/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OPTO_CHAITIN_HPP
#define SHARE_OPTO_CHAITIN_HPP
#include "code/vmreg.hpp"
#include "memory/resourceArea.hpp"
#include "opto/connode.hpp"
#include "opto/live.hpp"
#include "opto/matcher.hpp"
#include "opto/phase.hpp"
#include "opto/regalloc.hpp"
#include "opto/regmask.hpp"
#include "opto/machnode.hpp"
class Matcher;
class PhaseCFG;
class PhaseLive;
class PhaseRegAlloc;
class PhaseChaitin;
#define OPTO_DEBUG_SPLIT_FREQ BLOCK_FREQUENCY(0.001)
#define OPTO_LRG_HIGH_FREQ BLOCK_FREQUENCY(0.25)
//------------------------------LRG--------------------------------------------
// Live-RanGe structure.
class LRG : public ResourceObj {
friend class VMStructs;
public:
static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
enum { SPILL_REG=29999 }; // Register number of a spilled LRG
double _cost; // 2 for loads/1 for stores times block freq
double _area; // Sum of all simultaneously live values
double score() const; // Compute score from cost and area
double _maxfreq; // Maximum frequency of any def or use
Node *_def; // Check for multi-def live ranges
#ifndef PRODUCT
GrowableArray<Node*>* _defs;
#endif
uint _risk_bias; // Index of LRG which we want to avoid color
uint _copy_bias; // Index of LRG which we want to share color
uint _next; // Index of next LRG in linked list
uint _prev; // Index of prev LRG in linked list
private:
uint _reg; // Chosen register; undefined if mask is plural
public:
// Return chosen register for this LRG. Error if the LRG is not bound to
// a single register.
OptoReg::Name reg() const { return OptoReg::Name(_reg); }
void set_reg( OptoReg::Name r ) { _reg = r; }
private:
uint _eff_degree; // Effective degree: Sum of neighbors _num_regs
public:
int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
// Degree starts not valid and any change to the IFG neighbor
// set makes it not valid.
void set_degree( uint degree ) {
_eff_degree = degree;
debug_only(_degree_valid = 1;)
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
}
// Made a change that hammered degree
void invalid_degree() { debug_only(_degree_valid=0;) }
// Incrementally modify degree. If it was correct, it should remain correct
void inc_degree( uint mod ) {
_eff_degree += mod;
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
}
// Compute the degree between 2 live ranges
int compute_degree( LRG &l ) const;
bool mask_is_nonempty_and_up() const {
return mask().is_UP() && mask_size();
}
bool is_float_or_vector() const {
return _is_float || _is_vector;
}
private:
RegMask _mask; // Allowed registers for this LRG
uint _mask_size; // cache of _mask.Size();
public:
int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
void set_mask_size( int size ) {
assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
_mask_size = size;
#ifdef ASSERT
_msize_valid=1;
if (_is_vector) {
assert(!_fat_proj, "sanity");
assert(_mask.is_aligned_sets(_num_regs), "mask is not aligned, adjacent sets");
} else if (_num_regs == 2 && !_fat_proj) {
assert(_mask.is_aligned_pairs(), "mask is not aligned, adjacent pairs");
}
#endif
}
void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
int mask_size() const { assert( _msize_valid, "mask size not valid" );
return _mask_size; }
// Get the last mask size computed, even if it does not match the
// count of bits in the current mask.
int get_invalid_mask_size() const { return _mask_size; }
const RegMask &mask() const { return _mask; }
void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
void Clear() { _mask.Clear() ; debug_only(_msize_valid=1); _mask_size = 0; }
void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
void Insert( OptoReg::Name reg ) { _mask.Insert(reg); debug_only(_msize_valid=0;) }
void Remove( OptoReg::Name reg ) { _mask.Remove(reg); debug_only(_msize_valid=0;) }
void clear_to_sets() { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
// Number of registers this live range uses when it colors
private:
uint16_t _num_regs; // 2 for Longs and Doubles, 1 for all else
// except _num_regs is kill count for fat_proj
public:
int num_regs() const { return _num_regs; }
void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
private:
// Number of physical registers this live range uses when it colors
// Architecture and register-set dependent
uint16_t _reg_pressure;
public:
void set_reg_pressure(int i) { _reg_pressure = i; }
int reg_pressure() const { return _reg_pressure; }
// How much 'wiggle room' does this live range have?
