/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/opaquenode.hpp"
#include "opto/superword.hpp"
#include "opto/vectornode.hpp"
#include "opto/movenode.hpp"
//
// S U P E R W O R D T R A N S F O R M
//=============================================================================
//------------------------------SuperWord---------------------------
SuperWord::SuperWord(PhaseIdealLoop* phase) :
_phase(phase),
_arena(phase->C->comp_arena()),
_igvn(phase->_igvn),
_packset(arena(), 8, 0, NULL), // packs for the current block
_bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
_block(arena(), 8, 0, NULL), // nodes in current block
_post_block(arena(), 8, 0, NULL), // nodes common to current block which are marked as post loop vectorizable
_data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
_mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
_mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
_node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
_clone_map(phase->C->clone_map()), // map of nodes created in cloning
_cmovev_kit(_arena, this), // map to facilitate CMoveV creation
_align_to_ref(NULL), // memory reference to align vectors to
_disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
_dg(_arena), // dependence graph
_visited(arena()), // visited node set
_post_visited(arena()), // post visited node set
_n_idx_list(arena(), 8), // scratch list of (node,index) pairs
_nlist(arena(), 8, 0, NULL), // scratch list of nodes
_stk(arena(), 8, 0, NULL), // scratch stack of nodes
_lpt(NULL), // loop tree node
_lp(NULL), // LoopNode
_bb(NULL), // basic block
_iv(NULL), // induction var
_race_possible(false), // cases where SDMU is true
_early_return(true), // analysis evaluations routine
_do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style
_do_reserve_copy(DoReserveCopyInSuperWord),
_num_work_vecs(0), // amount of vector work we have
_num_reductions(0), // amount of reduction work we have
_ii_first(-1), // first loop generation index - only if do_vector_loop()
_ii_last(-1), // last loop generation index - only if do_vector_loop()
_ii_order(arena(), 8, 0, 0)
{
#ifndef PRODUCT
_vector_loop_debug = 0;
if (_phase->C->method() != NULL) {
_vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
}
#endif
}
//------------------------------transform_loop---------------------------
void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
assert(UseSuperWord, "should be");
// Do vectors exist on this architecture?
if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
assert(lpt->_head->is_CountedLoop(), "must be");
CountedLoopNode *cl = lpt->_head->as_CountedLoop();
if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
if (post_loop_allowed) {
if (cl->is_reduction_loop()) return; // no predication mapping
Node *limit = cl->limit();
if (limit->is_Con()) return; // non constant limits only
// Now check the limit for expressions we do not handle
if (limit->is_Add()) {
Node *in2 = limit->in(2);
if (in2->is_Con()) {
int val = in2->get_int();
// should not try to program these cases
if (val < 0) return;
}
}
}
// skip any loop that has not been assigned max unroll by analysis
if (do_optimization) {
if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
}
// Check for no control flow in body (other than exit)
Node *cl_exit = cl->loopexit();
if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
lpt->dump_head();
}
#endif
return;
}
// Make sure the are no extra control users of the loop backedge
if (cl->back_control()->outcnt() != 1) {
return;
}
// Skip any loops already optimized by slp
if (cl->is_vectorized_loop()) return;
if (cl->is_unroll_only()) return;
if (cl->is_main_loop()) {
// Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
if (pre_end == NULL) return;
Node *pre_opaq1 = pre_end->limit();
if (pre_opaq1->Opcode() != Op_Opaque1) return;
}
init(); // initialize data structures
set_lpt(lpt);
set_lp(cl);
// For now, define one block which is the entire loop body
set_bb(cl);
if (do_optimization) {
assert(_packset.length() == 0, "packset must be empty");
SLP_extract();
if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
IdealLoopTree *lpt_next = lpt->_next;
CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
_phase->has_range_checks(lpt_next);
if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
if (!cl_next->is_vectorized_loop()) {
int slp_max_unroll_factor = cl->slp_max_unroll();
cl_next->set_slp_max_unroll(slp_max_unroll_factor);
}
}
}
}
}
}
//------------------------------early unrolling analysis------------------------------
void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
bool is_slp = true;
ResourceMark rm;
size_t ignored_size = lpt()->_body.size();
int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
Node_Stack nstack((int)ignored_size);
CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
Node *cl_exit = cl->loopexit_or_null();
int rpo_idx = _post_block.length();
assert(rpo_idx == 0, "post loop block is empty");
// First clear the entries
for (uint i = 0; i < lpt()->_body.size(); i++) {
ignored_loop_nodes[i] = -1;
}
int max_vector = Matcher::max_vector_size(T_BYTE);
bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
// Process the loop, some/all of the stack entries will not be in order, ergo
// need to preprocess the ignored initial state before we process the loop
for (uint i = 0; i < lpt()->_body.size(); i++) {
Node* n = lpt()->_body.at(i);
if (n == cl->incr() ||
n->is_reduction() ||
n->is_AddP() ||
n->is_Cmp() ||
n->is_IfTrue() ||
n->is_CountedLoop() ||
(n == cl_exit)) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
if (n->is_If()) {
IfNode *iff = n->as_If();
if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
if (lpt()->is_loop_exit(iff)) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
}
}
if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
Node* n_tail = n->in(LoopNode::LoopBackControl);
if (n_tail != n->in(LoopNode::EntryControl)) {
if (!n_tail->is_Mem()) {
is_slp = false;
break;
}
}
}
// This must happen after check of phi/if
if (n->is_Phi() || n->is_If()) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
if (n->is_LoadStore() || n->is_MergeMem() ||
(n->is_Proj() && !n->as_Proj()->is_CFG())) {
is_slp = false;
break;
}
// Ignore nodes with non-primitive type.
BasicType bt;
if (n->is_Mem()) {
bt = n->as_Mem()->memory_type();
} else {
bt = n->bottom_type()->basic_type();
}
if (is_java_primitive(bt) == false) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
if (n->is_Mem()) {
MemNode* current = n->as_Mem();
Node* adr = n->in(MemNode::Address);
Node* n_ctrl = _phase->get_ctrl(adr);
// save a queue of post process nodes
if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
// Process the memory expression
int stack_idx = 0;
bool have_side_effects = true;
if (adr->is_AddP() == false) {
nstack.push(adr, stack_idx++);
} else {
// Mark the components of the memory operation in nstack
SWPointer p1(current, this, &nstack, true);
have_side_effects = p1.node_stack()->is_nonempty();
}
// Process the pointer stack
while (have_side_effects) {
Node* pointer_node = nstack.node();
for (uint j = 0; j < lpt()->_body.size(); j++) {
Node* cur_node = lpt()->_body.at(j);
if (cur_node == pointer_node) {
ignored_loop_nodes[j] = cur_node->_idx;
break;
}
}
nstack.pop();
have_side_effects = nstack.is_nonempty();
}
}
}
}
if (is_slp) {
// Now we try to find the maximum supported consistent vector which the machine
// description can use
bool small_basic_type = false;
bool flag_small_bt = false;
for (uint i = 0; i < lpt()->_body.size(); i++) {
if (ignored_loop_nodes[i] != -1) continue;
BasicType bt;
Node* n = lpt()->_body.at(i);
if (n->is_Mem()) {
bt = n->as_Mem()->memory_type();
} else {
bt = n->bottom_type()->basic_type();
}
if (post_loop_allowed) {
if (!small_basic_type) {
switch (bt) {
case T_CHAR:
case T_BYTE:
case T_SHORT:
small_basic_type = true;
break;
case T_LONG:
// TODO: Remove when support completed for mask context with LONG.
// Support needs to be augmented for logical qword operations, currently we map to dword
// buckets for vectors on logicals as these were legacy.
small_basic_type = true;
break;
default:
break;
}
}
}
if (is_java_primitive(bt) == false) continue;
int cur_max_vector = Matcher::max_vector_size(bt);
// If a max vector exists which is not larger than _local_loop_unroll_factor
// stop looking, we already have the max vector to map to.
if (cur_max_vector < local_loop_unroll_factor) {
is_slp = false;
if (TraceSuperWordLoopUnrollAnalysis) {
tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
}
break;
}
// Map the maximal common vector
if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
if (cur_max_vector < max_vector && !flag_small_bt) {
max_vector = cur_max_vector;
} else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
// Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
// Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
// We check for possibility of narrowing by looking through chain operations using subword types.
if (is_subword_type(bt)) {
uint start, end;
VectorNode::vector_operands(n, &start, &end);
for (uint j = start; j < end; j++) {
Node* in = n->in(j);
// Don't propagate through a memory
if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
bool same_type = true;
for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
Node *use = in->fast_out(k);
if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
same_type = false;
break;
}
}
if (same_type) {
max_vector = cur_max_vector;
flag_small_bt = true;
cl->mark_subword_loop();
}
}
}
}
}
// We only process post loops on predicated targets where we want to
// mask map the loop to a single iteration
if (post_loop_allowed) {
_post_block.at_put_grow(rpo_idx++, n);
}
}
}
if (is_slp) {
local_loop_unroll_factor = max_vector;
cl->mark_passed_slp();
}
cl->mark_was_slp();
if (cl->is_main_loop()) {
cl->set_slp_max_unroll(local_loop_unroll_factor);
} else if (post_loop_allowed) {
if (!small_basic_type) {
// avoid replication context for small basic types in programmable masked loops
cl->set_slp_max_unroll(local_loop_unroll_factor);
}
}
}
}
//------------------------------SLP_extract---------------------------
// Extract the superword level parallelism
//
// 1) A reverse post-order of nodes in the block is constructed. By scanning
// this list from first to last, all definitions are visited before their uses.
//
// 2) A point-to-point dependence graph is constructed between memory references.
// This simplies the upcoming "independence" checker.
//
// 3) The maximum depth in the node graph from the beginning of the block
// to each node is computed. This is used to prune the graph search
// in the independence checker.
//
// 4) For integer types, the necessary bit width is propagated backwards
// from stores to allow packed operations on byte, char, and short
// integers. This reverses the promotion to type "int" that javac
// did for operations like: char c1,c2,c3; c1 = c2 + c3.
//
// 5) One of the memory references is picked to be an aligned vector reference.
// The pre-loop trip count is adjusted to align this reference in the
// unrolled body.
//
// 6) The initial set of pack pairs is seeded with memory references.
//
// 7) The set of pack pairs is extended by following use->def and def->use links.
//
// 8) The pairs are combined into vector sized packs.
//
// 9) Reorder the memory slices to co-locate members of the memory packs.
//
// 10) Generate ideal vector nodes for the final set of packs and where necessary,
// inserting scalar promotion, vector creation from multiple scalars, and
// extraction of scalar values from vectors.
//
void SuperWord::SLP_extract() {
#ifndef PRODUCT
if (_do_vector_loop && TraceSuperWord) {
tty->print("SuperWord::SLP_extract\n");
tty->print("input loop\n");
_lpt->dump_head();
_lpt->dump();
for (uint i = 0; i < _lpt->_body.size(); i++) {
_lpt->_body.at(i)->dump();
}
}
#endif
// Ready the block
if (!construct_bb()) {
return; // Exit if no interesting nodes or complex graph.
}
// build _dg, _disjoint_ptrs
dependence_graph();
// compute function depth(Node*)
compute_max_depth();
CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
if (cl->is_main_loop()) {
if (_do_vector_loop) {
if (mark_generations() != -1) {
hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
if (!construct_bb()) {
return; // Exit if no interesting nodes or complex graph.
}
dependence_graph();
compute_max_depth();
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
_lpt->dump_head();
for (int j = 0; j < _block.length(); j++) {
Node* n = _block.at(j);
int d = depth(n);
for (int i = 0; i < d; i++) tty->print("%s", " ");
tty->print("%d :", d);
n->dump();
}
}
#endif
}
compute_vector_element_type();
// Attempt vectorization
find_adjacent_refs();
extend_packlist();
if (_do_vector_loop) {
if (_packset.length() == 0) {
if (TraceSuperWord) {
tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
}
pack_parallel();
}
}
combine_packs();
construct_my_pack_map();
if (UseVectorCmov) {
merge_packs_to_cmovd();
}
filter_packs();
schedule();
} else if (post_loop_allowed) {
int saved_mapped_unroll_factor = cl->slp_max_unroll();
if (saved_mapped_unroll_factor) {
int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
// now reset the slp_unroll_factor so that we can check the analysis mapped
// what the vector loop was mapped to
cl->set_slp_max_unroll(0);
// do the analysis on the post loop
unrolling_analysis(vector_mapped_unroll_factor);
// if our analyzed loop is a canonical fit, start processing it
if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
// now add the vector nodes to packsets
for (int i = 0; i < _post_block.length(); i++) {
Node* n = _post_block.at(i);
Node_List* singleton = new Node_List();
singleton->push(n);
_packset.append(singleton);
set_my_pack(n, singleton);
}
// map base types for vector usage
compute_vector_element_type();
} else {
return;
}
} else {
// for some reason we could not map the slp analysis state of the vectorized loop
return;
}
}
output();
}
//------------------------------find_adjacent_refs---------------------------
// Find the adjacent memory references and create pack pairs for them.
