/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OPTO_MACHNODE_HPP
#define SHARE_OPTO_MACHNODE_HPP
#include "opto/callnode.hpp"
#include "opto/matcher.hpp"
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/regmask.hpp"
class BiasedLockingCounters;
class BufferBlob;
class CodeBuffer;
class JVMState;
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
class MachEpilogNode;
class MachIfNode;
class MachNullCheckNode;
class MachOper;
class MachProjNode;
class MachPrologNode;
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class Matcher;
class PhaseRegAlloc;
class RegMask;
class RTMLockingCounters;
class State;
//---------------------------MachOper------------------------------------------
class MachOper : public ResourceObj {
public:
// Allocate right next to the MachNodes in the same arena
void *operator new(size_t x) throw() {
Compile* C = Compile::current();
return C->node_arena()->Amalloc_D(x);
}
// Opcode
virtual uint opcode() const = 0;
// Number of input edges.
// Generally at least 1
virtual uint num_edges() const { return 1; }
// Array of Register masks
virtual const RegMask *in_RegMask(int index) const;
// Methods to output the encoding of the operand
// Negate conditional branches. Error for non-branch Nodes
virtual void negate();
// Return the value requested
// result register lookup, corresponding to int_format
virtual int reg(PhaseRegAlloc *ra_, const Node *node) const;
// input register lookup, corresponding to ext_format
virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const;
// helpers for MacroAssembler generation from ADLC
Register as_Register(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_Register(reg(ra_, node));
}
Register as_Register(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_Register(reg(ra_, node, idx));
}
FloatRegister as_FloatRegister(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_FloatRegister(reg(ra_, node));
}
FloatRegister as_FloatRegister(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_FloatRegister(reg(ra_, node, idx));
}
#if defined(IA32) || defined(AMD64)
XMMRegister as_XMMRegister(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_XMMRegister(reg(ra_, node));
}
XMMRegister as_XMMRegister(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_XMMRegister(reg(ra_, node, idx));
}
#endif
// CondRegister reg converter
#if defined(PPC64)
ConditionRegister as_ConditionRegister(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_ConditionRegister(reg(ra_, node));
}
ConditionRegister as_ConditionRegister(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_ConditionRegister(reg(ra_, node, idx));
}
VectorRegister as_VectorRegister(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_VectorRegister(reg(ra_, node));
}
VectorRegister as_VectorRegister(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_VectorRegister(reg(ra_, node, idx));
}
VectorSRegister as_VectorSRegister(PhaseRegAlloc *ra_, const Node *node) const {
return ::as_VectorSRegister(reg(ra_, node));
}
VectorSRegister as_VectorSRegister(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return ::as_VectorSRegister(reg(ra_, node, idx));
}
#endif
virtual intptr_t constant() const;
virtual relocInfo::relocType constant_reloc() const;
virtual jdouble constantD() const;
virtual jfloat constantF() const;
virtual jlong constantL() const;
virtual TypeOopPtr *oop() const;
virtual int ccode() const;
// A zero, default, indicates this value is not needed.
// May need to lookup the base register, as done in int_ and ext_format
virtual int base (PhaseRegAlloc *ra_, const Node *node, int idx) const;
virtual int index(PhaseRegAlloc *ra_, const Node *node, int idx) const;
virtual int scale() const;
// Parameters needed to support MEMORY_INTERFACE access to stackSlot
virtual int disp (PhaseRegAlloc *ra_, const Node *node, int idx) const;
// Check for PC-Relative displacement
virtual relocInfo::relocType disp_reloc() const;
virtual int constant_disp() const; // usu. 0, may return Type::OffsetBot
virtual int base_position() const; // base edge position, or -1
virtual int index_position() const; // index edge position, or -1
// Access the TypeKlassPtr of operands with a base==RegI and disp==RegP
// Only returns non-null value for i486.ad's indOffset32X
virtual const TypePtr *disp_as_type() const { return NULL; }
// Return the label
virtual Label *label() const;
// Return the method's address
virtual intptr_t method() const;
// Hash and compare over operands are currently identical
virtual uint hash() const;
virtual bool cmp( const MachOper &oper ) const;
// Virtual clone, since I do not know how big the MachOper is.
