/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.hpp"
#include "memory/resourceArea.hpp"
#include "opto/block.hpp"
#include "opto/machnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"
// Portions of code courtesy of Clifford Click
// A data structure that holds all the information needed to find dominators.
struct Tarjan {
Block *_block; // Basic block for this info
uint _semi; // Semi-dominators
uint _size; // Used for faster LINK and EVAL
Tarjan *_parent; // Parent in DFS
Tarjan *_label; // Used for LINK and EVAL
Tarjan *_ancestor; // Used for LINK and EVAL
Tarjan *_child; // Used for faster LINK and EVAL
Tarjan *_dom; // Parent in dominator tree (immediate dom)
Tarjan *_bucket; // Set of vertices with given semidominator
Tarjan *_dom_child; // Child in dominator tree
Tarjan *_dom_next; // Next in dominator tree
// Fast union-find work
void COMPRESS();
Tarjan *EVAL(void);
void LINK( Tarjan *w, Tarjan *tarjan0 );
void setdepth( uint size );
};
// Compute the dominator tree of the CFG. The CFG must already have been
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
void PhaseCFG::build_dominator_tree() {
// Pre-grow the blocks array, prior to the ResourceMark kicking in
_blocks.map(number_of_blocks(), 0);
ResourceMark rm;
// Setup mappings from my Graph to Tarjan's stuff and back
// Note: Tarjan uses 1-based arrays
Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
// Tarjan's algorithm, almost verbatim:
// Step 1:
uint dfsnum = do_DFS(tarjan, number_of_blocks());
if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
// If the returned dfsnum does not match the number of blocks, then we
// must have some unreachable loops. These can be made at any time by
// IterGVN. They are cleaned up by CCP or the loop opts, but the last
// IterGVN can always make more that are not cleaned up. Highly unlikely
// except in ZKM.jar, where endless irreducible loops cause the loop opts
// to not get run.
//
// Having found unreachable loops, we have made a bad RPO _block layout.
// We can re-run the above DFS pass with the correct number of blocks,
// and hack the Tarjan algorithm below to be robust in the presence of
// such dead loops (as was done for the NTarjan code farther below).
// Since this situation is so unlikely, instead I've decided to bail out.
// CNC 7/24/2001
C->record_method_not_compilable("unreachable loop");
return;
}
_blocks._cnt = number_of_blocks();
// Tarjan is using 1-based arrays, so these are some initialize flags
tarjan[0]._size = tarjan[0]._semi = 0;
tarjan[0]._label = &tarjan[0];
for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
Tarjan *w = &tarjan[i]; // Get vertex from DFS
// Step 2:
Node *whead = w->_block->head();
for (uint j = 1; j < whead->req(); j++) {
Block* b = get_block_for_node(whead->in(j));
Tarjan *vx = &tarjan[b->_pre_order];
Tarjan *u = vx->EVAL();
if( u->_semi < w->_semi )
w->_semi = u->_semi;
}
// w is added to a bucket here, and only here.
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
// Thus bucket can be a linked list.
// Thus we do not need a small integer name for each Block.