// This is the initial set of packs that will then be extended by
// following use->def and def->use links. The align positions are
// assigned relative to the reference "align_to_ref"
void SuperWord::find_adjacent_refs() {
// Get list of memory operations
Node_List memops;
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
is_java_primitive(n->as_Mem()->memory_type())) {
int align = memory_alignment(n->as_Mem(), 0);
if (align != bottom_align) {
memops.push(n);
}
}
}
Node_List align_to_refs;
int max_idx;
int best_iv_adjustment = 0;
MemNode* best_align_to_mem_ref = NULL;
while (memops.size() != 0) {
// Find a memory reference to align to.
MemNode* mem_ref = find_align_to_ref(memops, max_idx);
if (mem_ref == NULL) break;
align_to_refs.push(mem_ref);
int iv_adjustment = get_iv_adjustment(mem_ref);
if (best_align_to_mem_ref == NULL) {
// Set memory reference which is the best from all memory operations
// to be used for alignment. The pre-loop trip count is modified to align
// this reference to a vector-aligned address.
best_align_to_mem_ref = mem_ref;
best_iv_adjustment = iv_adjustment;
NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
}
SWPointer align_to_ref_p(mem_ref, this, NULL, false);
// Set alignment relative to "align_to_ref" for all related memory operations.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* s = memops.at(i)->as_Mem();
if (isomorphic(s, mem_ref) &&
(!_do_vector_loop || same_origin_idx(s, mem_ref))) {
SWPointer p2(s, this, NULL, false);
if (p2.comparable(align_to_ref_p)) {
int align = memory_alignment(s, iv_adjustment);
set_alignment(s, align);
}
}
}
// Create initial pack pairs of memory operations for which
// alignment is set and vectors will be aligned.
bool create_pack = true;
if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
if (!Matcher::misaligned_vectors_ok() || AlignVector) {
int vw = vector_width(mem_ref);
int vw_best = vector_width(best_align_to_mem_ref);
if (vw > vw_best) {
// Do not vectorize a memory access with more elements per vector
// if unaligned memory access is not allowed because number of
// iterations in pre-loop will be not enough to align it.
create_pack = false;
} else {
SWPointer p2(best_align_to_mem_ref, this, NULL, false);
if (align_to_ref_p.invar() != p2.invar()) {
// Do not vectorize memory accesses with different invariants
// if unaligned memory accesses are not allowed.
create_pack = false;
}
}
}
} else {
if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
// Can't allow vectorization of unaligned memory accesses with the
// same type since it could be overlapped accesses to the same array.
create_pack = false;
} else {
// Allow independent (different type) unaligned memory operations
// if HW supports them.
if (!Matcher::misaligned_vectors_ok() || AlignVector) {
create_pack = false;
} else {
// Check if packs of the same memory type but
// with a different alignment were created before.
for (uint i = 0; i < align_to_refs.size(); i++) {
MemNode* mr = align_to_refs.at(i)->as_Mem();
if (mr == mem_ref) {
// Skip when we are looking at same memory operation.
continue;
}
if (same_velt_type(mr, mem_ref) &&
memory_alignment(mr, iv_adjustment) != 0)
create_pack = false;
}
}
}
}
if (create_pack) {
for (uint i = 0; i < memops.size(); i++) {
Node* s1 = memops.at(i);
int align = alignment(s1);
if (align == top_align) continue;
for (uint j = 0; j < memops.size(); j++) {
Node* s2 = memops.at(j);
if (alignment(s2) == top_align) continue;
if (s1 != s2 && are_adjacent_refs(s1, s2)) {
if (stmts_can_pack(s1, s2, align)) {
Node_List* pair = new Node_List();
pair->push(s1);
pair->push(s2);
if (!_do_vector_loop || same_origin_idx(s1, s2)) {
_packset.append(pair);
}
}
}
}
}
} else { // Don't create unaligned pack
// First, remove remaining memory ops of the same type from the list.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* s = memops.at(i)->as_Mem();
if (same_velt_type(s, mem_ref)) {
memops.remove(i);
}
}
// Second, remove already constructed packs of the same type.
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* p = _packset.at(i);
MemNode* s = p->at(0)->as_Mem();
if (same_velt_type(s, mem_ref)) {
remove_pack_at(i);
}
}
// If needed find the best memory reference for loop alignment again.
if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
// Put memory ops from remaining packs back on memops list for
// the best alignment search.
uint orig_msize = memops.size();
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
MemNode* s = p->at(0)->as_Mem();
assert(!same_velt_type(s, mem_ref), "sanity");
memops.push(s);
}
best_align_to_mem_ref = find_align_to_ref(memops, max_idx);
if (best_align_to_mem_ref == NULL) {
if (TraceSuperWord) {
tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
}
// best_align_to_mem_ref will be used for adjusting the pre-loop limit in
// SuperWord::align_initial_loop_index. Find one with the biggest vector size,
// smallest data size and smallest iv offset from memory ops from remaining packs.
if (_packset.length() > 0) {
if (orig_msize == 0) {
best_align_to_mem_ref = memops.at(max_idx)->as_Mem();
} else {
for (uint i = 0; i < orig_msize; i++) {
memops.remove(0);
}
best_align_to_mem_ref = find_align_to_ref(memops, max_idx);
assert(best_align_to_mem_ref == NULL, "sanity");
best_align_to_mem_ref = memops.at(max_idx)->as_Mem();
}
assert(best_align_to_mem_ref != NULL, "sanity");
}
break;
}
best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
// Restore list.
while (memops.size() > orig_msize)
(void)memops.pop();
}
} // unaligned memory accesses
// Remove used mem nodes.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* m = memops.at(i)->as_Mem();
if (alignment(m) != top_align) {
memops.remove(i);
}
}
} // while (memops.size() != 0
set_align_to_ref(best_align_to_mem_ref);
if (TraceSuperWord) {
tty->print_cr("\nAfter find_adjacent_refs");
print_packset();
}
}
#ifndef PRODUCT
void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
if (is_trace_adjacent()) {
tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
best_align_to_mem_ref->_idx, best_iv_adjustment);
best_align_to_mem_ref->dump();
}
}
#endif
//------------------------------find_align_to_ref---------------------------
// Find a memory reference to align the loop induction variable to.
// Looks first at stores then at loads, looking for a memory reference
// with the largest number of references similar to it.
MemNode* SuperWord::find_align_to_ref(Node_List &memops, int &idx) {
GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
// Count number of comparable memory ops
for (uint i = 0; i < memops.size(); i++) {
MemNode* s1 = memops.at(i)->as_Mem();
SWPointer p1(s1, this, NULL, false);
// Discard if pre loop can't align this reference
if (!ref_is_alignable(p1)) {
*cmp_ct.adr_at(i) = 0;
continue;
}
for (uint j = i+1; j < memops.size(); j++) {
MemNode* s2 = memops.at(j)->as_Mem();
if (isomorphic(s1, s2)) {
SWPointer p2(s2, this, NULL, false);
if (p1.comparable(p2)) {
(*cmp_ct.adr_at(i))++;
(*cmp_ct.adr_at(j))++;
}
}
}
}
// Find Store (or Load) with the greatest number of "comparable" references,
// biggest vector size, smallest data size and smallest iv offset.
int max_ct = 0;
int max_vw = 0;
int max_idx = -1;
int min_size = max_jint;
int min_iv_offset = max_jint;
for (uint j = 0; j < memops.size(); j++) {
MemNode* s = memops.at(j)->as_Mem();
if (s->is_Store()) {
int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity");
SWPointer p(s, this, NULL, false);
if ( cmp_ct.at(j) > max_ct ||
(cmp_ct.at(j) == max_ct &&
( vw > max_vw ||
(vw == max_vw &&
( data_size(s) < min_size ||
(data_size(s) == min_size &&
p.offset_in_bytes() < min_iv_offset)))))) {
max_ct = cmp_ct.at(j);
max_vw = vw;
max_idx = j;
min_size = data_size(s);
min_iv_offset = p.offset_in_bytes();
}
}
}
// If no stores, look at loads
if (max_ct == 0) {
for (uint j = 0; j < memops.size(); j++) {
MemNode* s = memops.at(j)->as_Mem();
if (s->is_Load()) {
int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity");
SWPointer p(s, this, NULL, false);
if ( cmp_ct.at(j) > max_ct ||
(cmp_ct.at(j) == max_ct &&
( vw > max_vw ||
(vw == max_vw &&
( data_size(s) < min_size ||
(data_size(s) == min_size &&
p.offset_in_bytes() < min_iv_offset)))))) {
max_ct = cmp_ct.at(j);
max_vw = vw;
max_idx = j;
min_size = data_size(s);
min_iv_offset = p.offset_in_bytes();
}
}
}
}
#ifdef ASSERT
if (TraceSuperWord && Verbose) {
tty->print_cr("\nVector memops after find_align_to_ref");
for (uint i = 0; i < memops.size(); i++) {
MemNode* s = memops.at(i)->as_Mem();
s->dump();
}
}
#endif
idx = max_idx;
if (max_ct > 0) {
#ifdef ASSERT
if (TraceSuperWord) {
tty->print("\nVector align to node: ");
memops.at(max_idx)->as_Mem()->dump();
}
#endif
return memops.at(max_idx)->as_Mem();
}
return NULL;
}
//------------------span_works_for_memory_size-----------------------------
static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
bool span_matches_memory = false;
if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
&& ABS(span) == type2aelembytes(T_INT)) {
// There is a mismatch on span size compared to memory.
for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
Node* use = mem->fast_out(j);
if (!VectorNode::is_type_transition_to_int(use)) {
return false;
}
}
// If all uses transition to integer, it means that we can successfully align even on mismatch.
return true;
}
else {
span_matches_memory = ABS(span) == mem_size;
}
return span_matches_memory && (ABS(offset) % mem_size) == 0;
}
//------------------------------ref_is_alignable---------------------------
// Can the preloop align the reference to position zero in the vector?
bool SuperWord::ref_is_alignable(SWPointer& p) {
if (!p.has_iv()) {
return true; // no induction variable
}
CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
assert(pre_end != NULL, "we must have a correct pre-loop");
assert(pre_end->stride_is_con(), "pre loop stride is constant");
int preloop_stride = pre_end->stride_con();
int span = preloop_stride * p.scale_in_bytes();
int mem_size = p.memory_size();
int offset = p.offset_in_bytes();
// Stride one accesses are alignable if offset is aligned to memory operation size.
// Offset can be unaligned when UseUnalignedAccesses is used.
if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
return true;
}
// If the initial offset from start of the object is computable,
// check if the pre-loop can align the final offset accordingly.
//
// In other words: Can we find an i such that the offset
// after i pre-loop iterations is aligned to vw?
// (init_offset + pre_loop) % vw == 0 (1)
// where
// pre_loop = i * span
// is the number of bytes added to the offset by i pre-loop iterations.
//
// For this to hold we need pre_loop to increase init_offset by
// pre_loop = vw - (init_offset % vw)
//
// This is only possible if pre_loop is divisible by span because each
// pre-loop iteration increases the initial offset by 'span' bytes:
// (vw - (init_offset % vw)) % span == 0
//
int vw = vector_width_in_bytes(p.mem());
assert(vw > 1, "sanity");
Node* init_nd = pre_end->init_trip();
if (init_nd->is_Con() && p.invar() == NULL) {
int init = init_nd->bottom_type()->is_int()->get_con();
int init_offset = init * p.scale_in_bytes() + offset;
if (init_offset < 0) { // negative offset from object start?
return false; // may happen in dead loop
}
if (vw % span == 0) {
// If vm is a multiple of span, we use formula (1).
if (span > 0) {
return (vw - (init_offset % vw)) % span == 0;
} else {
assert(span < 0, "nonzero stride * scale");
return (init_offset % vw) % -span == 0;
}
} else if (span % vw == 0) {
// If span is a multiple of vw, we can simplify formula (1) to:
// (init_offset + i * span) % vw == 0
// =>
// (init_offset % vw) + ((i * span) % vw) == 0
// =>
// init_offset % vw == 0
//
// Because we add a multiple of vw to the initial offset, the final
// offset is a multiple of vw if and only if init_offset is a multiple.
//
return (init_offset % vw) == 0;
}
}
return false;
}
//---------------------------get_vw_bytes_special------------------------
int SuperWord::get_vw_bytes_special(MemNode* s) {
// Get the vector width in bytes.
int vw = vector_width_in_bytes(s);
// Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
BasicType btype = velt_basic_type(s);
if (type2aelembytes(btype) == 2) {
bool should_combine_adjacent = true;
for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
Node* user = s->fast_out(i);
if (!VectorNode::is_muladds2i(user)) {
should_combine_adjacent = false;
}
}
if (should_combine_adjacent) {
vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
}
}
return vw;
}
//---------------------------get_iv_adjustment---------------------------
// Calculate loop's iv adjustment for this memory ops.
int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
SWPointer align_to_ref_p(mem_ref, this, NULL, false);
int offset = align_to_ref_p.offset_in_bytes();
int scale = align_to_ref_p.scale_in_bytes();
int elt_size = align_to_ref_p.memory_size();
int vw = get_vw_bytes_special(mem_ref);
assert(vw > 1, "sanity");
int iv_adjustment;
if (scale != 0) {
int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
// At least one iteration is executed in pre-loop by default. As result
// several iterations are needed to align memory operations in main-loop even
// if offset is 0.
int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
"(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
iv_adjustment = iv_adjustment_in_bytes/elt_size;
} else {
// This memory op is not dependent on iv (scale == 0)
iv_adjustment = 0;
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
mem_ref->dump();
}
#endif
return iv_adjustment;
}
//---------------------------dependence_graph---------------------------
// Construct dependency graph.