virtual MachOper *clone() const = 0;
// Return ideal Type from simple operands. Fail for complex operands.
virtual const Type *type() const;
// Set an integer offset if we have one, or error otherwise
virtual void set_con( jint c0 ) { ShouldNotReachHere(); }
#ifndef PRODUCT
// Return name of operand
virtual const char *Name() const { return "???";}
// Methods to output the text version of the operand
virtual void int_format(PhaseRegAlloc *,const MachNode *node, outputStream *st) const = 0;
virtual void ext_format(PhaseRegAlloc *,const MachNode *node,int idx, outputStream *st) const=0;
virtual void dump_spec(outputStream *st) const; // Print per-operand info
// Check whether o is a valid oper.
static bool notAnOper(const MachOper *o) {
if (o == NULL) return true;
if (((intptr_t)o & 1) != 0) return true;
if (*(address*)o == badAddress) return true; // kill by Node::destruct
return false;
}
#endif // !PRODUCT
};
//------------------------------MachNode---------------------------------------
// Base type for all machine specific nodes. All node classes generated by the
// ADLC inherit from this class.
class MachNode : public Node {
public:
MachNode() : Node((uint)0), _barrier(0), _num_opnds(0), _opnds(NULL) {
init_class_id(Class_Mach);
}
// Required boilerplate
virtual uint size_of() const { return sizeof(MachNode); }
virtual int Opcode() const; // Always equal to MachNode
virtual uint rule() const = 0; // Machine-specific opcode
// Number of inputs which come before the first operand.
// Generally at least 1, to skip the Control input
virtual uint oper_input_base() const { return 1; }
// Position of constant base node in node's inputs. -1 if
// no constant base node input.
virtual uint mach_constant_base_node_input() const { return (uint)-1; }
uint8_t barrier_data() const { return _barrier; }
void set_barrier_data(uint data) { _barrier = data; }
// Copy inputs and operands to new node of instruction.
// Called from cisc_version() and short_branch_version().
// !!!! The method's body is defined in ad_<arch>.cpp file.
void fill_new_machnode(MachNode *n) const;
// Return an equivalent instruction using memory for cisc_operand position
virtual MachNode *cisc_version(int offset);
// Modify this instruction's register mask to use stack version for cisc_operand
virtual void use_cisc_RegMask();
// Support for short branches
bool may_be_short_branch() const { return (flags() & Flag_may_be_short_branch) != 0; }
// Avoid back to back some instructions on some CPUs.
enum AvoidBackToBackFlag { AVOID_NONE = 0,
AVOID_BEFORE = Flag_avoid_back_to_back_before,
AVOID_AFTER = Flag_avoid_back_to_back_after,
AVOID_BEFORE_AND_AFTER = AVOID_BEFORE | AVOID_AFTER };
bool avoid_back_to_back(AvoidBackToBackFlag flag_value) const {
return (flags() & flag_value) == flag_value;
}
// instruction implemented with a call
bool has_call() const { return (flags() & Flag_has_call) != 0; }
// First index in _in[] corresponding to operand, or -1 if there is none
int operand_index(uint operand) const;
int operand_index(const MachOper *oper) const;
int operand_index(Node* m) const;
// Register class input is expected in
virtual const RegMask &in_RegMask(uint) const;
// cisc-spillable instructions redefine for use by in_RegMask
virtual const RegMask *cisc_RegMask() const { return NULL; }
// If this instruction is a 2-address instruction, then return the
// index of the input which must match the output. Not nessecary
// for instructions which bind the input and output register to the
// same singleton regiser (e.g., Intel IDIV which binds AX to be
// both an input and an output). It is nessecary when the input and
// output have choices - but they must use the same choice.
virtual uint two_adr( ) const { return 0; }
// The GC might require some barrier metadata for machine code emission.
uint8_t _barrier;
// Array of complex operand pointers. Each corresponds to zero or
// more leafs. Must be set by MachNode constructor to point to an
// internal array of MachOpers. The MachOper array is sized by
// specific MachNodes described in the ADL.
uint _num_opnds;
MachOper **_opnds;
uint num_opnds() const { return _num_opnds; }
// Emit bytes into cbuf
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
// Expand node after register allocation.