w->_bucket = tarjan[w->_semi]._bucket;
tarjan[w->_semi]._bucket = w;
w->_parent->LINK( w, &tarjan[0] );
// Step 3:
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
Tarjan *u = vx->EVAL();
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
}
}
// Step 4:
for (uint i = 2; i <= number_of_blocks(); i++) {
Tarjan *w = &tarjan[i];
if( w->_dom != &tarjan[w->_semi] )
w->_dom = w->_dom->_dom;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
}
// No immediate dominator for the root
Tarjan *w = &tarjan[get_root_block()->_pre_order];
w->_dom = NULL;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
// Convert the dominator tree array into my kind of graph
for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
Tarjan *t = &tarjan[i]; // Handy access
Tarjan *tdom = t->_dom; // Handy access to immediate dominator
if( tdom ) { // Root has no immediate dominator
t->_block->_idom = tdom->_block; // Set immediate dominator
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
tdom->_dom_child = t; // Make me a child of my parent
} else
t->_block->_idom = NULL; // Root
}
w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
}
class Block_Stack {
private:
struct Block_Descr {
Block *block; // Block
int index; // Index of block's successor pushed on stack
int freq_idx; // Index of block's most frequent successor
};
Block_Descr *_stack_top;
Block_Descr *_stack_max;
Block_Descr *_stack;
Tarjan *_tarjan;
uint most_frequent_successor( Block *b );
public:
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
_stack_max = _stack + size;
_stack_top = _stack - 1; // stack is empty
}
void push(uint pre_order, Block *b) {
Tarjan *t = &_tarjan[pre_order]; // Fast local access
b->_pre_order = pre_order; // Flag as visited
t->_block = b; // Save actual block
t->_semi = pre_order; // Block to DFS map
t->_label = t; // DFS to vertex map
t->_ancestor = NULL; // Fast LINK & EVAL setup
t->_child = &_tarjan[0]; // Sentenial
t->_size = 1;
t->_bucket = NULL;
if (pre_order == 1)
t->_parent = NULL; // first block doesn't have parent
else {
// Save parent (current top block on stack) in DFS
t->_parent = &_tarjan[_stack_top->block->_pre_order];
}
// Now put this block on stack
++_stack_top;
assert(_stack_top < _stack_max, ""); // assert if stack have to grow
_stack_top->block = b;
_stack_top->index = -1;
// Find the index into b->succs[] array of the most frequent successor.
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
}
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
bool is_nonempty() { return (_stack_top >= _stack); }
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
Block* next_successor() {
int i = _stack_top->index;
i++;
if (i == _stack_top->freq_idx) i++;
if (i >= (int)(_stack_top->block->_num_succs)) {
i = _stack_top->freq_idx; // process most frequent successor last
}
_stack_top->index = i;
return _stack_top->block->_succs[ i ];
}
};
// Find the index into the b->succs[] array of the most frequent successor.
uint Block_Stack::most_frequent_successor( Block *b ) {
uint freq_idx = 0;
int eidx = b->end_idx();
Node *n = b->get_node(eidx);
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
switch( op ) {
case Op_CountedLoopEnd:
case Op_If: { // Split frequency amongst children
float prob = n->as_MachIf()->_prob;
// Is succ[0] the TRUE branch or the FALSE branch?
if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
prob = 1.0f - prob;
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
break;
}
case Op_Catch: // Split frequency amongst children
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
break;
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
if( freq_idx == b->_num_succs ) freq_idx = 0;
break;
// Currently there is no support for finding out the most
// frequent successor for jumps, so lets just make it the first one
case Op_Jump:
case Op_Root:
case Op_Goto:
case Op_NeverBranch:
freq_idx = 0; // fall thru
break;
case Op_TailCall:
case Op_TailJump:
case Op_Return:
case Op_Halt:
case Op_Rethrow:
break;
default:
ShouldNotReachHere();
}
return freq_idx;
}
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
Block* root_block = get_root_block();
uint pre_order = 1;
// Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
Block_Stack bstack(tarjan, number_of_blocks() + 1);
// Push on stack the state for the first block
bstack.push(pre_order, root_block);
++pre_order;
while (bstack.is_nonempty()) {
if (!bstack.last_successor()) {
// Walk over all successors in pre-order (DFS).
