empty value
return ft;
}
//------------------------------xdual------------------------------------------
// Compute dual right now.
const Type::TYPES Type::dual_type[Type::lastype] = {
Bad, // Bad
Control, // Control
Bottom, // Top
Bad, // Int - handled in v-call
Bad, // Long - handled in v-call
Half, // Half
Bad, // NarrowOop - handled in v-call
Bad, // NarrowKlass - handled in v-call
Bad, // Tuple - handled in v-call
Bad, // Array - handled in v-call
Bad, // VectorS - handled in v-call
Bad, // VectorD - handled in v-call
Bad, // VectorX - handled in v-call
Bad, // VectorY - handled in v-call
Bad, // VectorZ - handled in v-call
Bad, // AnyPtr - handled in v-call
Bad, // RawPtr - handled in v-call
Bad, // OopPtr - handled in v-call
Bad, // InstPtr - handled in v-call
Bad, // AryPtr - handled in v-call
Bad, // MetadataPtr - handled in v-call
Bad, // KlassPtr - handled in v-call
Bad, // Function - handled in v-call
Abio, // Abio
Return_Address,// Return_Address
Memory, // Memory
FloatBot, // FloatTop
FloatCon, // FloatCon
FloatTop, // FloatBot
DoubleBot, // DoubleTop
DoubleCon, // DoubleCon
DoubleTop, // DoubleBot
Top // Bottom
};
const Type *Type::xdual() const {
// Note: the base() accessor asserts the sanity of _base.
assert(_type_info[base()].dual_type != Bad, "implement with v-call");
return new Type(_type_info[_base].dual_type);
}
//------------------------------has_memory-------------------------------------
bool Type::has_memory() const {
Type::TYPES tx = base();
if (tx == Memory) return true;
if (tx == Tuple) {
const TypeTuple *t = is_tuple();
for (uint i=0; i < t->cnt(); i++) {
tx = t->field_at(i)->base();
if (tx == Memory) return true;
}
}
return false;
}
#ifndef PRODUCT
//------------------------------dump2------------------------------------------
void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
st->print("%s", _type_info[_base].msg);
}
//------------------------------dump-------------------------------------------
void Type::dump_on(outputStream *st) const {
ResourceMark rm;
Dict d(cmpkey,hashkey); // Stop recursive type dumping
dump2(d,1, st);
if (is_ptr_to_narrowoop()) {
st->print(" [narrow]");
} else if (is_ptr_to_narrowklass()) {
st->print(" [narrowklass]");
}
}
//-----------------------------------------------------------------------------
const char* Type::str(const Type* t) {
stringStream ss;
t->dump_on(&ss);
return ss.as_string();
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Singletons are integer, float or double constants.
bool Type::singleton(void) const {
return _base == Top || _base == Half;
}
//------------------------------empty------------------------------------------
// TRUE if Type is a type with no values, FALSE otherwise.
bool Type::empty(void) const {
switch (_base) {
case DoubleTop:
case FloatTop:
case Top:
return true;
case Half:
case Abio:
case Return_Address:
case Memory:
case Bottom:
case FloatBot:
case DoubleBot:
return false; // never a singleton, therefore never empty
default:
ShouldNotReachHere();
return false;
}
}
//------------------------------dump_stats-------------------------------------
// Dump collected statistics to stderr
#ifndef PRODUCT
void Type::dump_stats() {
tty->print("Types made: %d\n", type_dict()->Size());
}
#endif
//------------------------------typerr-----------------------------------------
void Type::typerr( const Type *t ) const {
#ifndef PRODUCT
tty->print("\nError mixing types: ");
dump();
tty->print(" and ");
t->dump();
tty->print("\n");
#endif
ShouldNotReachHere();
}
//=============================================================================
// Convenience common pre-built types.
const TypeF *TypeF::ZERO; // Floating point zero
const TypeF *TypeF::ONE; // Floating point one
const TypeF *TypeF::POS_INF; // Floating point positive infinity
const TypeF *TypeF::NEG_INF; // Floating point negative infinity
//------------------------------make-------------------------------------------
// Create a float constant
const TypeF *TypeF::make(float f) {
return (TypeF*)(new TypeF(f))->hashcons();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeF::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is FloatCon
switch (t->base()) { // Switch on original type
case AnyPtr: // Mixing with oops happens when javac
case RawPtr: // reuses local variables
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
case NarrowOop:
case NarrowKlass:
case Int:
case Long:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case FloatBot:
return t;
default: // All else is a mistake
typerr(t);
case FloatCon: // Float-constant vs Float-constant?
if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
// must compare bitwise as positive zero, negative zero and NaN have
// all the same representation in C++
return FLOAT; // Return generic float
// Equal constants
case Top:
case FloatTop:
break; // Return the float constant
}
return this; // Return the float constant
}
//------------------------------xdual------------------------------------------
// Dual: symmetric
const Type *TypeF::xdual() const {
return this;
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeF::eq(const Type *t) const {
// Bitwise comparison to distinguish between +/-0. These values must be treated
// as different to be consistent with C1 and the interpreter.
return (jint_cast(_f) == jint_cast(t->getf()));
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeF::hash(void) const {
return *(int*)(&_f);
}
//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeF::is_finite() const {
return g_isfinite(getf()) != 0;
}
//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool TypeF::is_nan() const {
return g_isnan(getf()) != 0;
}
//------------------------------dump2------------------------------------------
// Dump float constant Type
#ifndef PRODUCT
void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
Type::dump2(d,depth, st);
st->print("%f", _f);
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Singletons are integer, float or double constants
// or a single symbol.
bool TypeF::singleton(void) const {
return true; // Always a singleton
}
bool TypeF::empty(void) const {
return false; // always exactly a singleton
}
//=============================================================================
// Convenience common pre-built types.
const TypeD *TypeD::ZERO; // Floating point zero
const TypeD *TypeD::ONE; // Floating point one
const TypeD *TypeD::POS_INF; // Floating point positive infinity
const TypeD *TypeD::NEG_INF; // Floating point negative infinity
//------------------------------make-------------------------------------------
const TypeD *TypeD::make(double d) {
return (TypeD*)(new TypeD(d))->hashcons();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeD::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is DoubleCon
switch (t->base()) { // Switch on original type
case AnyPtr: // Mixing with oops happens when javac
case RawPtr: // reuses local variables
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
case NarrowOop:
case NarrowKlass:
case Int:
case Long:
case FloatTop:
case FloatCon:
case FloatBot:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case DoubleBot:
return t;
default: // All else is a mistake
typerr(t);
case DoubleCon: // Double-constant vs Double-constant?
if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
return DOUBLE; // Return generic double
case Top:
case DoubleTop:
break;
}
return this; // Return the double constant
}
//------------------------------xdual------------------------------------------
// Dual: symmetric
const Type *TypeD::xdual() const {
return this;
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeD::eq(const Type *t) const {
// Bitwise comparison to distinguish between +/-0. These values must be treated
// as different to be consistent with C1 and the interpreter.
return (jlong_cast(_d) == jlong_cast(t->getd()));
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeD::hash(void) const {
return *(int*)(&_d);
}
//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeD::is_finite() const {
return g_isfinite(getd()) != 0;
}
//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool TypeD::is_nan() const {
return g_isnan(getd()) != 0;
}
//------------------------------dump2------------------------------------------
// Dump double constant Type
#ifndef PRODUCT
void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
Type::dump2(d,depth,st);
st->print("%f", _d);
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Singletons are integer, float or double constants
// or a single symbol.
bool TypeD::singleton(void) const {
return true; // Always a singleton
}
bool TypeD::empty(void) const {
return false; // always exactly a singleton
}
//=============================================================================
// Convience common pre-built types.
const TypeInt *TypeInt::MINUS_1;// -1
const TypeInt *TypeInt::ZERO; // 0
const TypeInt *TypeInt::ONE; // 1
const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
const TypeInt *TypeInt::CC_GT; // [1] == ONE
const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
const TypeInt *TypeInt::CC_LE; // [-1,0]
const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
const TypeInt *TypeInt::POS1; // Positive 32-bit integers
const TypeInt *TypeInt::INT; // 32-bit integers
const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
//------------------------------TypeInt----------------------------------------
TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
}
//------------------------------make-------------------------------------------
const TypeInt *TypeInt::make( jint lo ) {
return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
}
static int normalize_int_widen( jint lo, jint hi, int w ) {
// Certain normalizations keep us sane when comparing types.
// The 'SMALLINT' covers constants and also CC and its relatives.
if (lo <= hi) {
if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
} else {
if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
}
return w;
}
const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
w = normalize_int_widen(lo, hi, w);
return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type representation object
// with reference count equal to the number of Types pointing at it.
// Caller should wrap a Types around it.
const Type *TypeInt::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type?
// Currently "this->_base" is a TypeInt
switch (t->base()) { // Switch on original type
case AnyPtr: // Mixing with oops happens when javac
case RawPtr: // reuses local variables
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
case NarrowOop:
case NarrowKlass:
case Long:
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
default: // All else is a mistake
typerr(t);
case Top: // No change
return this;
case Int: // Int vs Int?
break;
}
// Expand covered set
const TypeInt *r = t->is_int();
return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
}
//------------------------------xdual------------------------------------------
// Dual: reverse hi & lo; flip widen
const Type *TypeInt::xdual() const {
int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
return new TypeInt(_hi,_lo,w);
}
//------------------------------widen------------------------------------------
// Only happens for optimistic top-down optimizations.
const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
// Coming from TOP or such; no widening
if( old->base() != Int ) return this;
const TypeInt *ot = old->is_int();
// If new guy is equal to old guy, no widening
if( _lo == ot->_lo && _hi == ot->_hi )
return old;
// If new guy contains old, then we widened
if( _lo <= ot->_lo && _hi >= ot->_hi ) {
// New contains old
// If new guy is already wider than old, no widening
if( _widen > ot->_widen ) return this;
// If old guy was a constant, do not bother
if (ot->_lo == ot->_hi) return this;
// Now widen new guy.
// Check for widening too far
if (_widen == WidenMax) {
int max = max_jint;
int min = min_jint;
if (limit->isa_int()) {
max = limit->is_int()->_hi;
min = limit->is_int()->_lo;
}
if (min < _lo && _hi < max) {
// If neither endpoint is extremal yet, push out the endpoint
// which is closer to its respective limit.
if (_lo >= 0 || // easy common case
(juint)(_lo - min) >= (juint)(max - _hi)) {
// Try to widen to an unsigned range type of 31 bits:
return make(_lo, max, WidenMax);
} else {
return make(min, _hi, WidenMax);
}
}
return TypeInt::INT;
}
// Returned widened new guy
return make(_lo,_hi,_widen+1);
}
// If old guy contains new, then we probably widened too far & dropped to
// bottom. Return the wider fellow.
if ( ot->_lo <= _lo && ot->_hi >= _hi )
return old;
//fatal("Integer value range is not subset");
//return this;
return TypeInt::INT;
}
//------------------------------narrow---------------------------------------
// Only happens for pessimistic optimizations.
const Type *TypeInt::narrow( const Type *old ) const {
if (_lo >= _hi) return this; // already narrow enough
if (old == NULL) return this;
const TypeInt* ot = old->isa_int();
if (ot == NULL) return this;
jint olo = ot->_lo;
jint ohi = ot->_hi;
// If new guy is equal to old guy, no narrowing
if (_lo == olo && _hi == ohi) return old;
// If old guy was maximum range, allow the narrowing
if (olo == min_jint && ohi == max_jint) return this;
if (_lo < olo || _hi > ohi)
return this; // doesn't narrow; pretty wierd
// The new type narrows the old type, so look for a "death march".
