/*
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "compiler/compileLog.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/parse.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "runtime/sharedRuntime.hpp"
//------------------------------make_dtrace_method_entry_exit ----------------
// Dtrace -- record entry or exit of a method if compiled with dtrace support
void GraphKit::make_dtrace_method_entry_exit(ciMethod* method, bool is_entry) {
const TypeFunc *call_type = OptoRuntime::dtrace_method_entry_exit_Type();
address call_address = is_entry ? CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry) :
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit);
const char *call_name = is_entry ? "dtrace_method_entry" : "dtrace_method_exit";
// Get base of thread-local storage area
Node* thread = _gvn.transform( new ThreadLocalNode() );
// Get method
const TypePtr* method_type = TypeMetadataPtr::make(method);
Node *method_node = _gvn.transform(ConNode::make(method_type));
kill_dead_locals();
// For some reason, this call reads only raw memory.
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
make_runtime_call(RC_LEAF | RC_NARROW_MEM,
call_type, call_address,
call_name, raw_adr_type,
thread, method_node);
}
//=============================================================================
//------------------------------do_checkcast-----------------------------------
void Parse::do_checkcast() {
bool will_link;
ciKlass* klass = iter().get_klass(will_link);
Node *obj = peek();
// Throw uncommon trap if class is not loaded or the value we are casting
// _from_ is not loaded, and value is not null. If the value _is_ NULL,
// then the checkcast does nothing.
const TypeOopPtr *tp = _gvn.type(obj)->isa_oopptr();
if (!will_link || (tp && tp->klass() && !tp->klass()->is_loaded())) {
if (C->log() != NULL) {
if (!will_link) {
C->log()->elem("assert_null reason='checkcast' klass='%d'",
C->log()->identify(klass));
}
if (tp && tp->klass() && !tp->klass()->is_loaded()) {
// %%% Cannot happen?
C->log()->elem("assert_null reason='checkcast source' klass='%d'",
C->log()->identify(tp->klass()));
}
}
null_assert(obj);
assert( stopped() || _gvn.type(peek())->higher_equal(TypePtr::NULL_PTR), "what's left behind is null" );
if (!stopped()) {
profile_null_checkcast();
}
return;
}
Node *res = gen_checkcast(obj, makecon(TypeKlassPtr::make(klass)) );
// Pop from stack AFTER gen_checkcast because it can uncommon trap and
// the debug info has to be correct.
pop();
push(res);
}
//------------------------------do_instanceof----------------------------------
void Parse::do_instanceof() {
if (stopped()) return;
// We would like to return false if class is not loaded, emitting a
// dependency, but Java requires instanceof to load its operand.
// Throw uncommon trap if class is not loaded
bool will_link;
ciKlass* klass = iter().get_klass(will_link);
if (!will_link) {
if (C->log() != NULL) {
C->log()->elem("assert_null reason='instanceof' klass='%d'",
C->log()->identify(klass));
}
null_assert(peek());
assert( stopped() || _gvn.type(peek())->higher_equal(TypePtr::NULL_PTR), "what's left behind is null" );
if (!stopped()) {
// The object is now known to be null.
// Shortcut the effect of gen_instanceof and return "false" directly.
pop(); // pop the null
push(_gvn.intcon(0)); // push false answer
}
return;
}
// Push the bool result back on stack
Node* res = gen_instanceof(peek(), makecon(TypeKlassPtr::make(klass)), true);
// Pop from stack AFTER gen_instanceof because it can uncommon trap.
pop();
push(res);
}
//------------------------------array_store_check------------------------------
// pull array from stack and check that the store is valid
void Parse::array_store_check() {
// Shorthand access to array store elements without popping them.
Node *obj = peek(0);
Node *idx = peek(1);
Node *ary = peek(2);
if (_gvn.type(obj) == TypePtr::NULL_PTR) {
// There's never a type check on null values.
// This cutout lets us avoid the uncommon_trap(Reason_array_check)
// below, which turns into a performance liability if the
// gen_checkcast folds up completely.
return;
}
// Extract the array klass type
int klass_offset = oopDesc::klass_offset_in_bytes();
Node* p = basic_plus_adr( ary, ary, klass_offset );
// p's type is array-of-OOPS plus klass_offset
Node* array_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS));
// Get the array klass
const TypeKlassPtr *tak = _gvn.type(array_klass)->is_klassptr();
// The type of array_klass is usually INexact array-of-oop. Heroically
// cast array_klass to EXACT array and uncommon-trap if the cast fails.