// Node is replaced by several nodes in the postalloc expand phase.
// Corresponding methods are generated for nodes if they specify
// postalloc_expand. See block.cpp for more documentation.
virtual bool requires_postalloc_expand() const { return false; }
virtual void postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);
// Size of instruction in bytes
virtual uint size(PhaseRegAlloc *ra_) const;
// Helper function that computes size by emitting code
virtual uint emit_size(PhaseRegAlloc *ra_) const;
// Return the alignment required (in units of relocInfo::addr_unit())
// for this instruction (must be a power of 2)
virtual int alignment_required() const { return 1; }
// Return the padding (in bytes) to be emitted before this
// instruction to properly align it.
virtual int compute_padding(int current_offset) const { return 0; }
// Return number of relocatable values contained in this instruction
virtual int reloc() const { return 0; }
// Return number of words used for double constants in this instruction
virtual int ins_num_consts() const { return 0; }
// Hash and compare over operands. Used to do GVN on machine Nodes.
virtual uint hash() const;
virtual bool cmp( const Node &n ) const;
// Expand method for MachNode, replaces nodes representing pseudo
// instructions with a set of nodes which represent real machine
// instructions and compute the same value.
virtual MachNode *Expand( State *, Node_List &proj_list, Node* mem ) { return this; }
// Bottom_type call; value comes from operand0
virtual const class Type *bottom_type() const { return _opnds[0]->type(); }
virtual uint ideal_reg() const {
const Type *t = _opnds[0]->type();
if (t == TypeInt::CC) {
return Op_RegFlags;
} else {
return t->ideal_reg();
}
}
// If this is a memory op, return the base pointer and fixed offset.
// If there are no such, return NULL. If there are multiple addresses
// or the address is indeterminate (rare cases) then return (Node*)-1,
// which serves as node bottom.
// If the offset is not statically determined, set it to Type::OffsetBot.
// This method is free to ignore stack slots if that helps.
#define TYPE_PTR_SENTINAL ((const TypePtr*)-1)
// Passing TYPE_PTR_SENTINAL as adr_type asks for computation of the adr_type if possible
const Node* get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const;
// Helper for get_base_and_disp: find the base and index input nodes.
// Returns the MachOper as determined by memory_operand(), for use, if
// needed by the caller. If (MachOper *)-1 is returned, base and index
// are set to NodeSentinel. If (MachOper *) NULL is returned, base and
// index are set to NULL.
const MachOper* memory_inputs(Node* &base, Node* &index) const;
// Helper for memory_inputs: Which operand carries the necessary info?
// By default, returns NULL, which means there is no such operand.
// If it returns (MachOper*)-1, this means there are multiple memories.
virtual const MachOper* memory_operand() const { return NULL; }
// Call "get_base_and_disp" to decide which category of memory is used here.
virtual const class TypePtr *adr_type() const;
// Apply peephole rule(s) to this instruction
virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted);
// Top-level ideal Opcode matched
virtual int ideal_Opcode() const { return Op_Node; }
// Adds the label for the case
virtual void add_case_label( int switch_val, Label* blockLabel);
// Set the absolute address for methods
virtual void method_set( intptr_t addr );
// Should we clone rather than spill this instruction?
bool rematerialize() const;
// Get the pipeline info
static const Pipeline *pipeline_class();
virtual const Pipeline *pipeline() const;
// Returns true if this node is a check that can be implemented with a trap.
virtual bool is_TrapBasedCheckNode() const { return false; }
#ifndef PRODUCT
virtual const char *Name() const = 0; // Machine-specific name
virtual void dump_spec(outputStream *st) const; // Print per-node info
void dump_format(PhaseRegAlloc *ra, outputStream *st) const; // access to virtual
#endif
};
//------------------------------MachIdealNode----------------------------
// Machine specific versions of nodes that must be defined by user.