// See comments on PhaseTransform::saturate.
juint nrange = (juint)_hi - _lo;
juint orange = (juint)ohi - olo;
if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
// Use the new type only if the range shrinks a lot.
// We do not want the optimizer computing 2^31 point by point.
return old;
}
return this;
}
//-----------------------------filter------------------------------------------
const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
if (ft == NULL || ft->empty())
return Type::TOP; // Canonical empty value
if (ft->_widen < this->_widen) {
// Do not allow the value of kill->_widen to affect the outcome.
// The widen bits must be allowed to run freely through the graph.
ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
}
return ft;
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeInt::eq( const Type *t ) const {
const TypeInt *r = t->is_int(); // Handy access
return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeInt::hash(void) const {
return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
}
//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeInt::is_finite() const {
return true;
}
//------------------------------dump2------------------------------------------
// Dump TypeInt
#ifndef PRODUCT
static const char* intname(char* buf, jint n) {
if (n == min_jint)
return "min";
else if (n < min_jint + 10000)
sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
else if (n == max_jint)
return "max";
else if (n > max_jint - 10000)
sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
else
sprintf(buf, INT32_FORMAT, n);
return buf;
}
void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
char buf[40], buf2[40];
if (_lo == min_jint && _hi == max_jint)
st->print("int");
else if (is_con())
st->print("int:%s", intname(buf, get_con()));
else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
st->print("bool");
else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
st->print("byte");
else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
st->print("char");
else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
st->print("short");
else if (_hi == max_jint)
st->print("int:>=%s", intname(buf, _lo));
else if (_lo == min_jint)
st->print("int:<=%s", intname(buf, _hi));
else
st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
if (_widen != 0 && this != TypeInt::INT)
st->print(":%.*s", _widen, "wwww");
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants.
bool TypeInt::singleton(void) const {
return _lo >= _hi;
}
bool TypeInt::empty(void) const {
return _lo > _hi;
}
//=============================================================================
// Convenience common pre-built types.
const TypeLong *TypeLong::MINUS_1;// -1
const TypeLong *TypeLong::ZERO; // 0
const TypeLong *TypeLong::ONE; // 1
const TypeLong *TypeLong::POS; // >=0
const TypeLong *TypeLong::LONG; // 64-bit integers
const TypeLong *TypeLong::INT; // 32-bit subrange
const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
//------------------------------TypeLong---------------------------------------
TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
}
//------------------------------make-------------------------------------------
const TypeLong *TypeLong::make( jlong lo ) {
return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
}
static int normalize_long_widen( jlong lo, jlong hi, int w ) {
// Certain normalizations keep us sane when comparing types.
// The 'SMALLINT' covers constants.
if (lo <= hi) {
if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
} else {
if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
}
return w;
}
const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
w = normalize_long_widen(lo, hi, w);
return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type representation object
// with reference count equal to the number of Types pointing at it.
// Caller should wrap a Types around it.
const Type *TypeLong::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type?
// Currently "this->_base" is a TypeLong
switch (t->base()) { // Switch on original type
case AnyPtr: // Mixing with oops happens when javac
case RawPtr: // reuses local variables
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
case NarrowOop:
case NarrowKlass:
case Int:
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
default: // All else is a mistake
typerr(t);
case Top: // No change
return this;
case Long: // Long vs Long?
break;
}
// Expand covered set
const TypeLong *r = t->is_long(); // Turn into a TypeLong
return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
}
//------------------------------xdual------------------------------------------
// Dual: reverse hi & lo; flip widen
const Type *TypeLong::xdual() const {
int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
return new TypeLong(_hi,_lo,w);
}
//------------------------------widen------------------------------------------
// Only happens for optimistic top-down optimizations.
const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
// Coming from TOP or such; no widening
if( old->base() != Long ) return this;
const TypeLong *ot = old->is_long();
// If new guy is equal to old guy, no widening
if( _lo == ot->_lo && _hi == ot->_hi )
return old;
// If new guy contains old, then we widened
if( _lo <= ot->_lo && _hi >= ot->_hi ) {
// New contains old
// If new guy is already wider than old, no widening
if( _widen > ot->_widen ) return this;
// If old guy was a constant, do not bother
if (ot->_lo == ot->_hi) return this;
// Now widen new guy.
// Check for widening too far
if (_widen == WidenMax) {
jlong max = max_jlong;
jlong min = min_jlong;
if (limit->isa_long()) {
max = limit->is_long()->_hi;
min = limit->is_long()->_lo;
}
if (min < _lo && _hi < max) {
// If neither endpoint is extremal yet, push out the endpoint
// which is closer to its respective limit.
if (_lo >= 0 || // easy common case
((julong)_lo - min) >= ((julong)max - _hi)) {
// Try to widen to an unsigned range type of 32/63 bits:
if (max >= max_juint && _hi < max_juint)
return make(_lo, max_juint, WidenMax);
else
return make(_lo, max, WidenMax);
} else {
return make(min, _hi, WidenMax);
}
}
return TypeLong::LONG;
}
// Returned widened new guy
return make(_lo,_hi,_widen+1);
}
// If old guy contains new, then we probably widened too far & dropped to
// bottom. Return the wider fellow.
if ( ot->_lo <= _lo && ot->_hi >= _hi )
return old;
// fatal("Long value range is not subset");
// return this;
return TypeLong::LONG;
}
//------------------------------narrow----------------------------------------
// Only happens for pessimistic optimizations.
const Type *TypeLong::narrow( const Type *old ) const {
if (_lo >= _hi) return this; // already narrow enough
if (old == NULL) return this;
const TypeLong* ot = old->isa_long();
if (ot == NULL) return this;
jlong olo = ot->_lo;
jlong ohi = ot->_hi;
// If new guy is equal to old guy, no narrowing
if (_lo == olo && _hi == ohi) return old;
// If old guy was maximum range, allow the narrowing
if (olo == min_jlong && ohi == max_jlong) return this;
if (_lo < olo || _hi > ohi)
return this; // doesn't narrow; pretty wierd
// The new type narrows the old type, so look for a "death march".
// See comments on PhaseTransform::saturate.
julong nrange = _hi - _lo;
julong orange = ohi - olo;
if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
// Use the new type only if the range shrinks a lot.
// We do not want the optimizer computing 2^31 point by point.
return old;
}
return this;
}
//-----------------------------filter------------------------------------------
const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
if (ft == NULL || ft->empty())
return Type::TOP; // Canonical empty value
if (ft->_widen < this->_widen) {
// Do not allow the value of kill->_widen to affect the outcome.
// The widen bits must be allowed to run freely through the graph.
ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
}
return ft;
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeLong::eq( const Type *t ) const {
const TypeLong *r = t->is_long(); // Handy access
return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeLong::hash(void) const {
return (int)(_lo+_hi+_widen+(int)Type::Long);
}
//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeLong::is_finite() const {
return true;
}
//------------------------------dump2------------------------------------------
// Dump TypeLong
#ifndef PRODUCT
static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
if (n > x) {
if (n >= x + 10000) return NULL;
sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
} else if (n < x) {
if (n <= x - 10000) return NULL;
sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
} else {
return xname;
}
return buf;
}
static const char* longname(char* buf, jlong n) {
const char* str;
if (n == min_jlong)
return "min";
else if (n < min_jlong + 10000)
sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
else if (n == max_jlong)
return "max";
else if (n > max_jlong - 10000)
sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
return str;
else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
return str;
else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
return str;
else
sprintf(buf, JLONG_FORMAT, n);
return buf;
}
void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
char buf[80], buf2[80];
if (_lo == min_jlong && _hi == max_jlong)
st->print("long");
else if (is_con())
st->print("long:%s", longname(buf, get_con()));
else if (_hi == max_jlong)
st->print("long:>=%s", longname(buf, _lo));
else if (_lo == min_jlong)
st->print("long:<=%s", longname(buf, _hi));
else
st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
if (_widen != 0 && this != TypeLong::LONG)
st->print(":%.*s", _widen, "wwww");
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants
bool TypeLong::singleton(void) const {
return _lo >= _hi;
}
bool TypeLong::empty(void) const {
return _lo > _hi;
}
//=============================================================================
// Convenience common pre-built types.
const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
const TypeTuple *TypeTuple::IFFALSE;
const TypeTuple *TypeTuple::IFTRUE;
const TypeTuple *TypeTuple::IFNEITHER;
const TypeTuple *TypeTuple::LOOPBODY;
const TypeTuple *TypeTuple::MEMBAR;
const TypeTuple *TypeTuple::STORECONDITIONAL;
const TypeTuple *TypeTuple::START_I2C;
const TypeTuple *TypeTuple::INT_PAIR;
const TypeTuple *TypeTuple::LONG_PAIR;
const TypeTuple *TypeTuple::INT_CC_PAIR;
const TypeTuple *TypeTuple::LONG_CC_PAIR;
//------------------------------make-------------------------------------------
// Make a TypeTuple from the range of a method signature
const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
ciType* return_type = sig->return_type();
uint arg_cnt = return_type->size();
const Type **field_array = fields(arg_cnt);
switch (return_type->basic_type()) {
case T_LONG:
field_array[TypeFunc::Parms] = TypeLong::LONG;
field_array[TypeFunc::Parms+1] = Type::HALF;
break;
case T_DOUBLE:
field_array[TypeFunc::Parms] = Type::DOUBLE;
field_array[TypeFunc::Parms+1] = Type::HALF;
break;
case T_OBJECT:
case T_ARRAY:
case T_BOOLEAN:
case T_CHAR:
case T_FLOAT:
case T_BYTE:
case T_SHORT:
case T_INT:
field_array[TypeFunc::Parms] = get_const_type(return_type);
break;
case T_VOID:
break;
default:
ShouldNotReachHere();
}
return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
}
// Make a TypeTuple from the domain of a method signature
const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
uint arg_cnt = sig->size();
uint pos = TypeFunc::Parms;
const Type **field_array;
if (recv != NULL) {
arg_cnt++;
field_array = fields(arg_cnt);
// Use get_const_type here because it respects UseUniqueSubclasses:
field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
} else {
field_array = fields(arg_cnt);
}
int i = 0;
while (pos < TypeFunc::Parms + arg_cnt) {
ciType* type = sig->type_at(i);
switch (type->basic_type()) {
case T_LONG:
field_array[pos++] = TypeLong::LONG;
field_array[pos++] = Type::HALF;
break;
case T_DOUBLE:
field_array[pos++] = Type::DOUBLE;
field_array[pos++] = Type::HALF;
break;
case T_OBJECT:
case T_ARRAY:
case T_FLOAT:
case T_INT:
field_array[pos++] = get_const_type(type);
break;
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
field_array[pos++] = TypeInt::INT;
break;
default:
ShouldNotReachHere();
}
i++;
}
return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
}
const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
}
//------------------------------fields-----------------------------------------
// Subroutine call type with space allocated for argument types
// Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
const Type **TypeTuple::fields( uint arg_cnt ) {
const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
flds[TypeFunc::Control ] = Type::CONTROL;
flds[TypeFunc::I_O ] = Type::ABIO;
flds[TypeFunc::Memory ] = Type::MEMORY;
flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
return flds;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeTuple::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is Tuple
switch (t->base()) { // switch on original type
case Bottom: // Ye Olde Default
return t;
default: // All else is a mistake
typerr(t);
case Tuple: { // Meeting 2 signatures?