// Make constant out of the inexact array klass, but use it only if the cast
// succeeds.
bool always_see_exact_class = false;
if (MonomorphicArrayCheck
&& !too_many_traps(Deoptimization::Reason_array_check)
&& !tak->klass_is_exact()
&& tak != TypeKlassPtr::OBJECT) {
// Regarding the fourth condition in the if-statement from above:
//
// If the compiler has determined that the type of array 'ary' (represented
// by 'array_klass') is java/lang/Object, the compiler must not assume that
// the array 'ary' is monomorphic.
//
// If 'ary' were of type java/lang/Object, this arraystore would have to fail,
// because it is not possible to perform a arraystore into an object that is not
// a "proper" array.
//
// Therefore, let's obtain at runtime the type of 'ary' and check if we can still
// successfully perform the store.
//
// The implementation reasons for the condition are the following:
//
// java/lang/Object is the superclass of all arrays, but it is represented by the VM
// as an InstanceKlass. The checks generated by gen_checkcast() (see below) expect
// 'array_klass' to be ObjArrayKlass, which can result in invalid memory accesses.
//
// See issue JDK-8057622 for details.
always_see_exact_class = true;
// (If no MDO at all, hope for the best, until a trap actually occurs.)
// Make a constant out of the inexact array klass
const TypeKlassPtr *extak = tak->cast_to_exactness(true)->is_klassptr();
Node* con = makecon(extak);
Node* cmp = _gvn.transform(new CmpPNode( array_klass, con ));
Node* bol = _gvn.transform(new BoolNode( cmp, BoolTest::eq ));
Node* ctrl= control();
{ BuildCutout unless(this, bol, PROB_MAX);
uncommon_trap(Deoptimization::Reason_array_check,
Deoptimization::Action_maybe_recompile,
tak->klass());
}
if (stopped()) { // MUST uncommon-trap?
set_control(ctrl); // Then Don't Do It, just fall into the normal checking
} else { // Cast array klass to exactness:
// Use the exact constant value we know it is.
replace_in_map(array_klass,con);
CompileLog* log = C->log();
if (log != NULL) {
log->elem("cast_up reason='monomorphic_array' from='%d' to='(exact)'",
log->identify(tak->klass()));
}
array_klass = con; // Use cast value moving forward
}
}
// Come here for polymorphic array klasses
// Extract the array element class
int element_klass_offset = in_bytes(ObjArrayKlass::element_klass_offset());
Node *p2 = basic_plus_adr(array_klass, array_klass, element_klass_offset);
// We are allowed to use the constant type only if cast succeeded. If always_see_exact_class is true,
// we must set a control edge from the IfTrue node created by the uncommon_trap above to the
// LoadKlassNode.
Node* a_e_klass = _gvn.transform(LoadKlassNode::make(_gvn, always_see_exact_class ? control() : NULL,
immutable_memory(), p2, tak));
// Check (the hard way) and throw if not a subklass.
// Result is ignored, we just need the CFG effects.
gen_checkcast(obj, a_e_klass);
}
//------------------------------do_new-----------------------------------------
void Parse::do_new() {
kill_dead_locals();
bool will_link;
ciInstanceKlass* klass = iter().get_klass(will_link)->as_instance_klass();
assert(will_link, "_new: typeflow responsibility");
// Should throw an InstantiationError?
if (klass->is_abstract() || klass->is_interface() ||
klass->name() == ciSymbol::java_lang_Class() ||
iter().is_unresolved_klass()) {
uncommon_trap(Deoptimization::Reason_unhandled,
Deoptimization::Action_none,
klass);
return;
}
if (C->needs_clinit_barrier(klass, method())) {
clinit_barrier(klass, method());
if (stopped()) return;
}
Node* kls = makecon(TypeKlassPtr::make(klass));
Node* obj = new_instance(kls);
// Push resultant oop onto stack
push(obj);
// Keep track of whether opportunities exist for StringBuilder
// optimizations.
if (OptimizeStringConcat &&
(klass == C->env()->StringBuilder_klass() ||
klass == C->env()->StringBuffer_klass())) {
C->set_has_stringbuilder(true);
}
// Keep track of boxed values for EliminateAutoBox optimizations.