// Add dependence edges to load/store nodes for memory dependence
// A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
void SuperWord::dependence_graph() {
CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
// First, assign a dependence node to each memory node
for (int i = 0; i < _block.length(); i++ ) {
Node *n = _block.at(i);
if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
_dg.make_node(n);
}
}
// For each memory slice, create the dependences
for (int i = 0; i < _mem_slice_head.length(); i++) {
Node* n = _mem_slice_head.at(i);
Node* n_tail = _mem_slice_tail.at(i);
// Get slice in predecessor order (last is first)
if (cl->is_main_loop()) {
mem_slice_preds(n_tail, n, _nlist);
}
#ifndef PRODUCT
if(TraceSuperWord && Verbose) {
tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
for (int j = _nlist.length() - 1; j >= 0 ; j--) {
_nlist.at(j)->dump();
}
}
#endif
// Make the slice dependent on the root
DepMem* slice = _dg.dep(n);
_dg.make_edge(_dg.root(), slice);
// Create a sink for the slice
DepMem* slice_sink = _dg.make_node(NULL);
_dg.make_edge(slice_sink, _dg.tail());
// Now visit each pair of memory ops, creating the edges
for (int j = _nlist.length() - 1; j >= 0 ; j--) {
Node* s1 = _nlist.at(j);
// If no dependency yet, use slice
if (_dg.dep(s1)->in_cnt() == 0) {
_dg.make_edge(slice, s1);
}
SWPointer p1(s1->as_Mem(), this, NULL, false);
bool sink_dependent = true;
for (int k = j - 1; k >= 0; k--) {
Node* s2 = _nlist.at(k);
if (s1->is_Load() && s2->is_Load())
continue;
SWPointer p2(s2->as_Mem(), this, NULL, false);
int cmp = p1.cmp(p2);
if (SuperWordRTDepCheck &&
p1.base() != p2.base() && p1.valid() && p2.valid()) {
// Create a runtime check to disambiguate
OrderedPair pp(p1.base(), p2.base());
_disjoint_ptrs.append_if_missing(pp);
} else if (!SWPointer::not_equal(cmp)) {
// Possibly same address
_dg.make_edge(s1, s2);
sink_dependent = false;
}
}
if (sink_dependent) {
_dg.make_edge(s1, slice_sink);
}
}
if (TraceSuperWord) {
tty->print_cr("\nDependence graph for slice: %d", n->_idx);
for (int q = 0; q < _nlist.length(); q++) {
_dg.print(_nlist.at(q));
}
tty->cr();
}
_nlist.clear();
}
if (TraceSuperWord) {
tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
for (int r = 0; r < _disjoint_ptrs.length(); r++) {
_disjoint_ptrs.at(r).print();
tty->cr();
}
tty->cr();
}
}
//---------------------------mem_slice_preds---------------------------
// Return a memory slice (node list) in predecessor order starting at "start"
void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
assert(preds.length() == 0, "start empty");
Node* n = start;
Node* prev = NULL;
while (true) {
NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
assert(in_bb(n), "must be in block");
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* out = n->fast_out(i);
if (out->is_Load()) {
if (in_bb(out)) {
preds.push(out);
if (TraceSuperWord && Verbose) {
tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
}
}
} else {
// FIXME
if (out->is_MergeMem() && !in_bb(out)) {
// Either unrolling is causing a memory edge not to disappear,
// or need to run igvn.optimize() again before SLP
} else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
// Ditto. Not sure what else to check further.
} else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
// StoreCM has an input edge used as a precedence edge.
// Maybe an issue when oop stores are vectorized.
} else {
assert(out == prev || prev == NULL, "no branches off of store slice");
}
}//else
}//for
if (n == stop) break;
preds.push(n);
if (TraceSuperWord && Verbose) {
tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
}
prev = n;
assert(n->is_Mem(), "unexpected node %s", n->Name());
n = n->in(MemNode::Memory);
}
}
//------------------------------stmts_can_pack---------------------------
// Can s1 and s2 be in a pack with s1 immediately preceding s2 and
// s1 aligned at "align"
bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
// Do not use superword for non-primitives
BasicType bt1 = velt_basic_type(s1);
BasicType bt2 = velt_basic_type(s2);
if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
return false;
if (Matcher::max_vector_size(bt1) < 2) {
return false; // No vectors for this type
}
if (isomorphic(s1, s2)) {
if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
int s1_align = alignment(s1);
int s2_align = alignment(s2);
if (s1_align == top_align || s1_align == align) {
if (s2_align == top_align || s2_align == align + data_size(s1)) {
return true;
}
}
}
}
}
}
return false;
}
//------------------------------exists_at---------------------------
// Does s exist in a pack at position pos?
bool SuperWord::exists_at(Node* s, uint pos) {
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
if (p->at(pos) == s) {
return true;
}
}
return false;
}
//------------------------------are_adjacent_refs---------------------------
// Is s1 immediately before s2 in memory?
bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
if (!s1->is_Mem() || !s2->is_Mem()) return false;
if (!in_bb(s1) || !in_bb(s2)) return false;
// Do not use superword for non-primitives
if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
!is_java_primitive(s2->as_Mem()->memory_type())) {
return false;
}
// FIXME - co_locate_pack fails on Stores in different mem-slices, so
// only pack memops that are in the same alias set until that's fixed.
if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
_phase->C->get_alias_index(s2->as_Mem()->adr_type()))
return false;
SWPointer p1(s1->as_Mem(), this, NULL, false);
SWPointer p2(s2->as_Mem(), this, NULL, false);
if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
return diff == data_size(s1);
}
//------------------------------isomorphic---------------------------
// Are s1 and s2 similar?
bool SuperWord::isomorphic(Node* s1, Node* s2) {
if (s1->Opcode() != s2->Opcode()) return false;
if (s1->req() != s2->req()) return false;
if (!same_velt_type(s1, s2)) return false;
Node* s1_ctrl = s1->in(0);
Node* s2_ctrl = s2->in(0);
// If the control nodes are equivalent, no further checks are required to test for isomorphism.
if (s1_ctrl == s2_ctrl) {
return true;
} else {
bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl));
bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl));
// If the control nodes are not invariant for the loop, fail isomorphism test.
if (!s1_ctrl_inv || !s2_ctrl_inv) {
return false;
}
if(s1_ctrl != NULL && s2_ctrl != NULL) {
if (s1_ctrl->is_Proj()) {
s1_ctrl = s1_ctrl->in(0);
assert(lpt()->is_invariant(s1_ctrl), "must be invariant");
}
if (s2_ctrl->is_Proj()) {
s2_ctrl = s2_ctrl->in(0);
assert(lpt()->is_invariant(s2_ctrl), "must be invariant");
}
if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) {
return false;
}
}
// Control nodes are invariant. However, we have no way of checking whether they resolve
// in an equivalent manner. But, we know that invariant range checks are guaranteed to
// throw before the loop (if they would have thrown). Thus, the loop would not have been reached.
// Therefore, if the control nodes for both are range checks, we accept them to be isomorphic.
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* t1 = s1->fast_out(i);
for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
Node* t2 = s2->fast_out(j);
if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) {
return true;
}
}
}
}
return false;
}
//------------------------------independent---------------------------
// Is there no data path from s1 to s2 or s2 to s1?
bool SuperWord::independent(Node* s1, Node* s2) {
// assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
int d1 = depth(s1);
int d2 = depth(s2);
if (d1 == d2) return s1 != s2;
Node* deep = d1 > d2 ? s1 : s2;
Node* shallow = d1 > d2 ? s2 : s1;
visited_clear();
return independent_path(shallow, deep);
}
//--------------------------have_similar_inputs-----------------------
// For a node pair (s1, s2) which is isomorphic and independent,
// do s1 and s2 have similar input edges?
bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
// assert(isomorphic(s1, s2) == true, "check isomorphic");
// assert(independent(s1, s2) == true, "check independent");
if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
for (uint i = 1; i < s1->req(); i++) {
if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
}
}
return true;
}
//------------------------------reduction---------------------------
// Is there a data path between s1 and s2 and the nodes reductions?
bool SuperWord::reduction(Node* s1, Node* s2) {
bool retValue = false;
int d1 = depth(s1);
int d2 = depth(s2);
if (d1 + 1 == d2) {
if (s1->is_reduction() && s2->is_reduction()) {
// This is an ordered set, so s1 should define s2
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* t1 = s1->fast_out(i);
if (t1 == s2) {
// both nodes are reductions and connected
retValue = true;
}
}
}
}
return retValue;
}
//------------------------------independent_path------------------------------
// Helper for independent
bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
if (dp >= 1000) return false; // stop deep recursion
visited_set(deep);
int shal_depth = depth(shallow);
assert(shal_depth <= depth(deep), "must be");
for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
Node* pred = preds.current();
if (in_bb(pred) && !visited_test(pred)) {
if (shallow == pred) {
return false;
}
if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
return false;
}
}
}
return true;
}
//------------------------------set_alignment---------------------------
void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
set_alignment(s1, align);
if (align == top_align || align == bottom_align) {
set_alignment(s2, align);
} else {
set_alignment(s2, align + data_size(s1));
}
}
//------------------------------data_size---------------------------
int SuperWord::data_size(Node* s) {
Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
if (UseVectorCmov) {
use = _cmovev_kit.is_Bool_candidate(s);
if (use != NULL) {
return data_size(use);
}
use = _cmovev_kit.is_CmpD_candidate(s);
if (use != NULL) {
return data_size(use);
}
}
int bsize = type2aelembytes(velt_basic_type(s));
assert(bsize != 0, "valid size");
return bsize;
}
//------------------------------extend_packlist---------------------------
// Extend packset by following use->def and def->use links from pack members.
void SuperWord::extend_packlist() {
bool changed;
do {
packset_sort(_packset.length());
changed = false;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
changed |= follow_use_defs(p);
changed |= follow_def_uses(p);
}
} while (changed);
if (_race_possible) {
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
order_def_uses(p);
}
}
if (TraceSuperWord) {
tty->print_cr("\nAfter extend_packlist");
print_packset();
}
}
//------------------------------follow_use_defs---------------------------
// Extend the packset by visiting operand definitions of nodes in pack p
bool SuperWord::follow_use_defs(Node_List* p) {
assert(p->size() == 2, "just checking");
Node* s1 = p->at(0);
Node* s2 = p->at(1);
assert(s1->req() == s2->req(), "just checking");
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
if (s1->is_Load()) return false;
int align = alignment(s1);
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
bool changed = false;
int start = s1->is_Store() ? MemNode::ValueIn : 1;
int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
for (int j = start; j < end; j++) {
Node* t1 = s1->in(j);
Node* t2 = s2->in(j);
if (!in_bb(t1) || !in_bb(t2))
continue;
if (stmts_can_pack(t1, t2, align)) {
if (est_savings(t1, t2) >= 0) {
Node_List* pair = new Node_List();
pair->push(t1);
pair->push(t2);
_packset.append(pair);
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
set_alignment(t1, t2, align);
changed = true;
}
}
}
return changed;
}
//------------------------------follow_def_uses---------------------------
// Extend the packset by visiting uses of nodes in pack p
bool SuperWord::follow_def_uses(Node_List* p) {
bool changed = false;
Node* s1 = p->at(0);
Node* s2 = p->at(1);
assert(p->size() == 2, "just checking");
assert(s1->req() == s2->req(), "just checking");
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
if (s1->is_Store()) return false;
int align = alignment(s1);
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
int savings = -1;
int num_s1_uses = 0;
Node* u1 = NULL;
Node* u2 = NULL;
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* t1 = s1->fast_out(i);
num_s1_uses++;
if (!in_bb(t1)) continue;
for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
Node* t2 = s2->fast_out(j);
if (!in_bb(t2)) continue;
if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
if (!opnd_positions_match(s1, t1, s2, t2))
continue;
if (stmts_can_pack(t1, t2, align)) {
int my_savings = est_savings(t1, t2);
if (my_savings > savings) {
savings = my_savings;
u1 = t1;
u2 = t2;
}
}
}
}
if (num_s1_uses > 1) {
_race_possible = true;
}
if (savings >= 0) {
Node_List* pair = new Node_List();
pair->push(u1);
pair->push(u2);
_packset.append(pair);
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
set_alignment(u1, u2, align);
changed = true;
}
return changed;
}
//------------------------------order_def_uses---------------------------
// For extended packsets, ordinally arrange uses packset by major component
void SuperWord::order_def_uses(Node_List* p) {
Node* s1 = p->at(0);
if (s1->is_Store()) return;
// reductions are always managed beforehand
if (s1->is_reduction()) return;
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* t1 = s1->fast_out(i);
// Only allow operand swap on commuting operations
if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) {
break;
}
// Now find t1's packset
Node_List* p2 = NULL;
for (int j = 0; j < _packset.length(); j++) {
p2 = _packset.at(j);
Node* first = p2->at(0);
if (t1 == first) {
break;
}
p2 = NULL;
}
// Arrange all sub components by the major component
if (p2 != NULL) {
for (uint j = 1; j < p->size(); j++) {
Node* d1 = p->at(j);
Node* u1 = p2->at(j);
opnd_positions_match(s1, t1, d1, u1);
}
}
}
}
//---------------------------opnd_positions_match-------------------------
// Is the use of d1 in u1 at the same operand position as d2 in u2?
bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
// check reductions to see if they are marshalled to represent the reduction
// operator in a specified opnd
if (u1->is_reduction() && u2->is_reduction()) {
// ensure reductions have phis and reduction definitions feeding the 1st operand
Node* first = u1->in(2);
if (first->is_Phi() || first->is_reduction()) {
u1->swap_edges(1, 2);
}
// ensure reductions have phis and reduction definitions feeding the 1st operand
first = u2->in(2);
if (first->is_Phi() || first->is_reduction()) {
u2->swap_edges(1, 2);
}
return true;
}
uint ct = u1->req();
if (ct != u2->req()) return false;
uint i1 = 0;
uint i2 = 0;
do {
for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
if (i1 != i2) {
if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
// Further analysis relies on operands position matching.
u2->swap_edges(i1, i2);
} else if (VectorNode::is_muladds2i(u2) && u1 != u2) {
if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1))
u2->swap_edges(1, 2);
u2->swap_edges(3, 4);
}
if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3))
u2->swap_edges(2, 3);
u2->swap_edges(1, 4);
}
return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
} else {
return false;
}
} else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) {
u2->swap_edges(1, 3);
u2->swap_edges(2, 4);
return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
}
} while (i1 < ct);
return true;
}
//------------------------------est_savings---------------------------
// Estimate the savings from executing s1 and s2 as a pack
int SuperWord::est_savings(Node* s1, Node* s2) {
int save_in = 2 - 1; // 2 operations per instruction in packed form
// inputs
for (uint i = 1; i < s1->req(); i++) {
Node* x1 = s1->in(i);
Node* x2 = s2->in(i);
if (x1 != x2) {
if (are_adjacent_refs(x1, x2)) {
save_in += adjacent_profit(x1, x2);
} else if (!in_packset(x1, x2)) {
save_in -= pack_cost(2);
} else {
save_in += unpack_cost(2);
}
}
}
// uses of result
uint ct = 0;
int save_use = 0;
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* s1_use = s1->fast_out(i);
for (int j = 0; j < _packset.length(); j++) {
Node_List* p = _packset.at(j);
if (p->at(0) == s1_use) {
for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
Node* s2_use = s2->fast_out(k);
if (p->at(p->size()-1) == s2_use) {
ct++;
if (are_adjacent_refs(s1_use, s2_use)) {
save_use += adjacent_profit(s1_use, s2_use);
}
}
}
}
}
}
if (ct < s1->outcnt()) save_use += unpack_cost(1);
if (ct < s2->outcnt()) save_use += unpack_cost(1);
return MAX2(save_in, save_use);
}
//------------------------------costs---------------------------
int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
int SuperWord::pack_cost(int ct) { return ct; }
int SuperWord::unpack_cost(int ct) { return ct; }
//------------------------------combine_packs---------------------------
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
void SuperWord::combine_packs() {
bool changed = true;
// Combine packs regardless max vector size.
while (changed) {
changed = false;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p1 = _packset.at(i);
if (p1 == NULL) continue;
// Because of sorting we can start at i + 1
for (int j = i + 1; j < _packset.length(); j++) {
Node_List* p2 = _packset.at(j);
if (p2 == NULL) continue;
if (i == j) continue;
if (p1->at(p1->size()-1) == p2->at(0)) {
for (uint k = 1; k < p2->size(); k++) {
p1->push(p2->at(k));
}
_packset.at_put(j, NULL);
changed = true;
}
}
}
}
// Split packs which have size greater then max vector size.
for (int i = 0; i < _packset.length(); i++) {
Node_List* p1 = _packset.at(i);
if (p1 != NULL) {
BasicType bt = velt_basic_type(p1->at(0));
uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
assert(is_power_of_2(max_vlen), "sanity");
uint psize = p1->size();
if (!is_power_of_2(psize)) {
// Skip pack which can't be vector.
// case1: for(...) { a[i] = i; } elements values are different (i+x)
// case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
_packset.at_put(i, NULL);
continue;
}
if (psize > max_vlen) {
Node_List* pack = new Node_List();
for (uint j = 0; j < psize; j++) {
pack->push(p1->at(j));
if (pack->size() >= max_vlen) {
assert(is_power_of_2(pack->size()), "sanity");
_packset.append(pack);
pack = new Node_List();
}
}
_packset.at_put(i, NULL);
}
}
}
// Compress list.
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* p1 = _packset.at(i);
if (p1 == NULL) {
_packset.remove_at(i);
}
}
if (TraceSuperWord) {
tty->print_cr("\nAfter combine_packs");
print_packset();
}
}
//-----------------------------construct_my_pack_map--------------------------
// Construct the map from nodes to packs. Only valid after the
// point where a node is only in one pack (after combine_packs).
void SuperWord::construct_my_pack_map() {
Node_List* rslt = NULL;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
for (uint j = 0; j < p->size(); j++) {
Node* s = p->at(j);
assert(my_pack(s) == NULL, "only in one pack");
set_my_pack(s, p);
}
}
}
//------------------------------filter_packs---------------------------
// Remove packs that are not implemented or not profitable.
void SuperWord::filter_packs() {
// Remove packs that are not implemented
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* pk = _packset.at(i);
bool impl = implemented(pk);
if (!impl) {
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
tty->print_cr("Unimplemented");
pk->at(0)->dump();
}
#endif
remove_pack_at(i);
}
Node *n = pk->at(0);
if (n->is_reduction()) {
_num_reductions++;
} else {
_num_work_vecs++;
}
}
// Remove packs that are not profitable
bool changed;
do {
changed = false;
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* pk = _packset.at(i);
bool prof = profitable(pk);
if (!prof) {
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
tty->print_cr("Unprofitable");
pk->at(0)->dump();
}
#endif
remove_pack_at(i);
changed = true;
}
}
} while (changed);
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nAfter filter_packs");
print_packset();
tty->cr();
}
#endif
}
//------------------------------merge_packs_to_cmovd---------------------------
// Merge CMoveD into new vector-nodes
// We want to catch this pattern and subsume CmpD and Bool into CMoveD
//
// SubD ConD
// / | /
// / | / /
// / | / /
// / | / /
// / / /
// / / | /
// v / | /
// CmpD | /
// | | /
// v | /
// Bool | /
// \ | /
// \ | /
// \ | /
// \ | /
// \ v /
// CMoveD
//
void SuperWord::merge_packs_to_cmovd() {
for (int i = _packset.length() - 1; i >= 0; i--) {
_cmovev_kit.make_cmovevd_pack(_packset.at(i));
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
print_packset();
tty->cr();
}
#endif
}
Node* CMoveKit::is_Bool_candidate(Node* def) const {
Node* use = NULL;
if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
return NULL;
}
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
use = def->fast_out(j);
if (!_sw->same_generation(def, use) || !use->is_CMove()) {
return NULL;
}
}
return use;
}
Node* CMoveKit::is_CmpD_candidate(Node* def) const {
Node* use = NULL;
if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
return NULL;
}
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
use = def->fast_out(j);
if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
return NULL;
}
}
return use;
}
Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
Node *cmovd = cmovd_pk->at(0);
if (!cmovd->is_CMove()) {
return NULL;
}
if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
return NULL;
}
if (pack(cmovd) != NULL) { // already in the cmov pack
return NULL;
}
if (cmovd->in(0) != NULL) {
NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
return NULL;
}
Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
if (!bol->is_Bool()
|| bol->outcnt() != 1
|| !_sw->same_generation(bol, cmovd)
|| bol->in(0) != NULL // BoolNode has control flow!!
|| _sw->my_pack(bol) == NULL) {
NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
return NULL;
}
Node_List* bool_pk = _sw->my_pack(bol);
if (bool_pk->size() != cmovd_pk->size() ) {
return NULL;
}
Node* cmpd = bol->in(1);
if (!cmpd->is_Cmp()
|| cmpd->outcnt() != 1
|| !_sw->same_generation(cmpd, cmovd)
|| cmpd->in(0) != NULL // CmpDNode has control flow!!
|| _sw->my_pack(cmpd) == NULL) {
NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
return NULL;
}
Node_List* cmpd_pk = _sw->my_pack(cmpd);
if (cmpd_pk->size() != cmovd_pk->size() ) {
return NULL;
}
if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
return NULL;
}
Node_List* new_cmpd_pk = new Node_List();
uint sz = cmovd_pk->size() - 1;
for (uint i = 0; i <= sz; ++i) {
Node* cmov = cmovd_pk->at(i);
Node* bol = bool_pk->at(i);
Node* cmp = cmpd_pk->at(i);
new_cmpd_pk->insert(i, cmov);
map(cmov, new_cmpd_pk);
map(bol, new_cmpd_pk);
map(cmp, new_cmpd_pk);
_sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
}
_sw->_packset.remove(cmovd_pk);
_sw->_packset.remove(bool_pk);
_sw->_packset.remove(cmpd_pk);
_sw->_packset.append(new_cmpd_pk);
NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
return new_cmpd_pk;
}
bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
Node* cmpd0 = cmpd_pk->at(0);
assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
Node* in1 = cmpd0->in(1);
Node* in2 = cmpd0->in(2);
Node_List* in1_pk = _sw->my_pack(in1);
Node_List* in2_pk = _sw->my_pack(in2);
if ( (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
|| (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
return false;
}
// test if "all" in1 are in the same pack or the same node
if (in1_pk == NULL) {
for (uint j = 1; j < cmpd_pk->size(); j++) {
if (cmpd_pk->at(j)->in(1) != in1) {
return false;
}
}//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
}
// test if "all" in2 are in the same pack or the same node
if (in2_pk == NULL) {
for (uint j = 1; j < cmpd_pk->size(); j++) {
if (cmpd_pk->at(j)->in(2) != in2) {
return false;
}
}//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
}
//now check if cmpd_pk may be subsumed in vector built for cmovd_pk
int cmovd_ind1, cmovd_ind2;
if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
&& cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
cmovd_ind1 = CMoveNode::IfFalse;
cmovd_ind2 = CMoveNode::IfTrue;
} else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
&& cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
cmovd_ind2 = CMoveNode::IfFalse;
cmovd_ind1 = CMoveNode::IfTrue;
}
else {
return false;
}
for (uint j = 1; j < cmpd_pk->size(); j++) {
if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
|| cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
return false;
}//if
}
NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
return true;
}
//------------------------------implemented---------------------------
// Can code be generated for pack p?
bool SuperWord::implemented(Node_List* p) {
bool retValue = false;
Node* p0 = p->at(0);
if (p0 != NULL) {
int opc = p0->Opcode();
uint size = p->size();
if (p0->is_reduction()) {
const Type *arith_type = p0->bottom_type();
// Length 2 reductions of INT/LONG do not offer performance benefits
if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
retValue = false;
} else {
retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
}
} else {
retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
}
if (!retValue) {
if (is_cmov_pack(p)) {
NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
return true;
}
}
}
return retValue;
}
bool SuperWord::is_cmov_pack(Node_List* p) {
return _cmovev_kit.pack(p->at(0)) != NULL;
}
//------------------------------same_inputs--------------------------
// For pack p, are all idx operands the same?
bool SuperWord::same_inputs(Node_List* p, int idx) {
Node* p0 = p->at(0);
uint vlen = p->size();
Node* p0_def = p0->in(idx);
for (uint i = 1; i < vlen; i++) {
Node* pi = p->at(i);
Node* pi_def = pi->in(idx);
if (p0_def != pi_def) {
return false;
}
}
return true;
}
//------------------------------profitable---------------------------
// For pack p, are all operands and all uses (with in the block) vector?
bool SuperWord::profitable(Node_List* p) {
Node* p0 = p->at(0);
uint start, end;
VectorNode::vector_operands(p0, &start, &end);
// Return false if some inputs are not vectors or vectors with different
// size or alignment.
// Also, for now, return false if not scalar promotion case when inputs are
// the same. Later, implement PackNode and allow differing, non-vector inputs
// (maybe just the ones from outside the block.)
for (uint i = start; i < end; i++) {
if (!is_vector_use(p0, i)) {
return false;
}
}
// Check if reductions are connected
if (p0->is_reduction()) {
Node* second_in = p0->in(2);
Node_List* second_pk = my_pack(second_in);
if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
// Remove reduction flag if no parent pack or if not enough work
// to cover reduction expansion overhead
p0->remove_flag(Node::Flag_is_reduction);
return false;
} else if (second_pk->size() != p->size()) {
return false;
}
}
if (VectorNode::is_shift(p0)) {
// For now, return false if shift count is vector or not scalar promotion
// case (different shift counts) because it is not supported yet.
Node* cnt = p0->in(2);
Node_List* cnt_pk = my_pack(cnt);
if (cnt_pk != NULL)
return false;
if (!same_inputs(p, 2))
return false;
}
if (!p0->is_Store()) {
// For now, return false if not all uses are vector.