const TypeTuple *x = t->is_tuple();
assert( _cnt == x->_cnt, "" );
const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
for( uint i=0; i<_cnt; i++ )
fields[i] = field_at(i)->xmeet( x->field_at(i) );
return TypeTuple::make(_cnt,fields);
}
case Top:
break;
}
return this; // Return the double constant
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeTuple::xdual() const {
const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
for( uint i=0; i<_cnt; i++ )
fields[i] = _fields[i]->dual();
return new TypeTuple(_cnt,fields);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeTuple::eq( const Type *t ) const {
const TypeTuple *s = (const TypeTuple *)t;
if (_cnt != s->_cnt) return false; // Unequal field counts
for (uint i = 0; i < _cnt; i++)
if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
return false; // Missed
return true;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeTuple::hash(void) const {
intptr_t sum = _cnt;
for( uint i=0; i<_cnt; i++ )
sum += (intptr_t)_fields[i]; // Hash on pointers directly
return sum;
}
//------------------------------dump2------------------------------------------
// Dump signature Type
#ifndef PRODUCT
void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
st->print("{");
if( !depth || d[this] ) { // Check for recursive print
st->print("...}");
return;
}
d.Insert((void*)this, (void*)this); // Stop recursion
if( _cnt ) {
uint i;
for( i=0; i<_cnt-1; i++ ) {
st->print("%d:", i);
_fields[i]->dump2(d, depth-1, st);
st->print(", ");
}
st->print("%d:", i);
_fields[i]->dump2(d, depth-1, st);
}
st->print("}");
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Singletons are integer, float or double constants
// or a single symbol.
bool TypeTuple::singleton(void) const {
return false; // Never a singleton
}
bool TypeTuple::empty(void) const {
for( uint i=0; i<_cnt; i++ ) {
if (_fields[i]->empty()) return true;
}
return false;
}
//=============================================================================
// Convenience common pre-built types.
inline const TypeInt* normalize_array_size(const TypeInt* size) {
// Certain normalizations keep us sane when comparing types.
// We do not want arrayOop variables to differ only by the wideness
// of their index types. Pick minimum wideness, since that is the
// forced wideness of small ranges anyway.
if (size->_widen != Type::WidenMin)
return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
else
return size;
}
//------------------------------make-------------------------------------------
const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
if (UseCompressedOops && elem->isa_oopptr()) {
elem = elem->make_narrowoop();
}
size = normalize_array_size(size);
return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeAry::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is Ary
switch (t->base()) { // switch on original type
case Bottom: // Ye Olde Default
return t;
default: // All else is a mistake
typerr(t);
case Array: { // Meeting 2 arrays?
const TypeAry *a = t->is_ary();
return TypeAry::make(_elem->meet_speculative(a->_elem),
_size->xmeet(a->_size)->is_int(),
_stable && a->_stable);
}
case Top:
break;
}
return this; // Return the double constant
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeAry::xdual() const {
const TypeInt* size_dual = _size->dual()->is_int();
size_dual = normalize_array_size(size_dual);
return new TypeAry(_elem->dual(), size_dual, !_stable);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeAry::eq( const Type *t ) const {
const TypeAry *a = (const TypeAry*)t;
return _elem == a->_elem &&
_stable == a->_stable &&
_size == a->_size;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeAry::hash(void) const {
return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
}
/**
* Return same type without a speculative part in the element
*/
const Type* TypeAry::remove_speculative() const {
return make(_elem->remove_speculative(), _size, _stable);
}
/**
* Return same type with cleaned up speculative part of element
*/
const Type* TypeAry::cleanup_speculative() const {
return make(_elem->cleanup_speculative(), _size, _stable);
}
/**
* Return same type but with a different inline depth (used for speculation)
*
* @param depth depth to meet with
*/
const TypePtr* TypePtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(AnyPtr, _ptr, _offset, _speculative, depth);
}
//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool TypeAry::interface_vs_oop(const Type *t) const {
const TypeAry* t_ary = t->is_ary();
if (t_ary) {
const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
const TypePtr* t_ptr = t_ary->_elem->make_ptr();
if(this_ptr != NULL && t_ptr != NULL) {
return this_ptr->interface_vs_oop(t_ptr);
}
}
return false;
}
#endif
//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
if (_stable) st->print("stable:");
_elem->dump2(d, depth, st);
st->print("[");
_size->dump2(d, depth, st);
st->print("]");
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Singletons are integer, float or double constants
// or a single symbol.
bool TypeAry::singleton(void) const {
return false; // Never a singleton
}
bool TypeAry::empty(void) const {
return _elem->empty() || _size->empty();
}
//--------------------------ary_must_be_exact----------------------------------
bool TypeAry::ary_must_be_exact() const {
if (!UseExactTypes) return false;
// This logic looks at the element type of an array, and returns true
// if the element type is either a primitive or a final instance class.
// In such cases, an array built on this ary must have no subclasses.
if (_elem == BOTTOM) return false; // general array not exact
if (_elem == TOP ) return false; // inverted general array not exact
const TypeOopPtr* toop = NULL;
if (UseCompressedOops && _elem->isa_narrowoop()) {
toop = _elem->make_ptr()->isa_oopptr();
} else {
toop = _elem->isa_oopptr();
}
if (!toop) return true; // a primitive type, like int
ciKlass* tklass = toop->klass();
if (tklass == NULL) return false; // unloaded class
if (!tklass->is_loaded()) return false; // unloaded class
const TypeInstPtr* tinst;
if (_elem->isa_narrowoop())
tinst = _elem->make_ptr()->isa_instptr();
else
tinst = _elem->isa_instptr();
if (tinst)
return tklass->as_instance_klass()->is_final();
const TypeAryPtr* tap;
if (_elem->isa_narrowoop())
tap = _elem->make_ptr()->isa_aryptr();
else
tap = _elem->isa_aryptr();
if (tap)
return tap->ary()->ary_must_be_exact();
return false;
}
//==============================TypeVect=======================================
// Convenience common pre-built types.
const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
//------------------------------make-------------------------------------------
const TypeVect* TypeVect::make(const Type *elem, uint length) {
BasicType elem_bt = elem->array_element_basic_type();
assert(is_java_primitive(elem_bt), "only primitive types in vector");
assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
int size = length * type2aelembytes(elem_bt);
switch (Matcher::vector_ideal_reg(size)) {
case Op_VecS:
return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
case Op_RegL:
case Op_VecD:
case Op_RegD:
return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
case Op_VecX:
return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
case Op_VecY:
return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
case Op_VecZ:
return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
}
ShouldNotReachHere();
return NULL;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeVect::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is Vector
switch (t->base()) { // switch on original type
case Bottom: // Ye Olde Default
return t;
default: // All else is a mistake
typerr(t);
case VectorS:
case VectorD:
case VectorX:
case VectorY:
case VectorZ: { // Meeting 2 vectors?
const TypeVect* v = t->is_vect();
assert( base() == v->base(), "");
assert(length() == v->length(), "");
assert(element_basic_type() == v->element_basic_type(), "");
return TypeVect::make(_elem->xmeet(v->_elem), _length);
}
case Top:
break;
}
return this;
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeVect::xdual() const {
return new TypeVect(base(), _elem->dual(), _length);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeVect::eq(const Type *t) const {
const TypeVect *v = t->is_vect();
return (_elem == v->_elem) && (_length == v->_length);
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeVect::hash(void) const {
return (intptr_t)_elem + (intptr_t)_length;
}
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants (Ldi nodes). Vector is singleton if all elements are the same
// constant value (when vector is created with Replicate code).
bool TypeVect::singleton(void) const {
// There is no Con node for vectors yet.
// return _elem->singleton();
return false;
}
bool TypeVect::empty(void) const {
return _elem->empty();
}
//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
switch (base()) {
case VectorS:
st->print("vectors["); break;
case VectorD:
st->print("vectord["); break;
case VectorX:
st->print("vectorx["); break;
case VectorY:
st->print("vectory["); break;
case VectorZ:
st->print("vectorz["); break;
default:
ShouldNotReachHere();
}
st->print("%d]:{", _length);
_elem->dump2(d, depth, st);
st->print("}");
}
#endif
//=============================================================================
// Convenience common pre-built types.
const TypePtr *TypePtr::NULL_PTR;
const TypePtr *TypePtr::NOTNULL;
const TypePtr *TypePtr::BOTTOM;
//------------------------------meet-------------------------------------------
// Meet over the PTR enum
const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
// TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
{ /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
{ /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
{ /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
{ /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
{ /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
{ /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
};
//------------------------------make-------------------------------------------
const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
if( ptr == _ptr ) return this;
return make(_base, ptr, _offset, _speculative, _inline_depth);
}
//------------------------------get_con----------------------------------------
intptr_t TypePtr::get_con() const {
assert( _ptr == Null, "" );
return _offset;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypePtr::xmeet(const Type *t) const {
const Type* res = xmeet_helper(t);
if (res->isa_ptr() == NULL) {
return res;
}
const TypePtr* res_ptr = res->is_ptr();
if (res_ptr->speculative() != NULL) {
// type->speculative() == NULL means that speculation is no better
// than type, i.e. type->speculative() == type. So there are 2
// ways to represent the fact that we have no useful speculative
// data and we should use a single one to be able to test for
// equality between types. Check whether type->speculative() ==
// type and set speculative to NULL if it is the case.
if (res_ptr->remove_speculative() == res_ptr->speculative()) {
return res_ptr->remove_speculative();
}
}
return res;
}
const Type *TypePtr::xmeet_helper(const Type *t) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is AnyPtr
switch (t->base()) { // switch on original type
case Int: // Mixing ints & oops happens when javac
case Long: // reuses local variables
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
case AnyPtr: { // Meeting to AnyPtrs
const TypePtr *tp = t->is_ptr();
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
}
case RawPtr: // For these, flip the call around to cut down
case OopPtr:
case InstPtr: // on the cases I have to handle.