if (C->eliminate_boxing() && klass->is_box_klass()) {
C->set_has_boxed_value(true);
}
}
#ifndef PRODUCT
//------------------------------dump_map_adr_mem-------------------------------
// Debug dump of the mapping from address types to MergeMemNode indices.
void Parse::dump_map_adr_mem() const {
tty->print_cr("--- Mapping from address types to memory Nodes ---");
MergeMemNode *mem = map() == NULL ? NULL : (map()->memory()->is_MergeMem() ?
map()->memory()->as_MergeMem() : NULL);
for (uint i = 0; i < (uint)C->num_alias_types(); i++) {
C->alias_type(i)->print_on(tty);
tty->print("\t");
// Node mapping, if any
if (mem && i < mem->req() && mem->in(i) && mem->in(i) != mem->empty_memory()) {
mem->in(i)->dump();
} else {
tty->cr();
}
}
}
#endif
//=============================================================================
//
// parser methods for profiling
//----------------------test_counter_against_threshold ------------------------
void Parse::test_counter_against_threshold(Node* cnt, int limit) {
// Test the counter against the limit and uncommon trap if greater.
// This code is largely copied from the range check code in
// array_addressing()
// Test invocation count vs threshold
Node *threshold = makecon(TypeInt::make(limit));
Node *chk = _gvn.transform( new CmpUNode( cnt, threshold) );
BoolTest::mask btest = BoolTest::lt;
Node *tst = _gvn.transform( new BoolNode( chk, btest) );
// Branch to failure if threshold exceeded
{ BuildCutout unless(this, tst, PROB_ALWAYS);
uncommon_trap(Deoptimization::Reason_age,
Deoptimization::Action_maybe_recompile);
}
}
//----------------------increment_and_test_invocation_counter-------------------
void Parse::increment_and_test_invocation_counter(int limit) {
if (!count_invocations()) return;
// Get the Method* node.
ciMethod* m = method();
MethodCounters* counters_adr = m->ensure_method_counters();
if (counters_adr == NULL) {
C->record_failure("method counters allocation failed");
return;
}
Node* ctrl = control();
const TypePtr* adr_type = TypeRawPtr::make((address) counters_adr);
Node *counters_node = makecon(adr_type);
Node* adr_iic_node = basic_plus_adr(counters_node, counters_node,
MethodCounters::interpreter_invocation_counter_offset_in_bytes());
Node* cnt = make_load(ctrl, adr_iic_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
test_counter_against_threshold(cnt, limit);
// Add one to the counter and store
Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
store_to_memory(ctrl, adr_iic_node, incr, T_INT, adr_type, MemNode::unordered);
}
//----------------------------method_data_addressing---------------------------
Node* Parse::method_data_addressing(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, Node* idx, uint stride) {
// Get offset within MethodData* of the data array
ByteSize data_offset = MethodData::data_offset();
// Get cell offset of the ProfileData within data array
int cell_offset = md->dp_to_di(data->dp());
// Add in counter_offset, the # of bytes into the ProfileData of counter or flag
int offset = in_bytes(data_offset) + cell_offset + in_bytes(counter_offset);
const TypePtr* adr_type = TypeMetadataPtr::make(md);
Node* mdo = makecon(adr_type);
Node* ptr = basic_plus_adr(mdo, mdo, offset);
if (stride != 0) {
Node* str = _gvn.MakeConX(stride);
Node* scale = _gvn.transform( new MulXNode( idx, str ) );
ptr = _gvn.transform( new AddPNode( mdo, ptr, scale ) );
}
return ptr;
}
//--------------------------increment_md_counter_at----------------------------
void Parse::increment_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, Node* idx, uint stride) {
Node* adr_node = method_data_addressing(md, data, counter_offset, idx, stride);
const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr();
Node* cnt = make_load(NULL, adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(DataLayout::counter_increment)));
store_to_memory(NULL, adr_node, incr, T_INT, adr_type, MemNode::unordered);
}
//--------------------------test_for_osr_md_counter_at-------------------------
void Parse::test_for_osr_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, int limit) {
Node* adr_node = method_data_addressing(md, data, counter_offset);
const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr();
Node* cnt = make_load(NULL, adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
test_counter_against_threshold(cnt, limit);
}
//-------------------------------set_md_flag_at--------------------------------
void Parse::set_md_flag_at(ciMethodData* md, ciProfileData* data, int flag_constant) {
Node* adr_node = method_data_addressing(md, data, DataLayout::flags_offset());
const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr();
Node* flags = make_load(NULL, adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
Node* incr = _gvn.transform(new OrINode(flags, _gvn.intcon(flag_constant)));
store_to_memory(NULL, adr_node, incr, T_INT, adr_type, MemNode::unordered);
}
//----------------------------profile_taken_branch-----------------------------
void Parse::profile_taken_branch(int target_bci, bool force_update) {
// This is a potential osr_site if we have a backedge.