// How many color choices can it make (scaled by _num_regs)?
int degrees_of_freedom() const { return mask_size() - _num_regs; }
// Bound LRGs have ZERO degrees of freedom. We also count
// must_spill as bound.
bool is_bound () const { return _is_bound; }
// Negative degrees-of-freedom; even with no neighbors this
// live range must spill.
bool not_free() const { return degrees_of_freedom() < 0; }
// Is this live range of "low-degree"? Trivially colorable?
bool lo_degree () const { return degree() <= degrees_of_freedom(); }
// Is this live range just barely "low-degree"? Trivially colorable?
bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
uint _is_oop:1, // Live-range holds an oop
_is_float:1, // True if in float registers
_is_vector:1, // True if in vector registers
_was_spilled1:1, // True if prior spilling on def
_was_spilled2:1, // True if twice prior spilling on def
_is_bound:1, // live range starts life with no
// degrees of freedom.
_direct_conflict:1, // True if def and use registers in conflict
_must_spill:1, // live range has lost all degrees of freedom
// If _fat_proj is set, live range does NOT require aligned, adjacent
// registers and has NO interferences.
// If _fat_proj is clear, live range requires num_regs() to be a power of
// 2, and it requires registers to form an aligned, adjacent set.
_fat_proj:1, //
_was_lo:1, // Was lo-degree prior to coalesce
_msize_valid:1, // _mask_size cache valid
_degree_valid:1, // _degree cache valid
_has_copy:1, // Adjacent to some copy instruction
_at_risk:1; // Simplify says this guy is at risk to spill
// Alive if non-zero, dead if zero
bool alive() const { return _def != NULL; }
bool is_multidef() const { return _def == NodeSentinel; }
bool is_singledef() const { return _def != NodeSentinel; }
#ifndef PRODUCT
void dump( ) const;
#endif
};
//------------------------------IFG--------------------------------------------
// InterFerence Graph
// An undirected graph implementation. Created with a fixed number of
// vertices. Edges can be added & tested. Vertices can be removed, then
// added back later with all edges intact. Can add edges between one vertex
// and a list of other vertices. Can union vertices (and their edges)
// together. The IFG needs to be really really fast, and also fairly
// abstract! It needs abstraction so I can fiddle with the implementation to
// get even more speed.
class PhaseIFG : public Phase {
friend class VMStructs;
// Current implementation: a triangular adjacency list.
// Array of adjacency-lists, indexed by live-range number
IndexSet *_adjs;
// Assertion bit for proper use of Squaring
bool _is_square;
// Live range structure goes here
LRG *_lrgs; // Array of LRG structures
public:
// Largest live-range number
uint _maxlrg;
Arena *_arena;
// Keep track of inserted and deleted Nodes
VectorSet *_yanked;
PhaseIFG( Arena *arena );
void init( uint maxlrg );
// Add edge between a and b. Returns true if actually addded.
int add_edge( uint a, uint b );
// Test for edge existance
int test_edge( uint a, uint b ) const;
// Square-up matrix for faster Union
void SquareUp();
// Return number of LRG neighbors
uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
// Union edges of b into a on Squared-up matrix
void Union( uint a, uint b );
// Test for edge in Squared-up matrix
int test_edge_sq( uint a, uint b ) const;
// Yank a Node and all connected edges from the IFG. Be prepared to
// re-insert the yanked Node in reverse order of yanking. Return a
// list of neighbors (edges) yanked.