case AryPtr:
case MetadataPtr:
case KlassPtr:
return t->xmeet(this); // Call in reverse direction
default: // All else is a mistake
typerr(t);
}
return this;
}
//------------------------------meet_offset------------------------------------
int TypePtr::meet_offset( int offset ) const {
// Either is 'TOP' offset? Return the other offset!
if( _offset == OffsetTop ) return offset;
if( offset == OffsetTop ) return _offset;
// If either is different, return 'BOTTOM' offset
if( _offset != offset ) return OffsetBot;
return _offset;
}
//------------------------------dual_offset------------------------------------
int TypePtr::dual_offset( ) const {
if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
return _offset; // Map everything else into self
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
};
const Type *TypePtr::xdual() const {
return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
}
//------------------------------xadd_offset------------------------------------
int TypePtr::xadd_offset( intptr_t offset ) const {
// Adding to 'TOP' offset? Return 'TOP'!
if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
// Adding to 'BOTTOM' offset? Return 'BOTTOM'!
if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
// Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
offset += (intptr_t)_offset;
if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
// assert( _offset >= 0 && _offset+offset >= 0, "" );
// It is possible to construct a negative offset during PhaseCCP
return (int)offset; // Sum valid offsets
}
//------------------------------add_offset-------------------------------------
const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypePtr::eq( const Type *t ) const {
const TypePtr *a = (const TypePtr*)t;
return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypePtr::hash(void) const {
return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
;
}
/**
* Return same type without a speculative part
*/
const Type* TypePtr::remove_speculative() const {
if (_speculative == NULL) {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
}
/**
* Return same type but drop speculative part if we know we won't use
* it
*/
const Type* TypePtr::cleanup_speculative() const {
if (speculative() == NULL) {
return this;
}
const Type* no_spec = remove_speculative();
// If this is NULL_PTR then we don't need the speculative type
// (with_inline_depth in case the current type inline depth is
// InlineDepthTop)
if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
return no_spec;
}
if (above_centerline(speculative()->ptr())) {
return no_spec;
}
const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
// If the speculative may be null and is an inexact klass then it
// doesn't help
if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
(spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
return no_spec;
}
return this;
}
/**
* dual of the speculative part of the type
*/
const TypePtr* TypePtr::dual_speculative() const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->dual()->is_ptr();
}
/**
* meet of the speculative parts of 2 types
*
* @param other type to meet with
*/
const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
bool this_has_spec = (_speculative != NULL);
bool other_has_spec = (other->speculative() != NULL);
if (!this_has_spec && !other_has_spec) {
return NULL;
}
// If we are at a point where control flow meets and one branch has
// a speculative type and the other has not, we meet the speculative
// type of one branch with the actual type of the other. If the
// actual type is exact and the speculative is as well, then the
// result is a speculative type which is exact and we can continue
// speculation further.
const TypePtr* this_spec = _speculative;
const TypePtr* other_spec = other->speculative();
if (!this_has_spec) {
this_spec = this;
}
if (!other_has_spec) {
other_spec = other;
}
return this_spec->meet(other_spec)->is_ptr();
}
/**
* dual of the inline depth for this type (used for speculation)
*/
int TypePtr::dual_inline_depth() const {
return -inline_depth();
}
/**
* meet of 2 inline depths (used for speculation)
*
* @param depth depth to meet with
*/
int TypePtr::meet_inline_depth(int depth) const {
return MAX2(inline_depth(), depth);
}
/**
* Are the speculative parts of 2 types equal?
*
* @param other type to compare this one to
*/
bool TypePtr::eq_speculative(const TypePtr* other) const {
if (_speculative == NULL || other->speculative() == NULL) {
return _speculative == other->speculative();
}
if (_speculative->base() != other->speculative()->base()) {
return false;
}
return _speculative->eq(other->speculative());
}
/**
* Hash of the speculative part of the type
*/
int TypePtr::hash_speculative() const {
if (_speculative == NULL) {
return 0;
}
return _speculative->hash();
}
/**
* add offset to the speculative part of the type
*
* @param offset offset to add
*/
const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->add_offset(offset)->is_ptr();
}
/**
* return exact klass from the speculative type if there's one
*/
ciKlass* TypePtr::speculative_type() const {
if (_speculative != NULL && _speculative->isa_oopptr()) {
const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
if (speculative->klass_is_exact()) {
return speculative->klass();
}
}
return NULL;
}
/**
* return true if speculative type may be null
*/
bool TypePtr::speculative_maybe_null() const {
if (_speculative != NULL) {
const TypePtr* speculative = _speculative->join(this)->is_ptr();
return speculative->maybe_null();
}
return true;
}
bool TypePtr::speculative_always_null() const {
if (_speculative != NULL) {
const TypePtr* speculative = _speculative->join(this)->is_ptr();
return speculative == TypePtr::NULL_PTR;
}
return false;
}
/**
* Same as TypePtr::speculative_type() but return the klass only if
* the speculative tells us is not null
*/
ciKlass* TypePtr::speculative_type_not_null() const {
if (speculative_maybe_null()) {
return NULL;
}
return speculative_type();
}
/**
* Check whether new profiling would improve speculative type
*
* @param exact_kls class from profiling
* @param inline_depth inlining depth of profile point
*
* @return true if type profile is valuable
*/
bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
// no profiling?
if (exact_kls == NULL) {
return false;
}
if (speculative() == TypePtr::NULL_PTR) {
return false;
}
// no speculative type or non exact speculative type?
if (speculative_type() == NULL) {
return true;
}
// If the node already has an exact speculative type keep it,
// unless it was provided by profiling that is at a deeper
// inlining level. Profiling at a higher inlining depth is
// expected to be less accurate.
if (_speculative->inline_depth() == InlineDepthBottom) {
return false;
}
assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
return inline_depth < _speculative->inline_depth();
}
/**
* Check whether new profiling would improve ptr (= tells us it is non
* null)
*
* @param ptr_kind always null or not null?
*
* @return true if ptr profile is valuable
*/
bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
// profiling doesn't tell us anything useful
if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
return false;
}
// We already know this is not null
if (!this->maybe_null()) {
return false;
}
// We already know the speculative type cannot be null
if (!speculative_maybe_null()) {
return false;
}
// We already know this is always null
if (this == TypePtr::NULL_PTR) {
return false;
}
// We already know the speculative type is always null
if (speculative_always_null()) {
return false;
}
if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
return false;
}
return true;
}
//------------------------------dump2------------------------------------------
const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
"TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
};
#ifndef PRODUCT
void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
if( _ptr == Null ) st->print("NULL");
else st->print("%s *", ptr_msg[_ptr]);
if( _offset == OffsetTop ) st->print("+top");
else if( _offset == OffsetBot ) st->print("+bot");
else if( _offset ) st->print("+%d", _offset);
dump_inline_depth(st);
dump_speculative(st);
}
/**
*dump the speculative part of the type
*/
void TypePtr::dump_speculative(outputStream *st) const {
if (_speculative != NULL) {
st->print(" (speculative=");
_speculative->dump_on(st);
st->print(")");
}
}
/**
*dump the inline depth of the type
*/
void TypePtr::dump_inline_depth(outputStream *st) const {
if (_inline_depth != InlineDepthBottom) {
if (_inline_depth == InlineDepthTop) {
st->print(" (inline_depth=InlineDepthTop)");
} else {
st->print(" (inline_depth=%d)", _inline_depth);
}
}
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants
bool TypePtr::singleton(void) const {
// TopPTR, Null, AnyNull, Constant are all singletons
return (_offset != OffsetBot) && !below_centerline(_ptr);
}
bool TypePtr::empty(void) const {
return (_offset == OffsetTop) || above_centerline(_ptr);
}
//=============================================================================
// Convenience common pre-built types.
const TypeRawPtr *TypeRawPtr::BOTTOM;
const TypeRawPtr *TypeRawPtr::NOTNULL;
//------------------------------make-------------------------------------------
const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
assert( ptr != Constant, "what is the constant?" );
assert( ptr != Null, "Use TypePtr for NULL" );
return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
}
const TypeRawPtr *TypeRawPtr::make( address bits ) {
assert( bits, "Use TypePtr for NULL" );
return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
assert( ptr != Constant, "what is the constant?" );
assert( ptr != Null, "Use TypePtr for NULL" );
assert( _bits==0, "Why cast a constant address?");
if( ptr == _ptr ) return this;
return make(ptr);
}
//------------------------------get_con----------------------------------------
intptr_t TypeRawPtr::get_con() const {
assert( _ptr == Null || _ptr == Constant, "" );
return (intptr_t)_bits;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeRawPtr::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is RawPtr
switch( t->base() ) { // switch on original type
case Bottom: // Ye Olde Default
return t;
case Top:
return this;
case AnyPtr: // Meeting to AnyPtrs
break;
case RawPtr: { // might be top, bot, any/not or constant
enum PTR tptr = t->is_ptr()->ptr();
enum PTR ptr = meet_ptr( tptr );
if( ptr == Constant ) { // Cannot be equal constants, so...
if( tptr == Constant && _ptr != Constant) return t;
if( _ptr == Constant && tptr != Constant) return this;
ptr = NotNull; // Fall down in lattice
}
return make( ptr );
}
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
return TypePtr::BOTTOM; // Oop meet raw is not well defined
default: // All else is a mistake
typerr(t);
}
// Found an AnyPtr type vs self-RawPtr type
const TypePtr *tp = t->is_ptr();
switch (tp->ptr()) {
case TypePtr::TopPTR: return this;
case TypePtr::BotPTR: return t;
case TypePtr::Null:
if( _ptr == TypePtr::TopPTR ) return t;
return TypeRawPtr::BOTTOM;
case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
case TypePtr::AnyNull:
if( _ptr == TypePtr::Constant) return this;
return make( meet_ptr(TypePtr::AnyNull) );
default: ShouldNotReachHere();
}
return this;
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeRawPtr::xdual() const {
return new TypeRawPtr( dual_ptr(), _bits );
}
//------------------------------add_offset-------------------------------------
const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
if( offset == 0 ) return this; // No change
switch (_ptr) {
case TypePtr::TopPTR:
case TypePtr::BotPTR:
case TypePtr::NotNull:
return this;
case TypePtr::Null:
case TypePtr::Constant: {
address bits = _bits+offset;
if ( bits == 0 ) return TypePtr::NULL_PTR;
return make( bits );
}
default: ShouldNotReachHere();
}
return NULL; // Lint noise
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeRawPtr::eq( const Type *t ) const {
const TypeRawPtr *a = (const TypeRawPtr*)t;
return _bits == a->_bits && TypePtr::eq(t);
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeRawPtr::hash(void) const {
return (intptr_t)_bits + TypePtr::hash();
}
//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
if( _ptr == Constant )
st->print(INTPTR_FORMAT, p2i(_bits));
else
st->print("rawptr:%s", ptr_msg[_ptr]);
}
#endif
//=============================================================================
// Convenience common pre-built type.