// These are not converted by matcher from ideal nodes to machine nodes
// but are inserted into the code by the compiler.
class MachIdealNode : public MachNode {
public:
MachIdealNode( ) {}
// Define the following defaults for non-matched machine nodes
virtual uint oper_input_base() const { return 0; }
virtual uint rule() const { return 9999999; }
virtual const class Type *bottom_type() const { return _opnds == NULL ? Type::CONTROL : MachNode::bottom_type(); }
};
//------------------------------MachTypeNode----------------------------
// Machine Nodes that need to retain a known Type.
class MachTypeNode : public MachNode {
virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
MachTypeNode( ) {}
const Type *_bottom_type;
virtual const class Type *bottom_type() const { return _bottom_type; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------MachBreakpointNode----------------------------
// Machine breakpoint or interrupt Node
class MachBreakpointNode : public MachIdealNode {
public:
MachBreakpointNode( ) {}
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
#ifndef PRODUCT
virtual const char *Name() const { return "Breakpoint"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
//------------------------------MachConstantBaseNode--------------------------
// Machine node that represents the base address of the constant table.
class MachConstantBaseNode : public MachIdealNode {
public:
static const RegMask& _out_RegMask; // We need the out_RegMask statically in MachConstantNode::in_RegMask().
public:
MachConstantBaseNode() : MachIdealNode() {
init_class_id(Class_MachConstantBase);
}
virtual const class Type* bottom_type() const { return TypeRawPtr::NOTNULL; }
virtual uint ideal_reg() const { return Op_RegP; }
virtual uint oper_input_base() const { return 1; }
virtual bool requires_postalloc_expand() const;
virtual void postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);
virtual void emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const;
virtual uint size(PhaseRegAlloc* ra_) const;
virtual bool pinned() const { return UseRDPCForConstantTableBase; }
static const RegMask& static_out_RegMask() { return _out_RegMask; }
virtual const RegMask& out_RegMask() const { return static_out_RegMask(); }
#ifndef PRODUCT
virtual const char* Name() const { return "MachConstantBaseNode"; }
virtual void format(PhaseRegAlloc*, outputStream* st) const;
#endif
};
//------------------------------MachConstantNode-------------------------------
// Machine node that holds a constant which is stored in the constant table.
class MachConstantNode : public MachTypeNode {
protected:
Compile::Constant _constant; // This node's constant.
public:
MachConstantNode() : MachTypeNode() {
init_class_id(Class_MachConstant);
}
virtual void eval_constant(Compile* C) {
#ifdef ASSERT
tty->print("missing MachConstantNode eval_constant function: ");
dump();
#endif
ShouldNotCallThis();
}
virtual const RegMask &in_RegMask(uint idx) const {
if (idx == mach_constant_base_node_input())
return MachConstantBaseNode::static_out_RegMask();
return MachNode::in_RegMask(idx);
}
// Input edge of MachConstantBaseNode.
virtual uint mach_constant_base_node_input() const { return req() - 1; }
int constant_offset();
int constant_offset() const { return ((MachConstantNode*) this)->constant_offset(); }
// Unchecked version to avoid assertions in debug output.