// Later, implement ExtractNode and allow non-vector uses (maybe
// just the ones outside the block.)
for (uint i = 0; i < p->size(); i++) {
Node* def = p->at(i);
if (is_cmov_pack_internal_node(p, def)) {
continue;
}
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
Node* use = def->fast_out(j);
for (uint k = 0; k < use->req(); k++) {
Node* n = use->in(k);
if (def == n) {
// Reductions should only have a Phi use at the loop head or a non-phi use
// outside of the loop if it is the last element of the pack (e.g. SafePoint).
if (def->is_reduction() &&
((use->is_Phi() && use->in(0) == _lpt->_head) ||
(!_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))) && i == p->size()-1))) {
continue;
}
if (!is_vector_use(use, k)) {
return false;
}
}
}
}
}
}
return true;
}
//------------------------------schedule---------------------------
// Adjust the memory graph for the packed operations
void SuperWord::schedule() {
// Co-locate in the memory graph the members of each memory pack
for (int i = 0; i < _packset.length(); i++) {
co_locate_pack(_packset.at(i));
}
}
//-------------------------------remove_and_insert-------------------
// Remove "current" from its current position in the memory graph and insert
// it after the appropriate insertion point (lip or uip).
void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
Node *uip, Unique_Node_List &sched_before) {
Node* my_mem = current->in(MemNode::Memory);
bool sched_up = sched_before.member(current);
// remove current_store from its current position in the memmory graph
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem()) {
assert(use->in(MemNode::Memory) == current, "must be");
if (use == prev) { // connect prev to my_mem
_igvn.replace_input_of(use, MemNode::Memory, my_mem);
--i; //deleted this edge; rescan position
} else if (sched_before.member(use)) {
if (!sched_up) { // Will be moved together with current
_igvn.replace_input_of(use, MemNode::Memory, uip);
--i; //deleted this edge; rescan position
}
} else {
if (sched_up) { // Will be moved together with current
_igvn.replace_input_of(use, MemNode::Memory, lip);
--i; //deleted this edge; rescan position
}
}
}
}
Node *insert_pt = sched_up ? uip : lip;
// all uses of insert_pt's memory state should use current's instead
for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
Node* use = insert_pt->out(i);
if (use->is_Mem()) {
assert(use->in(MemNode::Memory) == insert_pt, "must be");
_igvn.replace_input_of(use, MemNode::Memory, current);
--i; //deleted this edge; rescan position
} else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
uint pos; //lip (lower insert point) must be the last one in the memory slice
for (pos=1; pos < use->req(); pos++) {
if (use->in(pos) == insert_pt) break;
}
_igvn.replace_input_of(use, pos, current);
--i;
}
}
//connect current to insert_pt
_igvn.replace_input_of(current, MemNode::Memory, insert_pt);
}
//------------------------------co_locate_pack----------------------------------
// To schedule a store pack, we need to move any sandwiched memory ops either before
// or after the pack, based upon dependence information:
// (1) If any store in the pack depends on the sandwiched memory op, the
// sandwiched memory op must be scheduled BEFORE the pack;
// (2) If a sandwiched memory op depends on any store in the pack, the
// sandwiched memory op must be scheduled AFTER the pack;
// (3) If a sandwiched memory op (say, memA) depends on another sandwiched
// memory op (say memB), memB must be scheduled before memA. So, if memA is
// scheduled before the pack, memB must also be scheduled before the pack;
// (4) If there is no dependence restriction for a sandwiched memory op, we simply
// schedule this store AFTER the pack
// (5) We know there is no dependence cycle, so there in no other case;
// (6) Finally, all memory ops in another single pack should be moved in the same direction.
//
// To schedule a load pack, we use the memory state of either the first or the last load in
// the pack, based on the dependence constraint.
void SuperWord::co_locate_pack(Node_List* pk) {
if (pk->at(0)->is_Store()) {
MemNode* first = executed_first(pk)->as_Mem();
MemNode* last = executed_last(pk)->as_Mem();
Unique_Node_List schedule_before_pack;
Unique_Node_List memops;
MemNode* current = last->in(MemNode::Memory)->as_Mem();
MemNode* previous = last;
while (true) {
assert(in_bb(current), "stay in block");
memops.push(previous);
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem() && use != previous)
memops.push(use);
}
if (current == first) break;
previous = current;
current = current->in(MemNode::Memory)->as_Mem();
}
// determine which memory operations should be scheduled before the pack
for (uint i = 1; i < memops.size(); i++) {
Node *s1 = memops.at(i);
if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
for (uint j = 0; j< i; j++) {
Node *s2 = memops.at(j);
if (!independent(s1, s2)) {
if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
schedule_before_pack.push(s1); // s1 must be scheduled before
Node_List* mem_pk = my_pack(s1);
if (mem_pk != NULL) {
for (uint ii = 0; ii < mem_pk->size(); ii++) {
Node* s = mem_pk->at(ii); // follow partner
if (memops.member(s) && !schedule_before_pack.member(s))
schedule_before_pack.push(s);
}
}
break;
}
}
}
}
}
Node* upper_insert_pt = first->in(MemNode::Memory);
// Following code moves loads connected to upper_insert_pt below aliased stores.
// Collect such loads here and reconnect them back to upper_insert_pt later.
memops.clear();
for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
Node* use = upper_insert_pt->out(i);
if (use->is_Mem() && !use->is_Store()) {
memops.push(use);
}
}
MemNode* lower_insert_pt = last;
previous = last; //previous store in pk
current = last->in(MemNode::Memory)->as_Mem();
// start scheduling from "last" to "first"
while (true) {
assert(in_bb(current), "stay in block");
assert(in_pack(previous, pk), "previous stays in pack");
Node* my_mem = current->in(MemNode::Memory);
if (in_pack(current, pk)) {
// Forward users of my memory state (except "previous) to my input memory state
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem() && use != previous) {
assert(use->in(MemNode::Memory) == current, "must be");
if (schedule_before_pack.member(use)) {
_igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
} else {
_igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
}
--i; // deleted this edge; rescan position
}
}
previous = current;
} else { // !in_pack(current, pk) ==> a sandwiched store
remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
}
if (current == first) break;
current = my_mem->as_Mem();
} // end while
// Reconnect loads back to upper_insert_pt.
for (uint i = 0; i < memops.size(); i++) {
Node *ld = memops.at(i);
if (ld->in(MemNode::Memory) != upper_insert_pt) {
_igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
}
}
} else if (pk->at(0)->is_Load()) { //load
// all loads in the pack should have the same memory state. By default,
// we use the memory state of the last load. However, if any load could
// not be moved down due to the dependence constraint, we use the memory
// state of the first load.
Node* last_mem = pk->at(0)->in(MemNode::Memory);
Node* first_mem = last_mem;
// Walk the memory graph from the current first load until the
// start of the loop and check if nodes on the way are memory
// edges of loads in the pack. The last one we encounter is the
// first load.
for (Node* current = first_mem; in_bb(current); current = current->is_Phi() ? current->in(LoopNode::EntryControl) : current->in(MemNode::Memory)) {
assert(current->is_Mem() || (current->is_Phi() && current->in(0) == bb()), "unexpected memory");
for (uint i = 1; i < pk->size(); i++) {
Node* ld = pk->at(i);
if (ld->in(MemNode::Memory) == current) {
first_mem = current;
break;
}
}
}
// Find the last load by going over the pack again and walking
// the memory graph from the loads of the pack to the memory of
// the first load. If we encounter the memory of the current last
// load, then we started from further down in the memory graph and
// the load we started from is the last load. Check for dependence
// constraints in that loop as well.
bool schedule_last = true;
for (uint i = 0; i < pk->size(); i++) {
Node* ld = pk->at(i);
for (Node* current = ld->in(MemNode::Memory); current != first_mem; current = current->in(MemNode::Memory)) {
assert(current->is_Mem() && in_bb(current), "unexpected memory");
if (current->in(MemNode::Memory) == last_mem) {
last_mem = ld->in(MemNode::Memory);
}
if (!independent(current, ld)) {
schedule_last = false; // a later store depends on this load
}
}
}
Node* mem_input = schedule_last ? last_mem : first_mem;
_igvn.hash_delete(mem_input);
// Give each load the same memory state
for (uint i = 0; i < pk->size(); i++) {
LoadNode* ld = pk->at(i)->as_Load();
_igvn.replace_input_of(ld, MemNode::Memory, mem_input);
}
}
}
#ifndef PRODUCT
void SuperWord::print_loop(bool whole) {
Node_Stack stack(_arena, _phase->C->unique() >> 2);
Node_List rpo_list;
VectorSet visited(_arena);
visited.set(lpt()->_head->_idx);
_phase->rpo(lpt()->_head, stack, visited, rpo_list);
_phase->dump(lpt(), rpo_list.size(), rpo_list );
if(whole) {
tty->print_cr("\n Whole loop tree");
_phase->dump();
tty->print_cr(" End of whole loop tree\n");
}
}
#endif
//------------------------------output---------------------------
// Convert packs into vector node operations
void SuperWord::output() {
CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
Compile* C = _phase->C;
if (_packset.length() == 0) {
if (cl->is_main_loop()) {
// Instigate more unrolling for optimization when vectorization fails.
C->set_major_progress();
cl->set_notpassed_slp();
cl->mark_do_unroll_only();
}
return;
}
#ifndef PRODUCT
if (TraceLoopOpts) {
tty->print("SuperWord::output ");
lpt()->dump_head();
}
#endif
if (cl->is_main_loop()) {
// MUST ENSURE main loop's initial value is properly aligned:
// (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
align_initial_loop_index(align_to_ref());
// Insert extract (unpack) operations for scalar uses
for (int i = 0; i < _packset.length(); i++) {
insert_extracts(_packset.at(i));
}
}
uint max_vlen_in_bytes = 0;
uint max_vlen = 0;
bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
if (do_reserve_copy() && !make_reversable.has_reserved()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
return;
}
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
Node_List* p = my_pack(n);
if (p && n == executed_last(p)) {
uint vlen = p->size();
uint vlen_in_bytes = 0;
Node* vn = NULL;
Node* low_adr = p->at(0);
Node* first = executed_first(p);
if (can_process_post_loop) {
// override vlen with the main loops vector length
vlen = cl->slp_max_unroll();
}
NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
int opc = n->Opcode();
if (n->is_Load()) {
Node* ctl = n->in(MemNode::Control);
Node* mem = first->in(MemNode::Memory);
SWPointer p1(n->as_Mem(), this, NULL, false);
// Identify the memory dependency for the new loadVector node by
// walking up through memory chain.
// This is done to give flexibility to the new loadVector node so that
// it can move above independent storeVector nodes.
while (mem->is_StoreVector()) {
SWPointer p2(mem->as_Mem(), this, NULL, false);
int cmp = p1.cmp(p2);
if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
mem = mem->in(MemNode::Memory);
} else {
break; // dependent memory
}
}
Node* adr = low_adr->in(MemNode::Address);
const TypePtr* atyp = n->adr_type();
vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
vlen_in_bytes = vn->as_LoadVector()->memory_size();
} else if (n->is_Store()) {
// Promote value to be stored to vector
Node* val = vector_opd(p, MemNode::ValueIn);
if (val == NULL) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
Node* ctl = n->in(MemNode::Control);
Node* mem = first->in(MemNode::Memory);
Node* adr = low_adr->in(MemNode::Address);
const TypePtr* atyp = n->adr_type();
vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
vlen_in_bytes = vn->as_StoreVector()->memory_size();
} else if (VectorNode::is_roundopD(n)) {
Node* in1 = vector_opd(p, 1);
Node* in2 = low_adr->in(2);
assert(in2->is_Con(), "Constant rounding mode expected.");
vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
} else if (VectorNode::is_muladds2i(n)) {
assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
Node* in1 = vector_opd(p, 1);
Node* in2 = vector_opd(p, 2);
vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
} else if (n->req() == 3 && !is_cmov_pack(p)) {
// Promote operands to vector
Node* in1 = NULL;
bool node_isa_reduction = n->is_reduction();
if (node_isa_reduction) {
// the input to the first reduction operation is retained
in1 = low_adr->in(1);
} else {
in1 = vector_opd(p, 1);
if (in1 == NULL) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
}
Node* in2 = vector_opd(p, 2);
if (in2 == NULL) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
// Move invariant vector input into second position to avoid register spilling.