const TypeOopPtr *TypeOopPtr::BOTTOM;
//------------------------------TypeOopPtr-------------------------------------
TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
int instance_id, const TypePtr* speculative, int inline_depth)
: TypePtr(t, ptr, offset, speculative, inline_depth),
_const_oop(o), _klass(k),
_klass_is_exact(xk),
_is_ptr_to_narrowoop(false),
_is_ptr_to_narrowklass(false),
_is_ptr_to_boxed_value(false),
_instance_id(instance_id) {
if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
(offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
_is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
}
#ifdef _LP64
if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
if (_offset == oopDesc::klass_offset_in_bytes()) {
_is_ptr_to_narrowklass = UseCompressedClassPointers;
} else if (klass() == NULL) {
// Array with unknown body type
assert(this->isa_aryptr(), "only arrays without klass");
_is_ptr_to_narrowoop = UseCompressedOops;
} else if (this->isa_aryptr()) {
_is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
_offset != arrayOopDesc::length_offset_in_bytes());
} else if (klass()->is_instance_klass()) {
ciInstanceKlass* ik = klass()->as_instance_klass();
ciField* field = NULL;
if (this->isa_klassptr()) {
// Perm objects don't use compressed references
} else if (_offset == OffsetBot || _offset == OffsetTop) {
// unsafe access
_is_ptr_to_narrowoop = UseCompressedOops;
} else { // exclude unsafe ops
assert(this->isa_instptr(), "must be an instance ptr.");
if (klass() == ciEnv::current()->Class_klass() &&
(_offset == java_lang_Class::klass_offset_in_bytes() ||
_offset == java_lang_Class::array_klass_offset_in_bytes())) {
// Special hidden fields from the Class.
assert(this->isa_instptr(), "must be an instance ptr.");
_is_ptr_to_narrowoop = false;
} else if (klass() == ciEnv::current()->Class_klass() &&
_offset >= InstanceMirrorKlass::offset_of_static_fields()) {
// Static fields
assert(o != NULL, "must be constant");
ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
ciField* field = k->get_field_by_offset(_offset, true);
assert(field != NULL, "missing field");
BasicType basic_elem_type = field->layout_type();
_is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
} else {
// Instance fields which contains a compressed oop references.
field = ik->get_field_by_offset(_offset, false);
if (field != NULL) {
BasicType basic_elem_type = field->layout_type();
_is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
} else if (klass()->equals(ciEnv::current()->Object_klass())) {
// Compile::find_alias_type() cast exactness on all types to verify
// that it does not affect alias type.
_is_ptr_to_narrowoop = UseCompressedOops;
} else {
// Type for the copy start in LibraryCallKit::inline_native_clone().
_is_ptr_to_narrowoop = UseCompressedOops;
}
}
}
}
}
#endif
}
//------------------------------make-------------------------------------------
const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
const TypePtr* speculative, int inline_depth) {
assert(ptr != Constant, "no constant generic pointers");
ciKlass* k = Compile::current()->env()->Object_klass();
bool xk = false;
ciObject* o = NULL;
return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
if( ptr == _ptr ) return this;
return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
// There are no instances of a general oop.
// Return self unchanged.
return this;
}
//-----------------------------cast_to_exactness-------------------------------
const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
// There is no such thing as an exact general oop.
// Return self unchanged.
return this;
}
//------------------------------as_klass_type----------------------------------
// Return the klass type corresponding to this instance or array type.
// It is the type that is loaded from an object of this type.
const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
ciKlass* k = klass();
bool xk = klass_is_exact();
if (k == NULL)
return TypeKlassPtr::OBJECT;
else
return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is OopPtr
switch (t->base()) { // switch on original type
case Int: // Mixing ints & oops happens when javac
case Long: // reuses local variables
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
default: // All else is a mistake
typerr(t);
case RawPtr:
case MetadataPtr:
case KlassPtr:
return TypePtr::BOTTOM; // Oop meet raw is not well defined
case AnyPtr: {
// Found an AnyPtr type vs self-OopPtr type
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case Null:
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through:
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
return make(ptr, offset, instance_id, speculative, depth);
}
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
default: typerr(t);
}
}
case OopPtr: { // Meeting to other OopPtrs
const TypeOopPtr *tp = t->is_oopptr();
int instance_id = meet_instance_id(tp->instance_id());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
}
case InstPtr: // For these, flip the call around to cut down
case AryPtr:
return t->xmeet(this); // Call in reverse direction
} // End of switch
return this; // Return the double constant
}
//------------------------------xdual------------------------------------------
// Dual of a pure heap pointer. No relevant klass or oop information.
const Type *TypeOopPtr::xdual() const {
assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
assert(const_oop() == NULL, "no constants here");
return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
}
//--------------------------make_from_klass_common-----------------------------
// Computes the element-type given a klass.
const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
if (klass->is_instance_klass()) {
Compile* C = Compile::current();
Dependencies* deps = C->dependencies();
assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
// Element is an instance
bool klass_is_exact = false;
if (klass->is_loaded()) {
// Try to set klass_is_exact.
ciInstanceKlass* ik = klass->as_instance_klass();
klass_is_exact = ik->is_final();
if (!klass_is_exact && klass_change
&& deps != NULL && UseUniqueSubclasses) {
ciInstanceKlass* sub = ik->unique_concrete_subklass();
if (sub != NULL) {
deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
klass = ik = sub;
klass_is_exact = sub->is_final();
}
}
if (!klass_is_exact && try_for_exact
&& deps != NULL && UseExactTypes) {
if (!ik->is_interface() && !ik->has_subklass()) {
// Add a dependence; if concrete subclass added we need to recompile
deps->assert_leaf_type(ik);
klass_is_exact = true;
}
}
}
return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
} else if (klass->is_obj_array_klass()) {
// Element is an object array. Recursively call ourself.
const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
bool xk = etype->klass_is_exact();
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
// We used to pass NotNull in here, asserting that the sub-arrays
// are all not-null. This is not true in generally, as code can
// slam NULLs down in the subarrays.
const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
return arr;
} else if (klass->is_type_array_klass()) {
// Element is an typeArray
const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
// We used to pass NotNull in here, asserting that the array pointer
// is not-null. That was not true in general.
const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
return arr;
} else {
ShouldNotReachHere();
return NULL;
}
}
//------------------------------make_from_constant-----------------------------
// Make a java pointer from an oop constant
const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
assert(!o->is_null_object(), "null object not yet handled here.");
const bool make_constant = require_constant || o->should_be_constant();
ciKlass* klass = o->klass();
if (klass->is_instance_klass()) {
// Element is an instance
if (make_constant) {
return TypeInstPtr::make(o);
} else {
return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
}
} else if (klass->is_obj_array_klass()) {
// Element is an object array. Recursively call ourself.
const TypeOopPtr *etype =
TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
// We used to pass NotNull in here, asserting that the sub-arrays
// are all not-null. This is not true in generally, as code can
// slam NULLs down in the subarrays.
if (make_constant) {
return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
} else {
return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
}
} else if (klass->is_type_array_klass()) {
// Element is an typeArray
const Type* etype =
(Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
// We used to pass NotNull in here, asserting that the array pointer
// is not-null. That was not true in general.
if (make_constant) {
return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
} else {
return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
}
}
fatal("unhandled object type");
return NULL;
}
//------------------------------get_con----------------------------------------
intptr_t TypeOopPtr::get_con() const {
assert( _ptr == Null || _ptr == Constant, "" );
assert( _offset >= 0, "" );
if (_offset != 0) {
// After being ported to the compiler interface, the compiler no longer
// directly manipulates the addresses of oops. Rather, it only has a pointer
// to a handle at compile time. This handle is embedded in the generated
// code and dereferenced at the time the nmethod is made. Until that time,
// it is not reasonable to do arithmetic with the addresses of oops (we don't
// have access to the addresses!). This does not seem to currently happen,
// but this assertion here is to help prevent its occurence.
tty->print_cr("Found oop constant with non-zero offset");
ShouldNotReachHere();
}
return (intptr_t)const_oop()->constant_encoding();
}
//-----------------------------filter------------------------------------------
// Do not allow interface-vs.-noninterface joins to collapse to top.
const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
const Type* ft = join_helper(kills, include_speculative);
const TypeInstPtr* ftip = ft->isa_instptr();
const TypeInstPtr* ktip = kills->isa_instptr();
if (ft->empty()) {
// Check for evil case of 'this' being a class and 'kills' expecting an
// interface. This can happen because the bytecodes do not contain
// enough type info to distinguish a Java-level interface variable
// from a Java-level object variable. If we meet 2 classes which
// both implement interface I, but their meet is at 'j/l/O' which
// doesn't implement I, we have no way to tell if the result should
// be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
// into a Phi which "knows" it's an Interface type we'll have to
// uplift the type.
if (!empty()) {
if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
return kills; // Uplift to interface
}
// Also check for evil cases of 'this' being a class array
// and 'kills' expecting an array of interfaces.
Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
return kills; // Uplift to array of interface
}
}
return Type::TOP; // Canonical empty value
}
// If we have an interface-typed Phi or cast and we narrow to a class type,
// the join should report back the class. However, if we have a J/L/Object
// class-typed Phi and an interface flows in, it's possible that the meet &
// join report an interface back out. This isn't possible but happens
// because the type system doesn't interact well with interfaces.
if (ftip != NULL && ktip != NULL &&
ftip->is_loaded() && ftip->klass()->is_interface() &&
ktip->is_loaded() && !ktip->klass()->is_interface()) {
assert(!ftip->klass_is_exact(), "interface could not be exact");
return ktip->cast_to_ptr_type(ftip->ptr());
}
return ft;
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeOopPtr::eq( const Type *t ) const {
const TypeOopPtr *a = (const TypeOopPtr*)t;
if (_klass_is_exact != a->_klass_is_exact ||
_instance_id != a->_instance_id) return false;
ciObject* one = const_oop();
ciObject* two = a->const_oop();
if (one == NULL || two == NULL) {
return (one == two) && TypePtr::eq(t);
} else {
return one->equals(two) && TypePtr::eq(t);
}
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeOopPtr::hash(void) const {
return
java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
java_add((jint)_instance_id, (jint)TypePtr::hash()));
}
//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
st->print("oopptr:%s", ptr_msg[_ptr]);
if( _klass_is_exact ) st->print(":exact");
if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
switch( _offset ) {
case OffsetTop: st->print("+top"); break;
case OffsetBot: st->print("+any"); break;
case 0: break;
default: st->print("+%d",_offset); break;
}
if (_instance_id == InstanceTop)
st->print(",iid=top");
else if (_instance_id != InstanceBot)
st->print(",iid=%d",_instance_id);
dump_inline_depth(st);
dump_speculative(st);
}
#endif
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants
bool TypeOopPtr::singleton(void) const {
// detune optimizer to not generate constant oop + constant offset as a constant!