IndexSet *remove_node( uint a );
// Reinsert a yanked Node
void re_insert( uint a );
// Return set of neighbors
IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
#ifndef PRODUCT
// Dump the IFG
void dump() const;
void stats() const;
void verify( const PhaseChaitin * ) const;
#endif
//--------------- Live Range Accessors
LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
// Compute and set effective degree. Might be folded into SquareUp().
void Compute_Effective_Degree();
// Compute effective degree as the sum of neighbors' _sizes.
int effective_degree( uint lidx ) const;
};
// The LiveRangeMap class is responsible for storing node to live range id mapping.
// Each node is mapped to a live range id (a virtual register). Nodes that are
// not considered for register allocation are given live range id 0.
class LiveRangeMap {
private:
uint _max_lrg_id;
// Union-find map. Declared as a short for speed.
// Indexed by live-range number, it returns the compacted live-range number
LRG_List _uf_map;
// Map from Nodes to live ranges
LRG_List _names;
// Straight out of Tarjan's union-find algorithm
uint find_compress(const Node *node) {
uint lrg_id = find_compress(_names.at(node->_idx));
_names.at_put(node->_idx, lrg_id);
return lrg_id;
}
uint find_compress(uint lrg);
public:
const LRG_List& names() {
return _names;
}
uint max_lrg_id() const {
return _max_lrg_id;
}
void set_max_lrg_id(uint max_lrg_id) {
_max_lrg_id = max_lrg_id;
}
uint size() const {
return _names.length();
}
uint live_range_id(uint idx) const {
return _names.at(idx);
}
uint live_range_id(const Node *node) const {
return _names.at(node->_idx);
}
uint uf_live_range_id(uint lrg_id) const {
return _uf_map.at(lrg_id);
}
void map(uint idx, uint lrg_id) {
_names.at_put(idx, lrg_id);
}
void uf_map(uint dst_lrg_id, uint src_lrg_id) {
_uf_map.at_put(dst_lrg_id, src_lrg_id);
}
void extend(uint idx, uint lrg_id) {
_names.at_put_grow(idx, lrg_id);
}
void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
_uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
}
LiveRangeMap(Arena* arena, uint unique)
: _max_lrg_id(0)
, _uf_map(arena, unique, unique, 0)
, _names(arena, unique, unique, 0) {}
uint find_id( const Node *n ) {
uint retval = live_range_id(n);
assert(retval == find(n),"Invalid node to lidx mapping");
return retval;
}
// Reset the Union-Find map to identity
void reset_uf_map(uint max_lrg_id);
// Make all Nodes map directly to their final live range; no need for
// the Union-Find mapping after this call.
void compress_uf_map_for_nodes();
uint find(uint lidx) {
uint uf_lidx = _uf_map.at(lidx);
return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
}
// Convert a Node into a Live Range Index - a lidx
uint find(const Node *node) {
uint lidx = live_range_id(node);
uint uf_lidx = _uf_map.at(lidx);
return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
}
// Like Find above, but no path compress, so bad asymptotic behavior
uint find_const(uint lrg) const;
// Like Find above, but no path compress, so bad asymptotic behavior
uint find_const(const Node *node) const {
if(node->_idx >= (uint)_names.length()) {
return 0; // not mapped, usual for debug dump
}
return find_const(_names.at(node->_idx));
}
};
//------------------------------Chaitin----------------------------------------
// Briggs-Chaitin style allocation, mostly.
class PhaseChaitin : public PhaseRegAlloc {
friend class VMStructs;
int _trip_cnt;
int _alternate;
PhaseLive *_live; // Liveness, used in the interference graph
PhaseIFG *_ifg; // Interference graph (for original chunk)
VectorSet _spilled_once; // Nodes that have been spilled
VectorSet _spilled_twice; // Nodes that have been spilled twice
// Combine the Live Range Indices for these 2 Nodes into a single live
// range. Future requests for any Node in either live range will
// return the live range index for the combined live range.
void Union( const Node *src, const Node *dst );
void new_lrg( const Node *x, uint lrg );
// Compact live ranges, removing unused ones. Return new maxlrg.
void compact();
uint _lo_degree; // Head of lo-degree LRGs list
uint _lo_stk_degree; // Head of lo-stk-degree LRGs list
uint _hi_degree; // Head of hi-degree LRGs list
uint _simplified; // Linked list head of simplified LRGs
// Helper functions for Split()
uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
uint split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
//------------------------------clone_projs------------------------------------
// After cloning some rematerialized instruction, clone any MachProj's that
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants
// use G3 as an address temp.