Node* tmp = in1;
in1 = in2;
in2 = tmp;
}
if (node_isa_reduction) {
const Type *arith_type = n->bottom_type();
vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
if (in2->is_Load()) {
vlen_in_bytes = in2->as_LoadVector()->memory_size();
} else {
vlen_in_bytes = in2->as_Vector()->length_in_bytes();
}
} else {
vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
}
} else if (opc == Op_SqrtF || opc == Op_SqrtD ||
opc == Op_AbsF || opc == Op_AbsD ||
opc == Op_AbsI || opc == Op_AbsL ||
opc == Op_NegF || opc == Op_NegD ||
opc == Op_PopCountI) {
assert(n->req() == 2, "only one input expected");
Node* in = vector_opd(p, 1);
vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
} else if (is_cmov_pack(p)) {
if (can_process_post_loop) {
// do not refactor of flow in post loop context
return;
}
if (!n->is_CMove()) {
continue;
}
// place here CMoveVDNode
NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
Node* bol = n->in(CMoveNode::Condition);
if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
bol = bol->in(1); //may be ExtractNode
}
assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
if (!bol->is_Bool()) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
int cond = (int)bol->as_Bool()->_test._test;
Node* in_cc = _igvn.intcon(cond);
NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
Node* cc = bol->clone();
cc->set_req(1, in_cc);
NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
if (src1 == NULL) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
if (src2 == NULL) {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
BasicType bt = velt_basic_type(n);
const TypeVect* vt = TypeVect::make(bt, vlen);
assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
if (bt == T_FLOAT) {
vn = new CMoveVFNode(cc, src1, src2, vt);
} else {
assert(bt == T_DOUBLE, "Expected double");
vn = new CMoveVDNode(cc, src1, src2, vt);
}
NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
} else if (opc == Op_FmaD || opc == Op_FmaF) {
// Promote operands to vector
Node* in1 = vector_opd(p, 1);
Node* in2 = vector_opd(p, 2);
Node* in3 = vector_opd(p, 3);
vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
} else {
if (do_reserve_copy()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
assert(vn != NULL, "sanity");
if (vn == NULL) {
if (do_reserve_copy()){
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
return; //and reverse to backup IG
}
ShouldNotReachHere();
}
_block.at_put(i, vn);
_igvn.register_new_node_with_optimizer(vn);
_phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
for (uint j = 0; j < p->size(); j++) {
Node* pm = p->at(j);
_igvn.replace_node(pm, vn);
}
_igvn._worklist.push(vn);
if (can_process_post_loop) {
// first check if the vector size if the maximum vector which we can use on the machine,
// other vector size have reduced values for predicated data mapping.
if (vlen_in_bytes != (uint)MaxVectorSize) {
return;
}
}
if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) {
max_vlen = vlen;
max_vlen_in_bytes = vlen_in_bytes;
}
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
vn->dump();
}
#endif
}
}//for (int i = 0; i < _block.length(); i++)
if (max_vlen_in_bytes > C->max_vector_size()) {
C->set_max_vector_size(max_vlen_in_bytes);
}
if (max_vlen_in_bytes > 0) {
cl->mark_loop_vectorized();
}
if (SuperWordLoopUnrollAnalysis) {
if (cl->has_passed_slp()) {
uint slp_max_unroll_factor = cl->slp_max_unroll();
if (slp_max_unroll_factor == max_vlen) {
if (TraceSuperWordLoopUnrollAnalysis) {
tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
}
// For atomic unrolled loops which are vector mapped, instigate more unrolling
cl->set_notpassed_slp();
if (cl->is_main_loop()) {
// if vector resources are limited, do not allow additional unrolling, also
// do not unroll more on pure vector loops which were not reduced so that we can
// program the post loop to single iteration execution.
if (FLOATPRESSURE > 8) {
C->set_major_progress();
cl->mark_do_unroll_only();
}
}
if (do_reserve_copy()) {
if (can_process_post_loop) {
// Now create the difference of trip and limit and use it as our mask index.
// Note: We limited the unroll of the vectorized loop so that
// only vlen-1 size iterations can remain to be mask programmed.
Node *incr = cl->incr();
SubINode *index = new SubINode(cl->limit(), cl->init_trip());
_igvn.register_new_node_with_optimizer(index);
SetVectMaskINode *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
_igvn.register_new_node_with_optimizer(mask);
// make this a single iteration loop
AddINode *new_incr = new AddINode(incr->in(1), mask);
_igvn.register_new_node_with_optimizer(new_incr);
_phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
_igvn.replace_node(incr, new_incr);
cl->mark_is_multiversioned();
cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
}
}
}
}
}
if (do_reserve_copy()) {
make_reversable.use_new();
}
NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
return;
}
//------------------------------vector_opd---------------------------
// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
Node* p0 = p->at(0);
uint vlen = p->size();
Node* opd = p0->in(opd_idx);
CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
// override vlen with the main loops vector length
vlen = cl->slp_max_unroll();
}
if (same_inputs(p, opd_idx)) {
if (opd->is_Vector() || opd->is_LoadVector()) {
assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
if (opd_idx == 2 && VectorNode::is_shift(p0)) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
return NULL;
}
return opd; // input is matching vector
}
if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
Compile* C = _phase->C;
Node* cnt = opd;
// Vector instructions do not mask shift count, do it here.
juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
const TypeInt* t = opd->find_int_type();
if (t != NULL && t->is_con()) {
juint shift = t->get_con();
if (shift > mask) { // Unsigned cmp
cnt = ConNode::make(TypeInt::make(shift & mask));
}
} else {
if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
cnt = ConNode::make(TypeInt::make(mask));
_igvn.register_new_node_with_optimizer(cnt);
cnt = new AndINode(opd, cnt);
_igvn.register_new_node_with_optimizer(cnt);
_phase->set_ctrl(cnt, _phase->get_ctrl(opd));
}
assert(opd->bottom_type()->isa_int(), "int type only");
if (!opd->bottom_type()->isa_int()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
return NULL;
}
// Move non constant shift count into vector register.
cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
}
if (cnt != opd) {
_igvn.register_new_node_with_optimizer(cnt);
_phase->set_ctrl(cnt, _phase->get_ctrl(opd));
}
return cnt;
}
assert(!opd->is_StoreVector(), "such vector is not expected here");
if (opd->is_StoreVector()) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
return NULL;
}
// Convert scalar input to vector with the same number of elements as
// p0's vector. Use p0's type because size of operand's container in
// vector should match p0's size regardless operand's size.
const Type* p0_t = velt_type(p0);
VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
_igvn.register_new_node_with_optimizer(vn);
_phase->set_ctrl(vn, _phase->get_ctrl(opd));
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
vn->dump();
}
#endif
return vn;
}
// Insert pack operation
BasicType bt = velt_basic_type(p0);
PackNode* pk = PackNode::make(opd, vlen, bt);
DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
for (uint i = 1; i < vlen; i++) {
Node* pi = p->at(i);
Node* in = pi->in(opd_idx);
assert(my_pack(in) == NULL, "Should already have been unpacked");
if (my_pack(in) != NULL) {
NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
return NULL;
}
assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
pk->add_opd(in);
if (VectorNode::is_muladds2i(pi)) {
Node* in2 = pi->in(opd_idx + 2);
assert(my_pack(in2) == NULL, "Should already have been unpacked");
if (my_pack(in2) != NULL) {
NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
return NULL;
}
assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
pk->add_opd(in2);
}
}
_igvn.register_new_node_with_optimizer(pk);
_phase->set_ctrl(pk, _phase->get_ctrl(opd));
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
pk->dump();
}
#endif
return pk;
}
//------------------------------insert_extracts---------------------------
// If a use of pack p is not a vector use, then replace the
// use with an extract operation.
void SuperWord::insert_extracts(Node_List* p) {
if (p->at(0)->is_Store()) return;
assert(_n_idx_list.is_empty(), "empty (node,index) list");
// Inspect each use of each pack member. For each use that is
// not a vector use, replace the use with an extract operation.
for (uint i = 0; i < p->size(); i++) {
Node* def = p->at(i);
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
Node* use = def->fast_out(j);
for (uint k = 0; k < use->req(); k++) {
Node* n = use->in(k);
if (def == n) {
Node_List* u_pk = my_pack(use);
if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
_n_idx_list.push(use, k);
}
}
}
}
}
while (_n_idx_list.is_nonempty()) {
Node* use = _n_idx_list.node();
int idx = _n_idx_list.index();
_n_idx_list.pop();
Node* def = use->in(idx);
if (def->is_reduction()) continue;
// Insert extract operation
_igvn.hash_delete(def);
int def_pos = alignment(def) / data_size(def);
Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
_igvn.register_new_node_with_optimizer(ex);
_phase->set_ctrl(ex, _phase->get_ctrl(def));
_igvn.replace_input_of(use, idx, ex);
_igvn._worklist.push(def);
bb_insert_after(ex, bb_idx(def));
set_velt_type(ex, velt_type(def));
}
}
//------------------------------is_vector_use---------------------------
// Is use->in(u_idx) a vector use?
bool SuperWord::is_vector_use(Node* use, int u_idx) {
Node_List* u_pk = my_pack(use);
if (u_pk == NULL) return false;
if (use->is_reduction()) return true;
Node* def = use->in(u_idx);
Node_List* d_pk = my_pack(def);
if (d_pk == NULL) {
// check for scalar promotion
Node* n = u_pk->at(0)->in(u_idx);
for (uint i = 1; i < u_pk->size(); i++) {
if (u_pk->at(i)->in(u_idx) != n) return false;
}
return true;
}
if (VectorNode::is_muladds2i(use)) {
// MulAddS2I takes shorts and produces ints - hence the special checks
// on alignment and size.
if (u_pk->size() * 2 != d_pk->size()) {
return false;
}
for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
Node* ui = u_pk->at(i);
Node* di = d_pk->at(i);
if (alignment(ui) != alignment(di) * 2) {
return false;
}
}
return true;
}
if (u_pk->size() != d_pk->size())
return false;
for (uint i = 0; i < u_pk->size(); i++) {
Node* ui = u_pk->at(i);
Node* di = d_pk->at(i);
if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
return false;
}
return true;
}
//------------------------------construct_bb---------------------------
// Construct reverse postorder list of block members
bool SuperWord::construct_bb() {
Node* entry = bb();
assert(_stk.length() == 0, "stk is empty");
assert(_block.length() == 0, "block is empty");
assert(_data_entry.length() == 0, "data_entry is empty");
assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
// Find non-control nodes with no inputs from within block,
// create a temporary map from node _idx to bb_idx for use
// by the visited and post_visited sets,
// and count number of nodes in block.
int bb_ct = 0;
for (uint i = 0; i < lpt()->_body.size(); i++) {
Node *n = lpt()->_body.at(i);
set_bb_idx(n, i); // Create a temporary map
if (in_bb(n)) {
if (n->is_LoadStore() || n->is_MergeMem() ||
(n->is_Proj() && !n->as_Proj()->is_CFG())) {
// Bailout if the loop has LoadStore, MergeMem or data Proj
// nodes. Superword optimization does not work with them.
return false;
}
bb_ct++;
if (!n->is_CFG()) {
bool found = false;
for (uint j = 0; j < n->req(); j++) {
Node* def = n->in(j);
if (def && in_bb(def)) {
found = true;
break;
}
}
if (!found) {
assert(n != entry, "can't be entry");
_data_entry.push(n);
}
}
}
}
// Find memory slices (head and tail)
for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
Node *n = lp()->fast_out(i);
if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
Node* n_tail = n->in(LoopNode::LoopBackControl);
if (n_tail != n->in(LoopNode::EntryControl)) {
if (!n_tail->is_Mem()) {
assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
return false; // Bailout
}
_mem_slice_head.push(n);
_mem_slice_tail.push(n_tail);
}
}
}
// Create an RPO list of nodes in block
visited_clear();
post_visited_clear();
// Push all non-control nodes with no inputs from within block, then control entry
for (int j = 0; j < _data_entry.length(); j++) {
Node* n = _data_entry.at(j);
visited_set(n);
_stk.push(n);
}
visited_set(entry);
_stk.push(entry);
// Do a depth first walk over out edges
int rpo_idx = bb_ct - 1;
int size;
int reduction_uses = 0;
while ((size = _stk.length()) > 0) {
Node* n = _stk.top(); // Leave node on stack
if (!visited_test_set(n)) {
// forward arc in graph
} else if (!post_visited_test(n)) {
// cross or back arc
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *use = n->fast_out(i);
if (in_bb(use) && !visited_test(use) &&
// Don't go around backedge
(!use->is_Phi() || n == entry)) {
if (use->is_reduction()) {
// First see if we can map the reduction on the given system we are on, then
// make a data entry operation for each reduction we see.