// TopPTR, Null, AnyNull, Constant are all singletons
return (_offset == 0) && !below_centerline(_ptr);
}
//------------------------------add_offset-------------------------------------
const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
}
/**
* Return same type without a speculative part
*/
const Type* TypeOopPtr::remove_speculative() const {
if (_speculative == NULL) {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
}
/**
* Return same type but drop speculative part if we know we won't use
* it
*/
const Type* TypeOopPtr::cleanup_speculative() const {
// If the klass is exact and the ptr is not null then there's
// nothing that the speculative type can help us with
if (klass_is_exact() && !maybe_null()) {
return remove_speculative();
}
return TypePtr::cleanup_speculative();
}
/**
* Return same type but with a different inline depth (used for speculation)
*
* @param depth depth to meet with
*/
const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(_ptr, _offset, _instance_id, _speculative, depth);
}
//------------------------------with_instance_id--------------------------------
const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
assert(_instance_id != -1, "should be known");
return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
}
//------------------------------meet_instance_id--------------------------------
int TypeOopPtr::meet_instance_id( int instance_id ) const {
// Either is 'TOP' instance? Return the other instance!
if( _instance_id == InstanceTop ) return instance_id;
if( instance_id == InstanceTop ) return _instance_id;
// If either is different, return 'BOTTOM' instance
if( _instance_id != instance_id ) return InstanceBot;
return _instance_id;
}
//------------------------------dual_instance_id--------------------------------
int TypeOopPtr::dual_instance_id( ) const {
if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
return _instance_id; // Map everything else into self
}
/**
* Check whether new profiling would improve speculative type
*
* @param exact_kls class from profiling
* @param inline_depth inlining depth of profile point
*
* @return true if type profile is valuable
*/
bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
// no way to improve an already exact type
if (klass_is_exact()) {
return false;
}
return TypePtr::would_improve_type(exact_kls, inline_depth);
}
//=============================================================================
// Convenience common pre-built types.
const TypeInstPtr *TypeInstPtr::NOTNULL;
const TypeInstPtr *TypeInstPtr::BOTTOM;
const TypeInstPtr *TypeInstPtr::MIRROR;
const TypeInstPtr *TypeInstPtr::MARK;
const TypeInstPtr *TypeInstPtr::KLASS;
//------------------------------TypeInstPtr-------------------------------------
TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
int instance_id, const TypePtr* speculative, int inline_depth)
: TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
_name(k->name()) {
assert(k != NULL &&
(k->is_loaded() || o == NULL),
"cannot have constants with non-loaded klass");
};
//------------------------------make-------------------------------------------
const TypeInstPtr *TypeInstPtr::make(PTR ptr,
ciKlass* k,
bool xk,
ciObject* o,
int offset,
int instance_id,
const TypePtr* speculative,
int inline_depth) {
assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
// Either const_oop() is NULL or else ptr is Constant
assert( (!o && ptr != Constant) || (o && ptr == Constant),
"constant pointers must have a value supplied" );
// Ptr is never Null
assert( ptr != Null, "NULL pointers are not typed" );
assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
if (!UseExactTypes) xk = false;
if (ptr == Constant) {
// Note: This case includes meta-object constants, such as methods.
xk = true;
} else if (k->is_loaded()) {
ciInstanceKlass* ik = k->as_instance_klass();
if (!xk && ik->is_final()) xk = true; // no inexact final klass
if (xk && ik->is_interface()) xk = false; // no exact interface
}
// Now hash this baby
TypeInstPtr *result =
(TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
return result;
}
/**
* Create constant type for a constant boxed value
*/
const Type* TypeInstPtr::get_const_boxed_value() const {
assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
assert((const_oop() != NULL), "should be called only for constant object");
ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
BasicType bt = constant.basic_type();
switch (bt) {
case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
case T_INT: return TypeInt::make(constant.as_int());
case T_CHAR: return TypeInt::make(constant.as_char());
case T_BYTE: return TypeInt::make(constant.as_byte());
case T_SHORT: return TypeInt::make(constant.as_short());
case T_FLOAT: return TypeF::make(constant.as_float());
case T_DOUBLE: return TypeD::make(constant.as_double());
case T_LONG: return TypeLong::make(constant.as_long());
default: break;
}
fatal("Invalid boxed value type '%s'", type2name(bt));
return NULL;
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
if( ptr == _ptr ) return this;
// Reconstruct _sig info here since not a problem with later lazy
// construction, _sig will show up on demand.
return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------cast_to_exactness-------------------------------
const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
if( klass_is_exact == _klass_is_exact ) return this;
if (!UseExactTypes) return this;
if (!_klass->is_loaded()) return this;
ciInstanceKlass* ik = _klass->as_instance_klass();
if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
if( ik->is_interface() ) return this; // cannot set xk
return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
if( instance_id == _instance_id ) return this;
return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
}
//------------------------------xmeet_unloaded---------------------------------
// Compute the MEET of two InstPtrs when at least one is unloaded.
// Assume classes are different since called after check for same name/class-loader
const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
int off = meet_offset(tinst->offset());
PTR ptr = meet_ptr(tinst->ptr());
int instance_id = meet_instance_id(tinst->instance_id());
const TypePtr* speculative = xmeet_speculative(tinst);
int depth = meet_inline_depth(tinst->inline_depth());
const TypeInstPtr *loaded = is_loaded() ? this : tinst;
const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
//
// Meet unloaded class with java/lang/Object
//
// Meet
// | Unloaded Class
// Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
// ===================================================================
// TOP | ..........................Unloaded......................|
// AnyNull | U-AN |................Unloaded......................|
// Constant | ... O-NN .................................. | O-BOT |
// NotNull | ... O-NN .................................. | O-BOT |
// BOTTOM | ........................Object-BOTTOM ..................|
//
assert(loaded->ptr() != TypePtr::Null, "insanity check");
//
if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
else { return TypeInstPtr::NOTNULL; }
}
else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
}
// Both are unloaded, not the same class, not Object
// Or meet unloaded with a different loaded class, not java/lang/Object
if( ptr != TypePtr::BotPTR ) {
return TypeInstPtr::NOTNULL;
}
return TypeInstPtr::BOTTOM;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is Pointer
switch (t->base()) { // switch on original type
case Int: // Mixing ints & oops happens when javac
case Long: // reuses local variables
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
default: // All else is a mistake
typerr(t);
case MetadataPtr:
case KlassPtr:
case RawPtr: return TypePtr::BOTTOM;
case AryPtr: { // All arrays inherit from Object class
const TypeAryPtr *tp = t->is_aryptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(tp->instance_id());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (ptr) {
case TopPTR:
case AnyNull: // Fall 'down' to dual of object klass
// For instances when a subclass meets a superclass we fall
// below the centerline when the superclass is exact. We need to
// do the same here.
if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
} else {
// cannot subclass, so the meet has to fall badly below the centerline
ptr = NotNull;
instance_id = InstanceBot;
return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
}
case Constant:
case NotNull:
case BotPTR: // Fall down to object klass
// LCA is object_klass, but if we subclass from the top we can do better
if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
// If 'this' (InstPtr) is above the centerline and it is Object class
// then we can subclass in the Java class hierarchy.
// For instances when a subclass meets a superclass we fall
// below the centerline when the superclass is exact. We need
// to do the same here.
if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
// that is, tp's array type is a subtype of my klass
return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
}
}
// The other case cannot happen, since I cannot be a subtype of an array.
// The meet falls down to Object class below centerline.
if( ptr == Constant )
ptr = NotNull;
instance_id = InstanceBot;
return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
default: typerr(t);
}
}
case OopPtr: { // Meeting to OopPtrs
// Found a OopPtr type vs self-InstPtr type
const TypeOopPtr *tp = t->is_oopptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
switch (tp->ptr()) {
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(ptr, klass(), klass_is_exact(),
(ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
}
case NotNull:
case BotPTR: {
int instance_id = meet_instance_id(tp->instance_id());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
}
default: typerr(t);
}
}
case AnyPtr: { // Meeting to AnyPtrs
// Found an AnyPtr type vs self-InstPtr type
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(InstanceTop);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case Null:
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through to AnyNull
case TopPTR:
case AnyNull: {
return make(ptr, klass(), klass_is_exact(),
(ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
}
case NotNull:
case BotPTR:
return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
default: typerr(t);
}
}
/*
A-top }
/ | \ } Tops
B-top A-any C-top }
| / | \ | } Any-nulls
B-any | C-any }
| | |
B-con A-con C-con } constants; not comparable across classes
| | |
B-not | C-not }
| \ | / | } not-nulls
B-bot A-not C-bot }
\ | / } Bottoms
A-bot }
*/
case InstPtr: { // Meeting 2 Oops?
// Found an InstPtr sub-type vs self-InstPtr type
const TypeInstPtr *tinst = t->is_instptr();
int off = meet_offset( tinst->offset() );
PTR ptr = meet_ptr( tinst->ptr() );
int instance_id = meet_instance_id(tinst->instance_id());
const TypePtr* speculative = xmeet_speculative(tinst);
int depth = meet_inline_depth(tinst->inline_depth());
// Check for easy case; klasses are equal (and perhaps not loaded!)
// If we have constants, then we created oops so classes are loaded
// and we can handle the constants further down. This case handles
// both-not-loaded or both-loaded classes
if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
}
// Classes require inspection in the Java klass hierarchy. Must be loaded.
ciKlass* tinst_klass = tinst->klass();
ciKlass* this_klass = this->klass();
bool tinst_xk = tinst->klass_is_exact();
bool this_xk = this->klass_is_exact();
if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
// One of these classes has not been loaded
const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
#ifndef PRODUCT
if( PrintOpto && Verbose ) {
tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
tty->print(" this == "); this->dump(); tty->cr();
tty->print(" tinst == "); tinst->dump(); tty->cr();
}
#endif
return unloaded_meet;
}
// Handle mixing oops and interfaces first.
if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
tinst_klass == ciEnv::current()->Object_klass())) {
ciKlass *tmp = tinst_klass; // Swap interface around
tinst_klass = this_klass;
this_klass = tmp;
bool tmp2 = tinst_xk;
tinst_xk = this_xk;
this_xk = tmp2;
}
if (tinst_klass->is_interface() &&
!(this_klass->is_interface() ||
// Treat java/lang/Object as an honorary interface,
// because we need a bottom for the interface hierarchy.
this_klass == ciEnv::current()->Object_klass())) {
// Oop meets interface!
// See if the oop subtypes (implements) interface.
ciKlass *k;
bool xk;
if( this_klass->is_subtype_of( tinst_klass ) ) {
// Oop indeed subtypes. Now keep oop or interface depending
// on whether we are both above the centerline or either is
// below the centerline. If we are on the centerline
// (e.g., Constant vs. AnyNull interface), use the constant.
k = below_centerline(ptr) ? tinst_klass : this_klass;
// If we are keeping this_klass, keep its exactness too.
xk = below_centerline(ptr) ? tinst_xk : this_xk;
} else { // Does not implement, fall to Object
// Oop does not implement interface, so mixing falls to Object
// just like the verifier does (if both are above the
// centerline fall to interface)
k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
xk = above_centerline(ptr) ? tinst_xk : false;
// Watch out for Constant vs. AnyNull interface.
if (ptr == Constant) ptr = NotNull; // forget it was a constant
instance_id = InstanceBot;
}
ciObject* o = NULL; // the Constant value, if any
if (ptr == Constant) {
// Find out which constant.
o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
}
return make(ptr, k, xk, o, off, instance_id, speculative, depth);
}
// Either oop vs oop or interface vs interface or interface vs Object
// !!! Here's how the symmetry requirement breaks down into invariants:
// If we split one up & one down AND they subtype, take the down man.