int constant_offset_unchecked() const;
};
//------------------------------MachUEPNode-----------------------------------
// Machine Unvalidated Entry Point Node
class MachUEPNode : public MachIdealNode {
public:
MachUEPNode( ) {}
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
#ifndef PRODUCT
virtual const char *Name() const { return "Unvalidated-Entry-Point"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
//------------------------------MachPrologNode--------------------------------
// Machine function Prolog Node
class MachPrologNode : public MachIdealNode {
public:
MachPrologNode( ) {}
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
virtual int reloc() const;
#ifndef PRODUCT
virtual const char *Name() const { return "Prolog"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
//------------------------------MachEpilogNode--------------------------------
// Machine function Epilog Node
class MachEpilogNode : public MachIdealNode {
public:
MachEpilogNode(bool do_poll = false) : _do_polling(do_poll) {}
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
virtual int reloc() const;
virtual const Pipeline *pipeline() const;
private:
bool _do_polling;
public:
bool do_polling() const { return _do_polling; }
// Offset of safepoint from the beginning of the node
int safepoint_offset() const;
#ifndef PRODUCT
virtual const char *Name() const { return "Epilog"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
//------------------------------MachNopNode-----------------------------------
// Machine function Nop Node
class MachNopNode : public MachIdealNode {
private:
int _count;
public:
MachNopNode( ) : _count(1) {}
MachNopNode( int count ) : _count(count) {}
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
virtual const class Type *bottom_type() const { return Type::CONTROL; }
virtual int ideal_Opcode() const { return Op_Con; } // bogus; see output.cpp
virtual const Pipeline *pipeline() const;
#ifndef PRODUCT
virtual const char *Name() const { return "Nop"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
virtual void dump_spec(outputStream *st) const { } // No per-operand info
#endif
};
//------------------------------MachSpillCopyNode------------------------------
// Machine SpillCopy Node. Copies 1 or 2 words from any location to any
// location (stack or register).
class MachSpillCopyNode : public MachIdealNode {
public:
enum SpillType {
TwoAddress, // Inserted when coalescing of a two-address-instruction node and its input fails
PhiInput, // Inserted when coalescing of a phi node and its input fails
DebugUse, // Inserted as debug info spills to safepoints in non-frequent blocks
LoopPhiInput, // Pre-split compares of loop-phis
Definition, // An lrg marked as spilled will be spilled to memory right after its definition,
// if in high pressure region or the lrg is bound
RegToReg, // A register to register move
RegToMem, // A register to memory move
MemToReg, // A memory to register move
PhiLocationDifferToInputLocation, // When coalescing phi nodes in PhaseChaitin::Split(), a move spill is inserted if
// the phi and its input resides at different locations (i.e. reg or mem)
BasePointerToMem, // Spill base pointer to memory at safepoint
InputToRematerialization, // When rematerializing a node we stretch the inputs live ranges, and they might be
// stretched beyond a new definition point, therefore we split out new copies instead
CallUse, // Spill use at a call
Bound // An lrg marked as spill that is bound and needs to be spilled at a use
};
private:
const RegMask *_in; // RegMask for input
const RegMask *_out; // RegMask for output
const Type *_type;
const SpillType _spill_type;
public:
MachSpillCopyNode(SpillType spill_type, Node *n, const RegMask &in, const RegMask &out ) :
MachIdealNode(), _in(&in), _out(&out), _type(n->bottom_type()), _spill_type(spill_type) {
init_class_id(Class_MachSpillCopy);
init_flags(Flag_is_Copy);
add_req(NULL);
add_req(n);
}
virtual uint size_of() const { return sizeof(*this); }
void set_out_RegMask(const RegMask &out) { _out = &out; }
void set_in_RegMask(const RegMask &in) { _in = ∈ }
virtual const RegMask &out_RegMask() const { return *_out; }
virtual const RegMask &in_RegMask(uint) const { return *_in; }
virtual const class Type *bottom_type() const { return _type; }
virtual uint ideal_reg() const { return _type->ideal_reg(); }
virtual uint oper_input_base() const { return 1; }
uint implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const;
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual uint size(PhaseRegAlloc *ra_) const;
#ifndef PRODUCT
static const char *spill_type(SpillType st) {
switch (st) {
case TwoAddress:
return "TwoAddressSpillCopy";
case PhiInput:
return "PhiInputSpillCopy";
case DebugUse:
return "DebugUseSpillCopy";
case LoopPhiInput:
return "LoopPhiInputSpillCopy";
case Definition:
return "DefinitionSpillCopy";
case RegToReg:
return "RegToRegSpillCopy";
case RegToMem:
return "RegToMemSpillCopy";
case MemToReg:
return "MemToRegSpillCopy";
case PhiLocationDifferToInputLocation:
return "PhiLocationDifferToInputLocationSpillCopy";
case BasePointerToMem:
return "BasePointerToMemSpillCopy";
case InputToRematerialization:
return "InputToRematerializationSpillCopy";
case CallUse:
return "CallUseSpillCopy";
case Bound:
return "BoundSpillCopy";
default:
assert(false, "Must have valid spill type");
return "MachSpillCopy";
}
}
virtual const char *Name() const {
return spill_type(_spill_type);
}
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
// MachMergeNode is similar to a PhiNode in a sense it merges multiple values,
// however it doesn't have a control input and is more like a MergeMem.