int cur_bci = bci();
bool osr_site =
(target_bci <= cur_bci) && count_invocations() && UseOnStackReplacement;
// If we are going to OSR, restart at the target bytecode.
set_bci(target_bci);
// To do: factor out the the limit calculations below. These duplicate
// the similar limit calculations in the interpreter.
if (method_data_update() || force_update) {
ciMethodData* md = method()->method_data();
assert(md != NULL, "expected valid ciMethodData");
ciProfileData* data = md->bci_to_data(cur_bci);
assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
increment_md_counter_at(md, data, JumpData::taken_offset());
}
// In the new tiered system this is all we need to do. In the old
// (c2 based) tiered sytem we must do the code below.
#ifndef TIERED
if (method_data_update()) {
ciMethodData* md = method()->method_data();
if (osr_site) {
ciProfileData* data = md->bci_to_data(cur_bci);
assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
int limit = (int)((int64_t)CompileThreshold
* (OnStackReplacePercentage - InterpreterProfilePercentage) / 100);
test_for_osr_md_counter_at(md, data, JumpData::taken_offset(), limit);
}
} else {
// With method data update off, use the invocation counter to trigger an
// OSR compilation, as done in the interpreter.
if (osr_site) {
int limit = (int)((int64_t)CompileThreshold * OnStackReplacePercentage / 100);
increment_and_test_invocation_counter(limit);
}
}
#endif // TIERED
// Restore the original bytecode.
set_bci(cur_bci);
}
//--------------------------profile_not_taken_branch---------------------------
void Parse::profile_not_taken_branch(bool force_update) {
if (method_data_update() || force_update) {
ciMethodData* md = method()->method_data();
assert(md != NULL, "expected valid ciMethodData");
ciProfileData* data = md->bci_to_data(bci());
assert(data != NULL && data->is_BranchData(), "need BranchData for not taken branch");
increment_md_counter_at(md, data, BranchData::not_taken_offset());
}
}
//---------------------------------profile_call--------------------------------
void Parse::profile_call(Node* receiver) {
if (!method_data_update()) return;
switch (bc()) {
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface:
profile_receiver_type(receiver);
break;
case Bytecodes::_invokestatic:
case Bytecodes::_invokedynamic:
case Bytecodes::_invokespecial:
profile_generic_call();
break;
default: fatal("unexpected call bytecode");
}
}
//------------------------------profile_generic_call---------------------------
void Parse::profile_generic_call() {
assert(method_data_update(), "must be generating profile code");
ciMethodData* md = method()->method_data();
assert(md != NULL, "expected valid ciMethodData");
ciProfileData* data = md->bci_to_data(bci());
assert(data != NULL && data->is_CounterData(), "need CounterData for not taken branch");
increment_md_counter_at(md, data, CounterData::count_offset());
}
//-----------------------------profile_receiver_type---------------------------
void Parse::profile_receiver_type(Node* receiver) {
assert(method_data_update(), "must be generating profile code");
ciMethodData* md = method()->method_data();
assert(md != NULL, "expected valid ciMethodData");
ciProfileData* data = md->bci_to_data(bci());
assert(data != NULL && data->is_ReceiverTypeData(), "need ReceiverTypeData here");
// Skip if we aren't tracking receivers
if (TypeProfileWidth < 1) {
increment_md_counter_at(md, data, CounterData::count_offset());
return;
}
ciReceiverTypeData* rdata = (ciReceiverTypeData*)data->as_ReceiverTypeData();
Node* method_data = method_data_addressing(md, rdata, in_ByteSize(0));
// Using an adr_type of TypePtr::BOTTOM to work around anti-dep problems.
// A better solution might be to use TypeRawPtr::BOTTOM with RC_NARROW_MEM.
make_runtime_call(RC_LEAF, OptoRuntime::profile_receiver_type_Type(),
CAST_FROM_FN_PTR(address,
OptoRuntime::profile_receiver_type_C),
"profile_receiver_type_C",
TypePtr::BOTTOM,
/**代码未完, 请加载全部代码(NowJava.com).**/