// If we split one up & one down AND they do NOT subtype, "fall hard".
// If both are up and they subtype, take the subtype class.
// If both are up and they do NOT subtype, "fall hard".
// If both are down and they subtype, take the supertype class.
// If both are down and they do NOT subtype, "fall hard".
// Constants treated as down.
// Now, reorder the above list; observe that both-down+subtype is also
// "fall hard"; "fall hard" becomes the default case:
// If we split one up & one down AND they subtype, take the down man.
// If both are up and they subtype, take the subtype class.
// If both are down and they subtype, "fall hard".
// If both are down and they do NOT subtype, "fall hard".
// If both are up and they do NOT subtype, "fall hard".
// If we split one up & one down AND they do NOT subtype, "fall hard".
// If a proper subtype is exact, and we return it, we return it exactly.
// If a proper supertype is exact, there can be no subtyping relationship!
// If both types are equal to the subtype, exactness is and-ed below the
// centerline and or-ed above it. (N.B. Constants are always exact.)
// Check for subtyping:
ciKlass *subtype = NULL;
bool subtype_exact = false;
if( tinst_klass->equals(this_klass) ) {
subtype = this_klass;
subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
} else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
subtype = this_klass; // Pick subtyping class
subtype_exact = this_xk;
} else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
subtype = tinst_klass; // Pick subtyping class
subtype_exact = tinst_xk;
}
if( subtype ) {
if( above_centerline(ptr) ) { // both are up?
this_klass = tinst_klass = subtype;
this_xk = tinst_xk = subtype_exact;
} else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
this_klass = tinst_klass; // tinst is down; keep down man
this_xk = tinst_xk;
} else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
tinst_klass = this_klass; // this is down; keep down man
tinst_xk = this_xk;
} else {
this_xk = subtype_exact; // either they are equal, or we'll do an LCA
}
}
// Check for classes now being equal
if (tinst_klass->equals(this_klass)) {
// If the klasses are equal, the constants may still differ. Fall to
// NotNull if they do (neither constant is NULL; that is a special case
// handled elsewhere).
ciObject* o = NULL; // Assume not constant when done
ciObject* this_oop = const_oop();
ciObject* tinst_oop = tinst->const_oop();
if( ptr == Constant ) {
if (this_oop != NULL && tinst_oop != NULL &&
this_oop->equals(tinst_oop) )
o = this_oop;
else if (above_centerline(this ->_ptr))
o = tinst_oop;
else if (above_centerline(tinst ->_ptr))
o = this_oop;
else
ptr = NotNull;
}
return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
} // Else classes are not equal
// Since klasses are different, we require a LCA in the Java
// class hierarchy - which means we have to fall to at least NotNull.
if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
ptr = NotNull;
instance_id = InstanceBot;
// Now we find the LCA of Java classes
ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
} // End of case InstPtr
} // End of switch
return this; // Return the double constant
}
//------------------------java_mirror_type--------------------------------------
ciType* TypeInstPtr::java_mirror_type() const {
// must be a singleton type
if( const_oop() == NULL ) return NULL;
// must be of type java.lang.Class
if( klass() != ciEnv::current()->Class_klass() ) return NULL;
return const_oop()->as_instance()->java_mirror_type();
}
//------------------------------xdual------------------------------------------
// Dual: do NOT dual on klasses. This means I do NOT understand the Java
// inheritance mechanism.
const Type *TypeInstPtr::xdual() const {
return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeInstPtr::eq( const Type *t ) const {
const TypeInstPtr *p = t->is_instptr();
return
klass()->equals(p->klass()) &&
TypeOopPtr::eq(p); // Check sub-type stuff
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeInstPtr::hash(void) const {
int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
return hash;
}
//------------------------------dump2------------------------------------------
// Dump oop Type
#ifndef PRODUCT
void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
// Print the name of the klass.
klass()->print_name_on(st);
switch( _ptr ) {
case Constant:
// TO DO: Make CI print the hex address of the underlying oop.
if (WizardMode || Verbose) {
const_oop()->print_oop(st);
}
case BotPTR:
if (!WizardMode && !Verbose) {
if( _klass_is_exact ) st->print(":exact");
break;
}
case TopPTR:
case AnyNull:
case NotNull:
st->print(":%s", ptr_msg[_ptr]);
if( _klass_is_exact ) st->print(":exact");
break;
default:
break;
}
if( _offset ) { // Dump offset, if any
if( _offset == OffsetBot ) st->print("+any");
else if( _offset == OffsetTop ) st->print("+unknown");
else st->print("+%d", _offset);
}
st->print(" *");
if (_instance_id == InstanceTop)
st->print(",iid=top");
else if (_instance_id != InstanceBot)
st->print(",iid=%d",_instance_id);
dump_inline_depth(st);
dump_speculative(st);
}
#endif
//------------------------------add_offset-------------------------------------
const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
_instance_id, add_offset_speculative(offset), _inline_depth);
}
const Type *TypeInstPtr::remove_speculative() const {
if (_speculative == NULL) {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
_instance_id, NULL, _inline_depth);
}
const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
}
const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
assert(is_known_instance(), "should be known");
return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
}
//=============================================================================
// Convenience common pre-built types.
const TypeAryPtr *TypeAryPtr::RANGE;
const TypeAryPtr *TypeAryPtr::OOPS;
const TypeAryPtr *TypeAryPtr::NARROWOOPS;
const TypeAryPtr *TypeAryPtr::BYTES;
const TypeAryPtr *TypeAryPtr::SHORTS;
const TypeAryPtr *TypeAryPtr::CHARS;
const TypeAryPtr *TypeAryPtr::INTS;
const TypeAryPtr *TypeAryPtr::LONGS;
const TypeAryPtr *TypeAryPtr::FLOATS;
const TypeAryPtr *TypeAryPtr::DOUBLES;
//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id, const TypePtr* speculative, int inline_depth) {
assert(!(k == NULL && ary->_elem->isa_int()),
"integral arrays must be pre-equipped with a class");
if (!xk) xk = ary->ary_must_be_exact();
assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
if (!UseExactTypes) xk = (ptr == Constant);
return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
}
//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id, const TypePtr* speculative, int inline_depth,
bool is_autobox_cache) {
assert(!(k == NULL && ary->_elem->isa_int()),
"integral arrays must be pre-equipped with a class");
assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
if (!UseExactTypes) xk = (ptr == Constant);
return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
if( ptr == _ptr ) return this;
return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------cast_to_exactness-------------------------------
const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
if( klass_is_exact == _klass_is_exact ) return this;
if (!UseExactTypes) return this;
if (_ary->ary_must_be_exact()) return this; // cannot clear xk
return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
if( instance_id == _instance_id ) return this;
return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
}
//-----------------------------max_array_length-------------------------------
// A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
jint TypeAryPtr::max_array_length(BasicType etype) {
if (!is_java_primitive(etype) && !is_reference_type(etype)) {
if (etype == T_NARROWOOP) {
etype = T_OBJECT;
} else if (etype == T_ILLEGAL) { // bottom[]
etype = T_BYTE; // will produce conservatively high value
} else {
fatal("not an element type: %s", type2name(etype));
}
}
return arrayOopDesc::max_array_length(etype);
}
//-----------------------------narrow_size_type-------------------------------
// Narrow the given size type to the index range for the given array base type.
// Return NULL if the resulting int type becomes empty.
const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
jint hi = size->_hi;
jint lo = size->_lo;
jint min_lo = 0;
jint max_hi = max_array_length(elem()->basic_type());
//if (index_not_size) --max_hi; // type of a valid array index, FTR
bool chg = false;
if (lo < min_lo) {
lo = min_lo;
if (size->is_con()) {
hi = lo;
}
chg = true;
}
if (hi > max_hi) {
hi = max_hi;
if (size->is_con()) {
lo = hi;
}
chg = true;
}
// Negative length arrays will produce weird intermediate dead fast-path code
if (lo > hi)
return TypeInt::ZERO;
if (!chg)
return size;
return TypeInt::make(lo, hi, Type::WidenMin);
}
//-------------------------------cast_to_size----------------------------------
const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
assert(new_size != NULL, "");
new_size = narrow_size_type(new_size);
if (new_size == size()) return this;
const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
}
//------------------------------cast_to_stable---------------------------------
const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
return this;
const Type* elem = this->elem();
const TypePtr* elem_ptr = elem->make_ptr();
if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
// If this is widened from a narrow oop, TypeAry::make will re-narrow it.
elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
}
const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------stable_dimension--------------------------------
int TypeAryPtr::stable_dimension() const {
if (!is_stable()) return 0;
int dim = 1;
const TypePtr* elem_ptr = elem()->make_ptr();
if (elem_ptr != NULL && elem_ptr->isa_aryptr())
dim += elem_ptr->is_aryptr()->stable_dimension();
return dim;
}
//----------------------cast_to_autobox_cache-----------------------------------
const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
if (is_autobox_cache() == cache) return this;
const TypeOopPtr* etype = elem()->make_oopptr();
if (etype == NULL) return this;
// The pointers in the autobox arrays are always non-null.
TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeAryPtr::eq( const Type *t ) const {
const TypeAryPtr *p = t->is_aryptr();
return
_ary == p->_ary && // Check array
TypeOopPtr::eq(p); // Check sub-parts
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeAryPtr::hash(void) const {
return (intptr_t)_ary + TypeOopPtr::hash();
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is Pointer
switch (t->base()) { // switch on original type
// Mixing ints & oops happens when javac reuses local variables
case Int:
case Long:
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
default: // All else is a mistake
typerr(t);
case OopPtr: { // Meeting to OopPtrs
// Found a OopPtr type vs self-AryPtr type
const TypeOopPtr *tp = t->is_oopptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int depth = meet_inline_depth(tp->inline_depth());
const TypePtr* speculative = xmeet_speculative(tp);
switch (tp->ptr()) {
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
return make(ptr, (ptr == Constant ? const_oop() : NULL),
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
}
case BotPTR:
case NotNull: {
int instance_id = meet_instance_id(tp->instance_id());
return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
}
default: ShouldNotReachHere();
}
}
case AnyPtr: { // Meeting two AnyPtrs
// Found an AnyPtr type vs self-AryPtr type
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case TopPTR:
return this;
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
case Null:
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through to AnyNull
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
return make(ptr, (ptr == Constant ? const_oop() : NULL),
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
}
default: ShouldNotReachHere();
}
}
case MetadataPtr:
case KlassPtr:
case RawPtr: return TypePtr::BOTTOM;
case AryPtr: { // Meeting 2 references?
const TypeAryPtr *tap = t->is_aryptr();
int off = meet_offset(tap->offset());
const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
PTR ptr = meet_ptr(tap->ptr());
int instance_id = meet_instance_id(tap->instance_id());
const TypePtr* speculative = xmeet_speculative(tap);
int depth = meet_inline_depth(tap->inline_depth());
ciKlass* lazy_klass = NULL;
if (tary->_elem->isa_int()) {
// Integral array element types have irrelevant lattice relations.