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
uint max_lrg_id = lrg_map.max_lrg_id();
int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
if (found_projs > 0) {
// max_lrg_id is updated during call above
lrg_map.set_max_lrg_id(max_lrg_id);
}
return found_projs;
}
Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
// True if lidx is used before any real register is def'd in the block
bool prompt_use( Block *b, uint lidx );
Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
// Insert the spill at chosen location. Skip over any intervening Proj's or
// Phis. Skip over a CatchNode and projs, inserting in the fall-through block
// instead. Update high-pressure indices. Create a new live range.
void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
uint _oldphi; // Node index which separates pre-allocation nodes
Block **_blks; // Array of blocks sorted by frequency for coalescing
float _high_frequency_lrg; // Frequency at which LRG will be spilled for debug info
#ifndef PRODUCT
bool _trace_spilling;
#endif
public:
PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
~PhaseChaitin() {}
LiveRangeMap _lrg_map;
LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
// Do all the real work of allocate
void Register_Allocate();
float high_frequency_lrg() const { return _high_frequency_lrg; }
// Used when scheduling info generated, not in general register allocation
bool _scheduling_info_generated;
void set_ifg(PhaseIFG &ifg) { _ifg = &ifg; }
void set_live(PhaseLive &live) { _live = &live; }
PhaseLive* get_live() { return _live; }
// Populate the live range maps with ssa info for scheduling
void mark_ssa();
#ifndef PRODUCT
bool trace_spilling() const { return _trace_spilling; }
#endif
private:
// De-SSA the world. Assign registers to Nodes. Use the same register for
// all inputs to a PhiNode, effectively coalescing live ranges. Insert
// copies as needed.
void de_ssa();
// Add edge between reg and everything in the vector.
// Use the RegMask information to trim the set of interferences. Return the
// count of edges added.
void interfere_with_live(uint lid, IndexSet* liveout);
#ifdef ASSERT
// Count register pressure for asserts
uint count_int_pressure(IndexSet* liveout);
uint count_float_pressure(IndexSet* liveout);
#endif
// Build the interference graph using virtual registers only.
// Used for aggressive coalescing.
void build_ifg_virtual( );
// used when computing the register pressure for each block in the CFG. This
// is done during IFG creation.