// It is inserted after the register allocation is done to ensure that nodes use single
// definition of a multidef lrg in a block.
class MachMergeNode : public MachIdealNode {
public:
MachMergeNode(Node *n1) {
init_class_id(Class_MachMerge);
add_req(NULL);
add_req(n1);
}
virtual const RegMask &out_RegMask() const { return in(1)->out_RegMask(); }
virtual const RegMask &in_RegMask(uint idx) const { return in(1)->in_RegMask(idx); }
virtual const class Type *bottom_type() const { return in(1)->bottom_type(); }
virtual uint ideal_reg() const { return bottom_type()->ideal_reg(); }
virtual uint oper_input_base() const { return 1; }
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { }
virtual uint size(PhaseRegAlloc *ra_) const { return 0; }
#ifndef PRODUCT
virtual const char *Name() const { return "MachMerge"; }
#endif
};
//------------------------------MachBranchNode--------------------------------
// Abstract machine branch Node
class MachBranchNode : public MachIdealNode {
public:
MachBranchNode() : MachIdealNode() {
init_class_id(Class_MachBranch);
}
virtual void label_set(Label* label, uint block_num) = 0;
virtual void save_label(Label** label, uint* block_num) = 0;
// Support for short branches
virtual MachNode *short_branch_version() { return NULL; }
virtual bool pinned() const { return true; };
};
//------------------------------MachNullChkNode--------------------------------
// Machine-dependent null-pointer-check Node. Points a real MachNode that is
// also some kind of memory op. Turns the indicated MachNode into a
// conditional branch with good latency on the ptr-not-null path and awful
// latency on the pointer-is-null path.
class MachNullCheckNode : public MachBranchNode {
public:
const uint _vidx; // Index of memop being tested
MachNullCheckNode( Node *ctrl, Node *memop, uint vidx ) : MachBranchNode(), _vidx(vidx) {
init_class_id(Class_MachNullCheck);
add_req(ctrl);
add_req(memop);
}
virtual uint size_of() const { return sizeof(*this); }
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
virtual void label_set(Label* label, uint block_num);
virtual void save_label(Label** label, uint* block_num);
virtual void negate() { }
virtual const class Type *bottom_type() const { return TypeTuple::IFBOTH; }
virtual uint ideal_reg() const { return NotAMachineReg; }
virtual const RegMask &in_RegMask(uint) const;
virtual const RegMask &out_RegMask() const { return RegMask::Empty; }
#ifndef PRODUCT
virtual const char *Name() const { return "NullCheck"; }
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
//------------------------------MachProjNode----------------------------------
// Machine-dependent Ideal projections (how is that for an oxymoron). Really
// just MachNodes made by the Ideal world that replicate simple projections
// but with machine-dependent input & output register masks. Generally
// produced as part of calling conventions. Normally I make MachNodes as part
// of the Matcher process, but the Matcher is ill suited to issues involving
// frame handling, so frame handling is all done in the Ideal world with
// occasional callbacks to the machine model for important info.
class MachProjNode : public ProjNode {
public:
MachProjNode( Node *multi, uint con, const RegMask &out, uint ideal_reg ) : ProjNode(multi,con), _rout(out), _ideal_reg(ideal_reg) {
init_class_id(Class_MachProj);
}
RegMask _rout;
const uint _ideal_reg;
enum projType {
unmatched_proj = 0, // Projs for Control, I/O, memory not matched
fat_proj = 999 // Projs killing many regs, defined by _rout
};
virtual int Opcode() const;
virtual const Type *bottom_type() const;
virtual const TypePtr *adr_type() const;
virtual const RegMask &in_RegMask(uint) const { return RegMask::Empty; }
virtual const RegMask &out_RegMask() const { return _rout; }
virtual uint ideal_reg() const { return _ideal_reg; }
// Need size_of() for virtual ProjNode::clone()
virtual uint size_of() const { return sizeof(MachProjNode); }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------MachIfNode-------------------------------------
// Machine-specific versions of IfNodes
class MachIfNode : public MachBranchNode {
virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
float _prob; // Probability branch goes either way
float _fcnt; // Frequency counter
MachIfNode() : MachBranchNode() {
init_class_id(Class_MachIf);
}
// Negate conditional branches.