Block* next_block = bstack.next_successor();
if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
// Push on stack the state of successor
bstack.push(pre_order, next_block);
++pre_order;
}
}
else {
// Build a reverse post-order in the CFG _blocks array
Block *stack_top = bstack.pop();
stack_top->_rpo = --rpo_counter;
_blocks.map(stack_top->_rpo, stack_top);
}
}
return pre_order;
}
void Tarjan::COMPRESS()
{
assert( _ancestor != 0, "" );
if( _ancestor->_ancestor != 0 ) {
_ancestor->COMPRESS( );
if( _ancestor->_label->_semi < _label->_semi )
_label = _ancestor->_label;
_ancestor = _ancestor->_ancestor;
}
}
Tarjan *Tarjan::EVAL() {
if( !_ancestor ) return _label;
COMPRESS();
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
}
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
Tarjan *s = w;
while( w->_label->_semi < s->_child->_label->_semi ) {
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
s->_child->_ancestor = s;
s->_child = s->_child->_child;
} else {
s->_child->_size = s->_size;
s = s->_ancestor = s->_child;
}
}
s->_label = w->_label;
_size += w->_size;
if( _size < (w->_size << 1) ) {
Tarjan *tmp = s; s = _child; _child = tmp;
}
while( s != tarjan0 ) {
s->_ancestor = this;
s = s->_child;
}
}
void Tarjan::setdepth( uint stack_size ) {
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
Tarjan **next = top;
Tarjan **last;
uint depth = 0;
*top = this;
++top;
do {
// next level
++depth;
last = top;
do {
// Set current depth for all tarjans on this level
Tarjan *t = *next; // next tarjan from stack
++next;
do {
t->_block->_dom_depth = depth; // Set depth in dominator tree
Tarjan *dom_child = t->_dom_child;
t = t->_dom_next; // next tarjan
if (dom_child != NULL) {
*top = dom_child; // save child on stack
++top;
}
} while (t != NULL);
} while (next < last);
} while (last < top);
}
// Compute dominators on the Sea of Nodes form
// A data structure that holds all the information needed to find dominators.
struct NTarjan {
Node *_control; // Control node associated with this info
uint _semi; // Semi-dominators
uint _size; // Used for faster LINK and EVAL
NTarjan *_parent; // Parent in DFS
NTarjan *_label; // Used for LINK and EVAL
NTarjan *_ancestor; // Used for LINK and EVAL
NTarjan *_child; // Used for faster LINK and EVAL
NTarjan *_dom; // Parent in dominator tree (immediate dom)
NTarjan *_bucket; // Set of vertices with given semidominator
NTarjan *_dom_child; // Child in dominator tree
NTarjan *_dom_next; // Next in dominator tree
// Perform DFS search.
// Setup 'vertex' as DFS to vertex mapping.
// Setup 'semi' as vertex to DFS mapping.
// Set 'parent' to DFS parent.
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
void setdepth( uint size, uint *dom_depth );
// Fast union-find work
void COMPRESS();
NTarjan *EVAL(void);
void LINK( NTarjan *w, NTarjan *ntarjan0 );
#ifndef PRODUCT
void dump(int offset) const;
#endif
};
// Compute the dominator tree of the sea of nodes. This version walks all CFG
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
// it needs a count of the CFG nodes for the mapping table. This is the
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
void PhaseIdealLoop::Dominators() {
ResourceMark rm;
// Setup mappings from my Graph to Tarjan's stuff and back
// Note: Tarjan uses 1-based arrays
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
// Initialize _control field for fast reference
int i;
for( i= C->unique()-1; i>=0; i-- )
ntarjan[i]._control = NULL;
// Store the DFS order for the main loop
const uint fill_value = max_juint;
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
memset(dfsorder, fill_value, (C->unique()+1) * sizeof(uint));
// Tarjan's algorithm, almost verbatim:
// Step 1:
VectorSet visited(Thread::current()->resource_area());
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
// Tarjan is using 1-based arrays, so these are some initialize flags
ntarjan[0]._size = ntarjan[0]._semi = 0;
ntarjan[0]._label = &ntarjan[0];
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
NTarjan *w = &ntarjan[i]; // Get Node from DFS
assert(w->_control != NULL,"bad DFS walk");
// Step 2:
Node *whead = w->_control;
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
continue; // Only process control nodes
uint b = dfsorder[whead->in(j)->_idx];
if(b == fill_value) continue;
NTarjan *vx = &ntarjan[b];
NTarjan *u = vx->EVAL();
if( u->_semi < w->_semi )
w->_semi = u->_semi;
}
// w is added to a bucket here, and only here.