BasicType bt = use->bottom_type()->basic_type();
if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
reduction_uses++;
}
}
_stk.push(use);
}
}
if (_stk.length() == size) {
// There were no additional uses, post visit node now
_stk.pop(); // Remove node from stack
assert(rpo_idx >= 0, "");
_block.at_put_grow(rpo_idx, n);
rpo_idx--;
post_visited_set(n);
assert(rpo_idx >= 0 || _stk.is_empty(), "");
}
} else {
_stk.pop(); // Remove post-visited node from stack
}
}//while
int ii_current = -1;
unsigned int load_idx = (unsigned int)-1;
_ii_order.clear();
// Create real map of block indices for nodes
for (int j = 0; j < _block.length(); j++) {
Node* n = _block.at(j);
set_bb_idx(n, j);
if (_do_vector_loop && n->is_Load()) {
if (ii_current == -1) {
ii_current = _clone_map.gen(n->_idx);
_ii_order.push(ii_current);
load_idx = _clone_map.idx(n->_idx);
} else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
ii_current = _clone_map.gen(n->_idx);
_ii_order.push(ii_current);
}
}
}//for
// Ensure extra info is allocated.
initialize_bb();
#ifndef PRODUCT
if (_vector_loop_debug && _ii_order.length() > 0) {
tty->print("SuperWord::construct_bb: List of generations: ");
for (int jj = 0; jj < _ii_order.length(); ++jj) {
tty->print(" %d:%d", jj, _ii_order.at(jj));
}
tty->print_cr(" ");
}
if (TraceSuperWord) {
print_bb();
tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
for (int m = 0; m < _data_entry.length(); m++) {
tty->print("%3d ", m);
_data_entry.at(m)->dump();
}
tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
for (int m = 0; m < _mem_slice_head.length(); m++) {
tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
tty->print(" "); _mem_slice_tail.at(m)->dump();
}
}
#endif
assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
}
//------------------------------initialize_bb---------------------------
// Initialize per node info
void SuperWord::initialize_bb() {
Node* last = _block.at(_block.length() - 1);
grow_node_info(bb_idx(last));
}
//------------------------------bb_insert_after---------------------------
// Insert n into block after pos
void SuperWord::bb_insert_after(Node* n, int pos) {
int n_pos = pos + 1;
// Make room
for (int i = _block.length() - 1; i >= n_pos; i--) {
_block.at_put_grow(i+1, _block.at(i));
}
for (int j = _node_info.length() - 1; j >= n_pos; j--) {
_node_info.at_put_grow(j+1, _node_info.at(j));
}
// Set value
_block.at_put_grow(n_pos, n);
_node_info.at_put_grow(n_pos, SWNodeInfo::initial);
// Adjust map from node->_idx to _block index
for (int i = n_pos; i < _block.length(); i++) {
set_bb_idx(_block.at(i), i);
}
}
//------------------------------compute_max_depth---------------------------
// Compute max depth for expressions from beginning of block
// Use to prune search paths during test for independence.
void SuperWord::compute_max_depth() {
int ct = 0;
bool again;
do {
again = false;
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
if (!n->is_Phi()) {
int d_orig = depth(n);
int d_in = 0;
for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
Node* pred = preds.current();
if (in_bb(pred)) {
d_in = MAX2(d_in, depth(pred));
}
}
if (d_in + 1 != d_orig) {
set_depth(n, d_in + 1);
again = true;
}
}
}
ct++;
} while (again);
if (TraceSuperWord && Verbose) {
tty->print_cr("compute_max_depth iterated: %d times", ct);
}
}
//-------------------------compute_vector_element_type-----------------------
// Compute necessary vector element type for expressions
// This propagates backwards a narrower integer type when the
// upper bits of the value are not needed.
// Example: char a,b,c; a = b + c;
// Normally the type of the add is integer, but for packed character
// operations the type of the add needs to be char.
void SuperWord::compute_vector_element_type() {
if (TraceSuperWord && Verbose) {
tty->print_cr("\ncompute_velt_type:");
}
// Initial type
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
set_velt_type(n, container_type(n));
}
// Propagate integer narrowed type backwards through operations
// that don't depend on higher order bits
for (int i = _block.length() - 1; i >= 0; i--) {
Node* n = _block.at(i);
// Only integer types need be examined
const Type* vtn = velt_type(n);
if (vtn->basic_type() == T_INT) {
uint start, end;
VectorNode::vector_operands(n, &start, &end);
for (uint j = start; j < end; j++) {
Node* in = n->in(j);
// Don't propagate through a memory
if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
data_size(n) < data_size(in)) {
bool same_type = true;
for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
Node *use = in->fast_out(k);
if (!in_bb(use) || !same_velt_type(use, n)) {
same_type = false;
break;
}
}
if (same_type) {
// For right shifts of small integer types (bool, byte, char, short)
// we need precise information about sign-ness. Only Load nodes have
// this information because Store nodes are the same for signed and
// unsigned values. And any arithmetic operation after a load may
// expand a value to signed Int so such right shifts can't be used
// because vector elements do not have upper bits of Int.
const Type* vt = vtn;
if (VectorNode::is_shift(in)) {
Node* load = in->in(1);
if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
vt = velt_type(load);
} else if (in->Opcode() != Op_LShiftI) {
// Widen type to Int to avoid creation of right shift vector
// (align + data_size(s1) check in stmts_can_pack() will fail).
// Note, left shifts work regardless type.
vt = TypeInt::INT;
}
}
set_velt_type(in, vt);
}
}
}
}
}
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
velt_type(n)->dump();
tty->print("\t");
n->dump();
}
}
#endif
}
//------------------------------memory_alignment---------------------------
// Alignment within a vector memory reference
int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
#ifndef PRODUCT
if(TraceSuperWord && Verbose) {
tty->print("SuperWord::memory_alignment within a vector memory reference for %d: ", s->_idx); s->dump();
}
#endif
NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
SWPointer p(s, this, NULL, false);
if (!p.valid()) {
NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
return bottom_align;
}
int vw = get_vw_bytes_special(s);
if (vw < 2) {
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
return bottom_align; // No vectors for this type
}
int offset = p.offset_in_bytes();
offset += iv_adjust*p.memory_size();
int off_rem = offset % vw;
int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
if (TraceSuperWord && Verbose) {
tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
}
return off_mod;
}
//---------------------------container_type---------------------------
// Smallest type containing range of values
const Type* SuperWord::container_type(Node* n) {
if (n->is_Mem()) {
BasicType bt = n->as_Mem()->memory_type();
if (n->is_Store() && (bt == T_CHAR)) {
// Use T_SHORT type instead of T_CHAR for stored values because any
// preceding arithmetic operation extends values to signed Int.
bt = T_SHORT;
}
if (n->Opcode() == Op_LoadUB) {
// Adjust type for unsigned byte loads, it is important for right shifts.
// T_BOOLEAN is used because there is no basic type representing type
// TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
// size (one byte) and sign is important.
bt = T_BOOLEAN;
}
return Type::get_const_basic_type(bt);
}
const Type* t = _igvn.type(n);
if (t->basic_type() == T_INT) {
// A narrow type of arithmetic operations will be determined by
// propagating the type of memory operations.
return TypeInt::INT;
}
return t;
}
bool SuperWord::same_velt_type(Node* n1, Node* n2) {
const Type* vt1 = velt_type(n1);
const Type* vt2 = velt_type(n2);
if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
// Compare vectors element sizes for integer types.
return data_size(n1) == data_size(n2);
}
return vt1 == vt2;
}
//------------------------------in_packset---------------------------
// Are s1 and s2 in a pack pair and ordered as s1,s2?
bool SuperWord::in_packset(Node* s1, Node* s2) {
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
assert(p->size() == 2, "must be");
if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
return true;
}
}
return false;
}
//------------------------------in_pack---------------------------
// Is s in pack p?
Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
for (uint i = 0; i < p->size(); i++) {
if (p->at(i) == s) {
return p;
}
}
return NULL;
}
//------------------------------remove_pack_at---------------------------
// Remove the pack at position pos in the packset
void SuperWord::remove_pack_at(int pos) {
Node_List* p = _packset.at(pos);
for (uint i = 0; i < p->size(); i++) {
Node* s = p->at(i);
set_my_pack(s, NULL);
}
_packset.remove_at(pos);
}
void SuperWord::packset_sort(int n) {
// simple bubble sort so that we capitalize with O(n) when its already sorted
while (n != 0) {
bool swapped = false;
for (int i = 1; i < n; i++) {
Node_List* q_low = _packset.at(i-1);
Node_List* q_i = _packset.at(i);
// only swap when we find something to swap
if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
Node_List* t = q_i;
*(_packset.adr_at(i)) = q_low;
*(_packset.adr_at(i-1)) = q_i;
swapped = true;
}
}
if (swapped == false) break;
n--;
}
}
//------------------------------executed_first---------------------------
// Return the node executed first in pack p. Uses the RPO block list
// to determine order.
Node* SuperWord::executed_first(Node_List* p) {
Node* n = p->at(0);
int n_rpo = bb_idx(n);
for (uint i = 1; i < p->size(); i++) {
Node* s = p->at(i);
int s_rpo = bb_idx(s);
if (s_rpo < n_rpo) {
n = s;
n_rpo = s_rpo;
}
}
return n;
}
//------------------------------executed_last---------------------------
// Return the node executed last in pack p.
Node* SuperWord::executed_last(Node_List* p) {
Node* n = p->at(0);
int n_rpo = bb_idx(n);
for (uint i = 1; i < p->size(); i++) {
Node* s = p->at(i);
int s_rpo = bb_idx(s);
if (s_rpo > n_rpo) {
n = s;
n_rpo = s_rpo;
}
}
return n;
}
LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
for (uint i = 0; i < p->size(); i++) {
Node* n = p->at(i);
assert(n->is_Load(), "only meaningful for loads");
if (!n->depends_only_on_test()) {
if (n->as_Load()->has_unknown_control_dependency() &&
dep != LoadNode::Pinned) {
// Upgrade to unknown control...
dep = LoadNode::UnknownControl;
} else {
// Otherwise, we must pin it.
dep = LoadNode::Pinned;
}
}
}
return dep;
}
//----------------------------align_initial_loop_index---------------------------
// Adjust pre-loop limit so that in main loop, a load/store reference
// to align_to_ref will be a position zero in the vector.
// (iv + k) mod vector_align == 0
void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
CountedLoopNode *main_head = lp()->as_CountedLoop();
assert(main_head->is_main_loop(), "");
CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
assert(pre_end != NULL, "we must have a correct pre-loop");
Node *pre_opaq1 = pre_end->limit();
assert(pre_opaq1->Opcode() == Op_Opaque1, "");
Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
Node *lim0 = pre_opaq->in(1);
// Where we put new limit calculations
Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
// Ensure the original loop limit is available from the
// pre-loop Opaque1 node.
Node *orig_limit = pre_opaq->original_loop_limit();
assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
assert(align_to_ref_p.valid(), "sanity");
// Given:
// lim0 == original pre loop limit
// V == v_align (power of 2)
// invar == extra invariant piece of the address expression
// e == offset [ +/- invar ]
//
// When reassociating expressions involving '%' the basic rules are:
// (a - b) % k == 0 => a % k == b % k
// and:
// (a + b) % k == 0 => a % k == (k - b) % k
//
// For stride > 0 && scale > 0,
// Derive the new pre-loop limit "lim" such that the two constraints:
// (1) lim = lim0 + N (where N is some positive integer < V)
// (2) (e + lim) % V == 0
// are true.
//
// Substituting (1) into (2),
// (e + lim0 + N) % V == 0
// solve for N:
// N = (V - (e + lim0)) % V
// substitute back into (1), so that new limit
// lim = lim0 + (V - (e + lim0)) % V
//
// For stride > 0 && scale < 0
// Constraints:
// lim = lim0 + N
// (e - lim) % V == 0
// Solving for lim:
// (e - lim0 - N) % V == 0
// N = (e - lim0) % V
// lim = lim0 + (e - lim0) % V
//
// For stride < 0 && scale > 0
// Constraints:
// lim = lim0 - N
// (e + lim) % V == 0
// Solving for lim:
// (e + lim0 - N) % V == 0
// N = (e + lim0) % V
// lim = lim0 - (e + lim0) % V
//
// For stride < 0 && scale < 0
// Constraints:
// lim = lim0 - N
// (e - lim) % V == 0
// Solving for lim:
// (e - lim0 + N) % V == 0
// N = (V - (e - lim0)) % V
// lim = lim0 - (V - (e - lim0)) % V
int vw = vector_width_in_bytes(align_to_ref);
int stride = iv_stride();
int scale = align_to_ref_p.scale_in_bytes();
int elt_size = align_to_ref_p.memory_size();
int v_align = vw / elt_size;
assert(v_align > 1, "sanity");
int offset = align_to_ref_p.offset_in_bytes() / elt_size;
Node *offsn = _igvn.intcon(offset);
Node *e = offsn;
if (align_to_ref_p.invar() != NULL) {
// incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
Node* invar = align_to_ref_p.invar();
if (_igvn.type(invar)->isa_long()) {
// Computations are done % (vector width/element size) so it's
// safe to simply convert invar to an int and loose the upper 32
// bit half.
invar = new ConvL2INode(invar);
_igvn.register_new_node_with_optimizer(invar);
}
Node* aref = new URShiftINode(invar, log2_elt);
_igvn.register_new_node_with_optimizer(aref);
_phase->set_ctrl(aref, pre_ctrl);
if (align_to_ref_p.negate_invar()) {
e = new SubINode(e, aref);
} else {
e = new AddINode(e, aref);
}
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) {
// incorporate base e +/- base && Mask >>> log2(elt)
Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr());
_igvn.register_new_node_with_optimizer(xbase);
#ifdef _LP64
xbase = new ConvL2INode(xbase);
_igvn.register_new_node_with_optimizer(xbase);
#endif
Node* mask = _igvn.intcon(vw-1);
Node* masked_xbase = new AndINode(xbase, mask);
_igvn.register_new_node_with_optimizer(masked_xbase);
Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
Node* bref = new URShiftINode(masked_xbase, log2_elt);
_igvn.register_new_node_with_optimizer(bref);
_phase->set_ctrl(bref, pre_ctrl);
e = new AddINode(e, bref);
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
// compute e +/- lim0
if (scale < 0) {
e = new SubINode(e, lim0);
} else {
e = new AddINode(e, lim0);
}
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
if (stride * scale > 0) {
// compute V - (e +/- lim0)
Node* va = _igvn.intcon(v_align);
e = new SubINode(va, e);
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
// compute N = (exp) % V
Node* va_msk = _igvn.intcon(v_align - 1);
Node* N = new AndINode(e, va_msk);
_igvn.register_new_node_with_optimizer(N);
_phase->set_ctrl(N, pre_ctrl);
// substitute back into (1), so that new limit
// lim = lim0 + N
Node* lim;
if (stride < 0) {
lim = new SubINode(lim0, N);
} else {
lim = new AddINode(lim0, N);
}
_igvn.register_new_node_with_optimizer(lim);
_phase->set_ctrl(lim, pre_ctrl);
Node* constrained =
(stride > 0) ? (Node*) new MinINode(lim, orig_limit)
: (Node*) new MaxINode(lim, orig_limit);
_igvn.register_new_node_with_optimizer(constrained);
_phase->set_ctrl(constrained, pre_ctrl);
_igvn.replace_input_of(pre_opaq, 1, constrained);
}
//----------------------------get_pre_loop_end---------------------------
// Find pre loop end from main loop. Returns null if none.
CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
// The loop cannot be optimized if the graph shape at
// the loop entry is inappropriate.
if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
return NULL;
}
Node* p_f = cl->skip_predicates()->in(0)->in(0);
if (!p_f->is_IfFalse()) return NULL;
if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
CountedLoopNode* loop_node = pre_end->loopnode();
if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
return pre_end;
}
//------------------------------init---------------------------
void SuperWord::init() {
_dg.init();
_packset.clear();
_disjoint_ptrs.clear();
_block.clear();
_post_block.clear();
_data_entry.clear();
_mem_slice_head.clear();
_mem_slice_tail.clear();
_iteration_first.clear();
_iteration_last.clear();
_node_info.clear();
_align_to_ref = NULL;
_lpt = NULL;
_lp = NULL;
_bb = NULL;
_iv = NULL;
_race_possible = 0;
_early_return = false;
_num_work_vecs = 0;
_num_reductions = 0;
}
//------------------------------restart---------------------------
void SuperWord::restart() {
_dg.init();
_packset.clear();
_disjoint_ptrs.clear();
_block.clear();
_post_block.clear();
_data_entry.clear();
_mem_slice_head.clear();
_mem_slice_tail.clear();
_node_info.clear();
}
//------------------------------print_packset---------------------------
void SuperWord::print_packset() {
#ifndef PRODUCT
tty->print_cr("packset");
for (int i = 0; i < _packset.length(); i++) {
tty->print_cr("Pack: %d", i);
Node_List* p = _packset.at(i);
print_pack(p);
}
#endif
}
//------------------------------print_pack---------------------------
void SuperWord::print_pack(Node_List* p) {
for (uint i = 0; i < p->size(); i++) {
print_stmt(p->at(i));
}
}
//------------------------------print_bb---------------------------
void SuperWord::print_bb() {
#ifndef PRODUCT
tty->print_cr("\nBlock");
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
tty->print("%d ", i);
if (n) {
n->dump();
}
}
#endif
}
//------------------------------print_stmt---------------------------
void SuperWord::print_stmt(Node* s) {
#ifndef PRODUCT
tty->print(" align: %d \t", alignment(s));
s->dump();
#endif
}
//------------------------------blank---------------------------
char* SuperWord::blank(uint depth) {
static char blanks[101];
assert(depth < 101, "too deep");
for (uint i = 0; i < depth; i++) blanks[i] = ' ';
blanks[depth] = '\0';
return blanks;
}
//==============================SWPointer===========================
#ifndef PRODUCT
int SWPointer::Tracer::_depth = 0;
#endif
//----------------------------SWPointer------------------------
SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
_mem(mem), _slp(slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false),
_nstack(nstack), _analyze_only(analyze_only),
_stack_idx(0)
#ifndef PRODUCT
, _tracer(slp)
#endif
{
NOT_PRODUCT(_tracer.ctor_1(mem);)
Node* adr = mem->in(MemNode::Address);
if (!adr->is_AddP()) {
assert(!valid(), "too complex");
return;
}
// Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
Node* base = adr->in(AddPNode::Base);
// The base address should be loop invariant
if (!invariant(base)) {
assert(!valid(), "base address is loop variant");
return;
}
// unsafe references require misaligned vector access support
if (base->is_top() && !Matcher::misaligned_vectors_ok()) {
assert(!valid(), "unsafe access");
return;
}
NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
NOT_PRODUCT(_tracer.ctor_2(adr);)
int i;
for (i = 0; i < 3; i++) {
NOT_PRODUCT(_tracer.ctor_3(adr, i);)
if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
assert(!valid(), "too complex");
return;
}
adr = adr->in(AddPNode::Address);
NOT_PRODUCT(_tracer.ctor_4(adr, i);)
if (base == adr || !adr->is_AddP()) {
NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
break; // stop looking at addp's
}
}
if (!invariant(adr)) {
assert(!valid(), "adr is loop variant");
return;
}
if (!base->is_top() && adr != base) {
assert(!valid(), "adr and base differ");
return;
}
NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
NOT_PRODUCT(_tracer.ctor_6(mem);)
_base = base;
_adr = adr;
assert(valid(), "Usable");
}
// Following is used to create a temporary object during
// the pattern match of an address expression.
SWPointer::SWPointer(SWPointer* p) :
_mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false),
_nstack(p->_nstack), _analyze_only(p->_analyze_only),
_stack_idx(p->_stack_idx)
#ifndef PRODUCT
, _tracer(p->_slp)
#endif
{}
bool SWPointer::invariant(Node* n) {
NOT_PRODUCT(Tracer::Depth dd;)
Node *n_c = phase()->get_ctrl(n);
NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
return !lpt()->is_member(phase()->get_loop(n_c));
}
//------------------------scaled_iv_plus_offset--------------------
// Match: k*iv + offset
// where: k is a constant that maybe zero, and
// offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
bool SWPointer::scaled_iv_plus_offset(Node* n) {
NOT_PRODUCT(Tracer::Depth ddd;)
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
if (scaled_iv(n)) {
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
return true;
}
if (offset_plus_k(n)) {
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
return true;
}
int opc = n->Opcode();
if (opc == Op_AddI) {
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
return true;
}
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
return true;
}
} else if (opc == Op_SubI) {
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
return true;
}
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
_scale *= -1;
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
return true;
}
}
NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
return false;
}
//----------------------------scaled_iv------------------------
// Match: k*iv where k is a constant that's not zero
bool SWPointer::scaled_iv(Node* n) {
NOT_PRODUCT(Tracer::Depth ddd;)
NOT_PRODUCT(_tracer.scaled_iv_1(n);)
if (_scale != 0) { // already found a scale
NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
return false;
}
if (n == iv()) {
_scale = 1;
NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
return true;
}
if (_analyze_only && (invariant(n) == false)) {
_nstack->push(n, _stack_idx++);
}
int opc = n->Opcode();
if (opc == Op_MulI) {
if (n->in(1) == iv() && n->in(2)->is_Con()) {
_scale = n->in(2)->get_int();
NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
return true;
} else if (n->in(2) == iv() && n->in(1)->is_Con()) {
_scale = n->in(1)->get_int();
NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
return true;
}
} else if (opc == Op_LShiftI) {
if (n->in(1) == iv() && n->in(2)->is_Con()) {
_scale = 1 << n->in(2)->get_int();
NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
return true;
}
} else if (opc == Op_ConvI2L) {
if (n->in(1)->Opcode() == Op_CastII &&
n->in(1)->as_CastII()->has_range_check()) {
// Skip range check dependent CastII nodes
n = n->in(1);
}
if (scaled_iv_plus_offset(n->in(1))) {
NOT_PRODUCT(_tracer.scaled_iv_7(n);)
return true;
}
} else if (opc == Op_LShiftL) {
if (!has_iv() && _invar == NULL) {
// Need to preserve the current _offset value, so
// create a temporary object for this expression subtree.
// Hacky, so should re-engineer the address pattern match.
NOT_PRODUCT(Tracer::Depth dddd;)
SWPointer tmp(this);
NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
if (tmp.scaled_iv_plus_offset(n->in(1))) {
if (tmp._invar == NULL || _slp->do_vector_loop()) {
int mult = 1 << n->in(2)->get_int();
_scale = tmp._scale * mult;
_offset += tmp._offset * mult;
NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
return true;
}
}
}
}
NOT_PRODUCT(_tracer.scaled_iv_10(n);)
return false;
}
//----------------------------offset_plus_k------------------------
// Match: offset is (k [+/- invariant])
// where k maybe zero and invariant is optional, but not both.
bool SWPointer::offset_plus_k(Node* n, bool negate) {
NOT_PRODUCT(Tracer::Depth ddd;)
NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
int opc = n->Opcode();
if (opc == Op_ConI) {
_offset += negate ? -(n->get_int()) : n->get_int();
NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
return true;
} else if (opc == Op_ConL) {
// Okay if value fits into an int
const TypeLong* t = n->find_long_type();
if (t->higher_equal(TypeLong::INT)) {
jlong loff = n->get_long();
jint off = (jint)loff;
_offset += negate ? -off : loff;
NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
return true;
}
NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
return false;
}
if (_invar != NULL) { // already has an invariant
NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
return false;
}
if (_analyze_only && (invariant(n) == false)) {
_nstack->push(n, _stack_idx++);
}
if (opc == Op_AddI) {
if (n->in(2)->is_Con() && invariant(n->in(1))) {
_negate_invar = negate;
_invar = n->in(1);
_offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
return true;
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
_negate_invar = negate;
_invar = n->in(2);
NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
return true;
}
}
if (opc == Op_SubI) {
if (n->in(2)->is_Con() && invariant(n->in(1))) {
_negate_invar = negate;
_invar = n->in(1);
_offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
return true;
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
_negate_invar = !negate;
_invar = n->in(2);
NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
return true;
}
}
if (invariant(n)) {
if (opc == Op_ConvI2L) {
n = n->in(1);
if (n->Opcode() == Op_CastII &&
n->as_CastII()->has_range_check()) {
// Skip range check dependent CastII nodes
assert(invariant(n), "sanity");
n = n->in(1);
}
}
_negate_invar = negate;
_invar = n;
NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
return true;
}
NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
return false;
}
//----------------------------print------------------------
void SWPointer::print() {
#ifndef PRODUCT
tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
_base != NULL ? _base->_idx : 0,
_adr != NULL ? _adr->_idx : 0,
_scale, _offset,
_negate_invar?'-':'+',
_invar != NULL ? _invar->_idx : 0);
#endif
}
//----------------------------tracing------------------------
#ifndef PRODUCT
void SWPointer::Tracer::print_depth() {
for (int ii = 0; ii<_depth; ++ii) tty->print(" ");
}
void SWPointer::Tracer::ctor_1 (Node* mem) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
}
}
void SWPointer::Tracer::ctor_2(Node* adr) {
if(_slp->is_trace_alignment()) {
//store_depth();
inc_depth();
print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
inc_depth();
print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
}
}
void SWPointer::Tracer::ctor_3(Node* adr, int i) {
if(_slp->is_trace_alignment()) {
inc_depth();
Node* offset = adr->in(AddPNode::Offset);
print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
}
}
void SWPointer::Tracer::ctor_4(Node* adr, int i) {
if(_slp->is_trace_alignment()) {
inc_depth();
print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
}
}
void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
if(_slp->is_trace_alignment()) {
inc_depth();
if (base == adr) {
print_depth(); tty->print_cr(" \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
} else if (!adr->is_AddP()) {
print_depth(); tty->print_cr(" \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
}
}
}
void SWPointer::Tracer::ctor_6(Node* mem) {
if(_slp->is_trace_alignment()) {
//restore_depth();
print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
}
}
void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
int is_member = _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
int in_bb = _slp->in_bb(n);
print_depth(); tty->print(" \\ "); tty->print_cr(" %d SWPointer::invariant conditions differ: n_c %d", n->_idx, n_c->_idx);
print_depth(); tty->print(" \\ "); tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
print_depth(); tty->print(" \\ "); n->dump();
print_depth(); tty->print(" \\ "); n_c->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
n->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
}
}
void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
}
}
void SWPointer::Tracer::scaled_iv_1(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
}
}
void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
}
}
void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
}
}
void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
}
}
void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
}
}
void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
}
}
void SWPointer::Tracer::scaled_iv_7(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
inc_depth(); inc_depth();
print_depth(); n->in(1)->dump();
dec_depth(); dec_depth();
}
}
void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
}
}
void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
inc_depth(); inc_depth();
print_depth(); n->in(1)->dump();
print_depth(); n->in(2)->dump();
dec_depth(); dec_depth();
}
}
void SWPointer::Tracer::scaled_iv_10(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
}
}
void SWPointer::Tracer::offset_plus_k_1(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
}
}
void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
}
}
void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
}
}
void SWPointer::Tracer::offset_plus_k_4(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
print_depth(); tty->print_cr(" \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
}
}
void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
}
}
void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
n->_idx, _negate_invar, _invar->_idx, _offset);
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
}
}
void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
n->_idx, _negate_invar, _invar->_idx, _offset);
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
}
}
void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
n->_idx, _negate_invar, _invar->_idx, _offset);
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
}
}
void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
}
}
void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
print_depth(); tty->print_cr(" \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
}
}
void SWPointer::Tracer::offset_plus_k_11(Node* n) {
if(_slp->is_trace_alignment()) {
print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
/**代码未完, 请加载全部代码(NowJava.com).**/