// It is the klass that determines array layout, not the element type.
if (_klass == NULL)
lazy_klass = tap->_klass;
else if (tap->_klass == NULL || tap->_klass == _klass) {
lazy_klass = _klass;
} else {
// Something like byte[int+] meets char[int+].
// This must fall to bottom, not (int[-128..65535])[int+].
instance_id = InstanceBot;
tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
}
} else // Non integral arrays.
// Must fall to bottom if exact klasses in upper lattice
// are not equal or super klass is exact.
if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
// meet with top[] and bottom[] are processed further down:
tap->_klass != NULL && this->_klass != NULL &&
// both are exact and not equal:
((tap->_klass_is_exact && this->_klass_is_exact) ||
// 'tap' is exact and super or unrelated:
(tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
// 'this' is exact and super or unrelated:
(this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
if (above_centerline(ptr)) {
tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
}
return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
}
bool xk = false;
switch (tap->ptr()) {
case AnyNull:
case TopPTR:
// Compute new klass on demand, do not use tap->_klass
if (below_centerline(this->_ptr)) {
xk = this->_klass_is_exact;
} else {
xk = (tap->_klass_is_exact || this->_klass_is_exact);
}
return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
case Constant: {
ciObject* o = const_oop();
if( _ptr == Constant ) {
if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
xk = (klass() == tap->klass());
ptr = NotNull;
o = NULL;
instance_id = InstanceBot;
} else {
xk = true;
}
} else if(above_centerline(_ptr)) {
o = tap->const_oop();
xk = true;
} else {
// Only precise for identical arrays
xk = this->_klass_is_exact && (klass() == tap->klass());
}
return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
}
case NotNull:
case BotPTR:
// Compute new klass on demand, do not use tap->_klass
if (above_centerline(this->_ptr))
xk = tap->_klass_is_exact;
else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
(klass() == tap->klass()); // Only precise for identical arrays
return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
default: ShouldNotReachHere();
}
}
// All arrays inherit from Object class
case InstPtr: {
const TypeInstPtr *tp = t->is_instptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(tp->instance_id());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (ptr) {
case TopPTR:
case AnyNull: // Fall 'down' to dual of object klass
// For instances when a subclass meets a superclass we fall
// below the centerline when the superclass is exact. We need to
// do the same here.
if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
} else {
// cannot subclass, so the meet has to fall badly below the centerline
ptr = NotNull;
instance_id = InstanceBot;
return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
}
case Constant:
case NotNull:
case BotPTR: // Fall down to object klass
// LCA is object_klass, but if we subclass from the top we can do better
if (above_centerline(tp->ptr())) {
// If 'tp' is above the centerline and it is Object class
// then we can subclass in the Java class hierarchy.
// For instances when a subclass meets a superclass we fall
// below the centerline when the superclass is exact. We need
// to do the same here.
if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
// that is, my array type is a subtype of 'tp' klass
return make(ptr, (ptr == Constant ? const_oop() : NULL),
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
}
}
// The other case cannot happen, since t cannot be a subtype of an array.
// The meet falls down to Object class below centerline.
if( ptr == Constant )
ptr = NotNull;
instance_id = InstanceBot;
return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
default: typerr(t);
}
}
}
return this; // Lint noise
}
//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeAryPtr::xdual() const {
return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
}
//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool TypeAryPtr::interface_vs_oop(const Type *t) const {
const TypeAryPtr* t_aryptr = t->isa_aryptr();
if (t_aryptr) {
return _ary->interface_vs_oop(t_aryptr->_ary);
}
return false;
}
#endif
//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
_ary->dump2(d,depth,st);
switch( _ptr ) {
case Constant:
const_oop()->print(st);
break;
case BotPTR:
if (!WizardMode && !Verbose) {
if( _klass_is_exact ) st->print(":exact");
break;
}
case TopPTR:
case AnyNull:
case NotNull:
st->print(":%s", ptr_msg[_ptr]);
if( _klass_is_exact ) st->print(":exact");
break;
default:
break;
}
if( _offset != 0 ) {
int header_size = objArrayOopDesc::header_size() * wordSize;
if( _offset == OffsetTop ) st->print("+undefined");
else if( _offset == OffsetBot ) st->print("+any");
else if( _offset < header_size ) st->print("+%d", _offset);
else {
BasicType basic_elem_type = elem()->basic_type();
int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
int elem_size = type2aelembytes(basic_elem_type);
st->print("[%d]", (_offset - array_base)/elem_size);
}
}
st->print(" *");
if (_instance_id == InstanceTop)
st->print(",iid=top");
else if (_instance_id != InstanceBot)
st->print(",iid=%d",_instance_id);
dump_inline_depth(st);
dump_speculative(st);
}
#endif
bool TypeAryPtr::empty(void) const {
if (_ary->empty()) return true;
return TypeOopPtr::empty();
}
//------------------------------add_offset-------------------------------------
const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
}
const Type *TypeAryPtr::remove_speculative() const {
if (_speculative == NULL) {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
}
const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
}
const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
assert(is_known_instance(), "should be known");
return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
}
//=============================================================================
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeNarrowPtr::hash(void) const {
return _ptrtype->hash() + 7;
}
bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
return _ptrtype->singleton();
}
bool TypeNarrowPtr::empty(void) const {
return _ptrtype->empty();
}
intptr_t TypeNarrowPtr::get_con() const {
return _ptrtype->get_con();
}
bool TypeNarrowPtr::eq( const Type *t ) const {
const TypeNarrowPtr* tc = isa_same_narrowptr(t);
if (tc != NULL) {
if (_ptrtype->base() != tc->_ptrtype->base()) {
return false;
}
return tc->_ptrtype->eq(_ptrtype);
}
return false;
}
const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
const TypePtr* odual = _ptrtype->dual()->is_ptr();
return make_same_narrowptr(odual);
}
const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
if (isa_same_narrowptr(kills)) {
const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
if (ft->empty())
return Type::TOP; // Canonical empty value
if (ft->isa_ptr()) {
return make_hash_same_narrowptr(ft->isa_ptr());
}
return ft;
} else if (kills->isa_ptr()) {
const Type* ft = _ptrtype->join_helper(kills, include_speculative);
if (ft->empty())
return Type::TOP; // Canonical empty value
return ft;
} else {
return Type::TOP;
}
}
//------------------------------xmeet------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
if (t->base() == base()) {
const Type* result = _ptrtype->xmeet(t->make_ptr());
if (result->isa_ptr()) {
return make_hash_same_narrowptr(result->is_ptr());
}
return result;
}
// Current "this->_base" is NarrowKlass or NarrowOop
switch (t->base()) { // switch on original type
case Int: // Mixing ints & oops happens when javac
case Long: // reuses local variables
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case AnyPtr:
case RawPtr:
case OopPtr:
case InstPtr:
case AryPtr:
case MetadataPtr:
case KlassPtr:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
default: // All else is a mistake
typerr(t);
} // End of switch
return this;
}
#ifndef PRODUCT
void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
_ptrtype->dump2(d, depth, st);
}
#endif
const TypeNarrowOop *TypeNarrowOop::BOTTOM;
const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
}
const Type* TypeNarrowOop::remove_speculative() const {
return make(_ptrtype->remove_speculative()->is_ptr());
}
const Type* TypeNarrowOop::cleanup_speculative() const {
return make(_ptrtype->cleanup_speculative()->is_ptr());
}
#ifndef PRODUCT
void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
st->print("narrowoop: ");
TypeNarrowPtr::dump2(d, depth, st);
}
#endif
const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
}
#ifndef PRODUCT
void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
st->print("narrowklass: ");
TypeNarrowPtr::dump2(d, depth, st);
}
#endif
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeMetadataPtr::eq( const Type *t ) const {
const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
ciMetadata* one = metadata();
ciMetadata* two = a->metadata();
if (one == NULL || two == NULL) {
return (one == two) && TypePtr::eq(t);
} else {
return one->equals(two) && TypePtr::eq(t);
}
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeMetadataPtr::hash(void) const {
return
(metadata() ? metadata()->hash() : 0) +
TypePtr::hash();
}
//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
// constants
bool TypeMetadataPtr::singleton(void) const {
// detune optimizer to not generate constant metadata + constant offset as a constant!
// TopPTR, Null, AnyNull, Constant are all singletons
return (_offset == 0) && !below_centerline(_ptr);
}
//------------------------------add_offset-------------------------------------
const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
return make( _ptr, _metadata, xadd_offset(offset));
}
//-----------------------------filter------------------------------------------
// Do not allow interface-vs.-noninterface joins to collapse to top.
const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
if (ft == NULL || ft->empty())
return Type::TOP; // Canonical empty value
return ft;
}
//------------------------------get_con----------------------------------------
intptr_t TypeMetadataPtr::get_con() const {
assert( _ptr == Null || _ptr == Constant, "" );
assert( _offset >= 0, "" );
if (_offset != 0) {
// After being ported to the compiler interface, the compiler no longer
// directly manipulates the addresses of oops. Rather, it only has a pointer
// to a handle at compile time. This handle is embedded in the generated
// code and dereferenced at the time the nmethod is made. Until that time,
// it is not reasonable to do arithmetic with the addresses of oops (we don't
// have access to the addresses!). This does not seem to currently happen,
// but this assertion here is to help prevent its occurence.
tty->print_cr("Found oop constant with non-zero offset");
ShouldNotReachHere();
}
return (intptr_t)metadata()->constant_encoding();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
if( ptr == _ptr ) return this;
return make(ptr, metadata(), _offset);
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
// Current "this->_base" is OopPtr
switch (t->base()) { // switch on original type
case Int: // Mixing ints & oops happens when javac
case Long: // reuses local variables
case FloatTop:
case FloatCon:
case FloatBot:
case DoubleTop:
case DoubleCon:
case DoubleBot:
case NarrowOop:
case NarrowKlass:
case Bottom: // Ye Olde Default
return Type::BOTTOM;
case Top:
return this;
default: // All else is a mistake
typerr(t);
case AnyPtr: {
// Found an AnyPtr type vs self-OopPtr type
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
switch (tp->ptr()) {
case Null:
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
// else fall through:
case TopPTR:
case AnyNull: {
return make(ptr, _metadata, offset);
}
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
default: typerr(t);
}
}
case RawPtr:
case KlassPtr:
case OopPtr:
case InstPtr:
case AryPtr:
return TypePtr::BOTTOM; // Oop meet raw is not well defined
case MetadataPtr: {
const TypeMetadataPtr *tp = t->is_metadataptr();
int offset = meet_offset(tp->offset());
PTR tptr = tp->ptr();
PTR ptr = meet_ptr(tptr);
ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
if (tptr == TopPTR || _ptr == TopPTR ||
metadata()->equals(tp->metadata())) {
/**代码未完, 请加载全部代码(NowJava.com).**/