virtual void negate() = 0;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------MachJumpNode-----------------------------------
// Machine-specific versions of JumpNodes
class MachJumpNode : public MachConstantNode {
public:
float* _probs;
MachJumpNode() : MachConstantNode() {
init_class_id(Class_MachJump);
}
};
//------------------------------MachGotoNode-----------------------------------
// Machine-specific versions of GotoNodes
class MachGotoNode : public MachBranchNode {
public:
MachGotoNode() : MachBranchNode() {
init_class_id(Class_MachGoto);
}
};
//------------------------------MachFastLockNode-------------------------------------
// Machine-specific versions of FastLockNodes
class MachFastLockNode : public MachNode {
virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
BiasedLockingCounters* _counters;
RTMLockingCounters* _rtm_counters; // RTM lock counters for inflated locks
RTMLockingCounters* _stack_rtm_counters; // RTM lock counters for stack locks
MachFastLockNode() : MachNode() {}
};
//------------------------------MachReturnNode--------------------------------
// Machine-specific versions of subroutine returns
class MachReturnNode : public MachNode {
virtual uint size_of() const; // Size is bigger
public:
RegMask *_in_rms; // Input register masks, set during allocation
ReallocMark _nesting; // assertion check for reallocations
const TypePtr* _adr_type; // memory effects of call or return
MachReturnNode() : MachNode() {
init_class_id(Class_MachReturn);
_adr_type = TypePtr::BOTTOM; // the default: all of memory
}
void set_adr_type(const TypePtr* atp) { _adr_type = atp; }
virtual const RegMask &in_RegMask(uint) const;
virtual bool pinned() const { return true; };
virtual const TypePtr *adr_type() const;
};
//------------------------------MachSafePointNode-----------------------------
// Machine-specific versions of safepoints
class MachSafePointNode : public MachReturnNode {
public:
OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
JVMState* _jvms; // Pointer to list of JVM State Objects
uint _jvmadj; // Extra delta to jvms indexes (mach. args)
OopMap* oop_map() const { return _oop_map; }
void set_oop_map(OopMap* om) { _oop_map = om; }
MachSafePointNode() : MachReturnNode(), _oop_map(NULL), _jvms(NULL), _jvmadj(0) {
init_class_id(Class_MachSafePoint);
}
virtual JVMState* jvms() const { return _jvms; }
void set_jvms(JVMState* s) {
_jvms = s;
}
virtual const Type *bottom_type() const;
virtual const RegMask &in_RegMask(uint) const;
// Functionality from old debug nodes
Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
Node *frameptr () const { return in(TypeFunc::FramePtr); }
Node *local(const JVMState* jvms, uint idx) const {
assert(verify_jvms(jvms), "jvms must match");
return in(_jvmadj + jvms->locoff() + idx);
}
Node *stack(const JVMState* jvms, uint idx) const {
assert(verify_jvms(jvms), "jvms must match");
return in(_jvmadj + jvms->stkoff() + idx);
}
Node *monitor_obj(const JVMState* jvms, uint idx) const {
assert(verify_jvms(jvms), "jvms must match");
return in(_jvmadj + jvms->monitor_obj_offset(idx));
}
Node *monitor_box(const JVMState* jvms, uint idx) const {
assert(verify_jvms(jvms), "jvms must match");
return in(_jvmadj + jvms->monitor_box_offset(idx));
}
void set_local(const JVMState* jvms, uint idx, Node *c) {
assert(verify_jvms(jvms), "jvms must match");
set_req(_jvmadj + jvms->locoff() + idx, c);
}
void set_stack(const JVMState* jvms, uint idx, Node *c) {
assert(verify_jvms(jvms), "jvms must match");
set_req(_jvmadj + jvms->stkoff() + idx, c);
}
void set_monitor(const JVMState* jvms, uint idx, Node *c) {
assert(verify_jvms(jvms), "jvms must match");
set_req(_jvmadj + jvms->monoff() + idx, c);
}
};