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
// Thus bucket can be a linked list.
w->_bucket = ntarjan[w->_semi]._bucket;
ntarjan[w->_semi]._bucket = w;
w->_parent->LINK( w, &ntarjan[0] );
// Step 3:
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
NTarjan *u = vx->EVAL();
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
}
// Cleanup any unreachable loops now. Unreachable loops are loops that
// flow into the main graph (and hence into ROOT) but are not reachable
// from above. Such code is dead, but requires a global pass to detect
// it; this global pass was the 'build_loop_tree' pass run just prior.
if( !_verify_only && whead->is_Region() ) {
for( uint i = 1; i < whead->req(); i++ ) {
if (!has_node(whead->in(i))) {
// Kill dead input path
assert( !visited.test(whead->in(i)->_idx),
"input with no loop must be dead" );
_igvn.delete_input_of(whead, i);
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
Node* p = whead->fast_out(j);
if( p->is_Phi() ) {
_igvn.delete_input_of(p, i);
}
}
i--; // Rerun same iteration
} // End of if dead input path
} // End of for all input paths
} // End if if whead is a Region
} // End of for all Nodes in reverse DFS order
// Step 4:
for( i=2; i < dfsnum; i++ ) { // DFS order
NTarjan *w = &ntarjan[i];
assert(w->_control != NULL,"Bad DFS walk");
if( w->_dom != &ntarjan[w->_semi] )
w->_dom = w->_dom->_dom;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
}
// No immediate dominator for the root
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
w->_dom = NULL;
w->_parent = NULL;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
// Convert the dominator tree array into my kind of graph
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
NTarjan *t = &ntarjan[i]; // Handy access
assert(t->_control != NULL,"Bad DFS walk");
NTarjan *tdom = t->_dom; // Handy access to immediate dominator
if( tdom ) { // Root has no immediate dominator
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
tdom->_dom_child = t; // Make me a child of my parent
} else
_idom[C->root()->_idx] = NULL; // Root
}
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
// Pick up the 'top' node as well
_idom [C->top()->_idx] = C->root();
_dom_depth[C->top()->_idx] = 1;
// Debug Print of Dominator tree
if( PrintDominators ) {
#ifndef PRODUCT
w->dump(0);
#endif
}
}
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
// Allocate stack of size C->live_nodes()/8 to avoid frequent realloc
GrowableArray <Node *> dfstack(pil->C->live_nodes() >> 3);
Node *b = pil->C->root();
int dfsnum = 1;
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
dfstack.push(b);
while (dfstack.is_nonempty()) {
b = dfstack.pop();
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
NTarjan *w = &ntarjan[dfsnum];
// Only fully process control nodes
w->_control = b; // Save actual node
// Use parent's cached dfsnum to identify "Parent in DFS"
w->_parent = &ntarjan[dfsorder[b->_idx]];
dfsorder[b->_idx] = dfsnum; // Save DFS order info
w->_semi = dfsnum; // Node to DFS map
w->_label = w; // DFS to vertex map
w->_ancestor = NULL; // Fast LINK & EVAL setup
w->_child = &ntarjan[0]; // Sentinal
w->_size = 1;
w->_bucket = NULL;
// Need DEF-USE info for this pass
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
Node* s = b->raw_out(i); // Get a use
// CFG nodes only and not dead stuff
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
dfstack.push(s);
}
}
dfsnum++; // update after parent's dfsnum has been cached.
}
}
return dfsnum;
}
void NTarjan::COMPRESS()
{
assert( _ancestor != 0, "" );
if( _ancestor->_ancestor != 0 ) {
_ancestor->COMPRESS( );
if( _ancestor->_label->_semi < _label->_semi )
_label = _ancestor->_label;
_ancestor = _ancestor->_ancestor;
}
}
NTarjan *NTarjan::EVAL() {
if( !_ancestor ) return _label;
COMPRESS();
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
}
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
NTarjan *s = w;
/**代码未完, 请加载全部代码(NowJava.com).**/