class Pressure {
// keeps track of the register pressure at the current
// instruction (used when stepping backwards in the block)
uint _current_pressure;
// keeps track of the instruction index of the first low to high register pressure
// transition (starting from the top) in the block
// if high_pressure_index == 0 then the whole block is high pressure
// if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
uint _high_pressure_index;
// stores the highest pressure we find
uint _final_pressure;
// number of live ranges that constitute high register pressure
uint _high_pressure_limit;
// initial pressure observed
uint _start_pressure;
public:
// lower the register pressure and look for a low to high pressure
// transition
void lower(LRG& lrg, uint& location) {
_current_pressure -= lrg.reg_pressure();
if (_current_pressure == _high_pressure_limit) {
_high_pressure_index = location;
}
}
// raise the pressure and store the pressure if it's the biggest
// pressure so far
void raise(LRG &lrg) {
_current_pressure += lrg.reg_pressure();
if (_current_pressure > _final_pressure) {
_final_pressure = _current_pressure;
}
}
void init(int limit) {
_current_pressure = 0;
_high_pressure_index = 0;
_final_pressure = 0;
_high_pressure_limit = limit;
_start_pressure = 0;
}
uint high_pressure_index() const {
return _high_pressure_index;
}
uint final_pressure() const {
return _final_pressure;
}
uint start_pressure() const {
return _start_pressure;
}
uint current_pressure() const {
return _current_pressure;
}
uint high_pressure_limit() const {
return _high_pressure_limit;
}
void lower_high_pressure_index() {
_high_pressure_index--;
}
void set_high_pressure_index_to_block_start() {
_high_pressure_index = 0;
}
void set_start_pressure(int value) {
_start_pressure = value;
_final_pressure = value;
}
void set_current_pressure(int value) {
_current_pressure = value;
}
void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
// this pressure is only valid at this instruction, i.e. we don't need to lower
// the register pressure since the fat proj was never live before (going backwards)
uint new_pressure = current_pressure() + fatproj_mask.Size();
if (new_pressure > final_pressure()) {
_final_pressure = new_pressure;
}
// if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
// as coming from a low to high (to low again)
if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
_high_pressure_index = fatproj_location;
}
}
Pressure(uint high_pressure_index, uint high_pressure_limit)
: _current_pressure(0)
, _high_pressure_index(high_pressure_index)
, _final_pressure(0)
, _high_pressure_limit(high_pressure_limit)
, _start_pressure(0) {}
};
void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
void check_for_high_pressure_block(Pressure& pressure);
void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
// Build the interference graph using physical registers when available.
// That is, if 2 live ranges are simultaneously alive but in their
// acceptable register sets do not overlap, then they do not interfere.
uint build_ifg_physical( ResourceArea *a );
public:
// Gather LiveRanGe information, including register masks and base pointer/
// derived pointer relationships.
void gather_lrg_masks( bool mod_cisc_masks );
// user visible pressure variables for scheduling
Pressure _sched_int_pressure;
Pressure _sched_float_pressure;
Pressure _scratch_int_pressure;
Pressure _scratch_float_pressure;
// Pressure functions for user context
void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
void compute_entry_block_pressure(Block* b);
void compute_exit_block_pressure(Block* b);
void print_pressure_info(Pressure& pressure, const char *str);
private:
// Force the bases of derived pointers to be alive at GC points.
bool stretch_base_pointer_live_ranges( ResourceArea *a );
// Helper to stretch above; recursively discover the base Node for
// a given derived Node. Easy for AddP-related machine nodes, but
// needs to be recursive for derived Phis.
Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
// Set the was-lo-degree bit. Conservative coalescing should not change the
// colorability of the graph. If any live range was of low-degree before
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
void set_was_low();
// Init LRG caching of degree, numregs. Init lo_degree list.
void cache_lrg_info( );
// Simplify the IFG by removing LRGs of low degree
void Simplify();
// Select colors by re-inserting edges into the IFG.
// Return TRUE if any spills occurred.
uint Select( );
// Helper function for select which allows biased coloring
OptoReg::Name choose_color( LRG &lrg, int chunk );
// Helper function which implements biasing heuristic
OptoReg::Name bias_color( LRG &lrg, int chunk );
// Split uncolorable live ranges
// Return new number of live ranges
uint Split(uint maxlrg, ResourceArea* split_arena);
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
void set_was_spilled( Node *n );
// Convert ideal spill-nodes into machine loads & stores
// Set C->failing when fixup spills could not complete, node limit exceeded.
void fixup_spills();
// Post-Allocation peephole copy removal
void post_allocate_copy_removal();
Node *skip_copies( Node *c );
// Replace the old node with the current live version of that value
// and yank the old value if it's dead.
int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
Block *current_block, Node_List& value, Node_List& regnd ) {
Node* v = regnd[nreg];
assert(v->outcnt() != 0, "no dead values");
old->replace_by(v);
return yank_if_dead(old, current_block, &value, ®nd);
}
int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
return yank_if_dead_recurse(old, old, current_block, value, regnd);
}
/**代码未完, 请加载全部代码(NowJava.com).**/