//------------------------------MachCallNode----------------------------------
// Machine-specific versions of subroutine calls
class MachCallNode : public MachSafePointNode {
protected:
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const = 0; // Size is bigger
public:
const TypeFunc *_tf; // Function type
address _entry_point; // Address of the method being called
float _cnt; // Estimate of number of times called
uint _argsize; // Size of argument block on stack
const TypeFunc* tf() const { return _tf; }
const address entry_point() const { return _entry_point; }
const float cnt() const { return _cnt; }
uint argsize() const { return _argsize; }
void set_tf(const TypeFunc* tf) { _tf = tf; }
void set_entry_point(address p) { _entry_point = p; }
void set_cnt(float c) { _cnt = c; }
void set_argsize(int s) { _argsize = s; }
MachCallNode() : MachSafePointNode() {
init_class_id(Class_MachCall);
}
virtual const Type *bottom_type() const;
virtual bool pinned() const { return false; }
virtual const Type* Value(PhaseGVN* phase) const;
virtual const RegMask &in_RegMask(uint) const;
virtual int ret_addr_offset() { return 0; }
bool returns_long() const { return tf()->return_type() == T_LONG; }
bool return_value_is_used() const;
// Similar to cousin class CallNode::returns_pointer
bool returns_pointer() const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------MachCallJavaNode------------------------------
// "Base" class for machine-specific versions of subroutine calls
class MachCallJavaNode : public MachCallNode {
protected:
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const; // Size is bigger
public:
ciMethod* _method; // Method being direct called
bool _override_symbolic_info; // Override symbolic call site info from bytecode
int _bci; // Byte Code index of call byte code
bool _optimized_virtual; // Tells if node is a static call or an optimized virtual
bool _method_handle_invoke; // Tells if the call has to preserve SP
MachCallJavaNode() : MachCallNode(), _override_symbolic_info(false) {
init_class_id(Class_MachCallJava);
}
virtual const RegMask &in_RegMask(uint) const;
int resolved_method_index(CodeBuffer &cbuf) const {
if (_override_symbolic_info) {
// Attach corresponding Method* to the call site, so VM can use it during resolution
// instead of querying symbolic info from bytecode.
assert(_method != NULL, "method should be set");
assert(_method->constant_encoding()->is_method(), "should point to a Method");
return cbuf.oop_recorder()->find_index(_method->constant_encoding());
}
return 0; // Use symbolic info from bytecode (resolved_method == NULL).
}
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------MachCallStaticJavaNode------------------------
// Machine-specific versions of monomorphic subroutine calls
class MachCallStaticJavaNode : public MachCallJavaNode {
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const; // Size is bigger
public:
const char *_name; // Runtime wrapper name
MachCallStaticJavaNode() : MachCallJavaNode() {
init_class_id(Class_MachCallStaticJava);
}
// If this is an uncommon trap, return the request code, else zero.
int uncommon_trap_request() const;
virtual int ret_addr_offset();
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
void dump_trap_args(outputStream *st) const;
#endif
};
//------------------------------MachCallDynamicJavaNode------------------------
// Machine-specific versions of possibly megamorphic subroutine calls
class MachCallDynamicJavaNode : public MachCallJavaNode {
public:
int _vtable_index;
MachCallDynamicJavaNode() : MachCallJavaNode() {
init_class_id(Class_MachCallDynamicJava);
DEBUG_ONLY(_vtable_index = -99); // throw an assert if uninitialized
}
virtual int ret_addr_offset();
#ifndef PRODUCT
/**代码未完, 请加载全部代码(NowJava.com).**/