/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OPTO_CFGNODE_HPP
#define SHARE_OPTO_CFGNODE_HPP
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
class Matcher;
class Node;
class RegionNode;
class TypeNode;
class PhiNode;
class GotoNode;
class MultiNode;
class MultiBranchNode;
class IfNode;
class PCTableNode;
class JumpNode;
class CatchNode;
class NeverBranchNode;
class ProjNode;
class CProjNode;
class IfTrueNode;
class IfFalseNode;
class CatchProjNode;
class JProjNode;
class JumpProjNode;
class SCMemProjNode;
class PhaseIdealLoop;
//------------------------------RegionNode-------------------------------------
// The class of RegionNodes, which can be mapped to basic blocks in the
// program. Their inputs point to Control sources. PhiNodes (described
// below) have an input point to a RegionNode. Merged data inputs to PhiNodes
// correspond 1-to-1 with RegionNode inputs. The zero input of a PhiNode is
// the RegionNode, and the zero input of the RegionNode is itself.
class RegionNode : public Node {
public:
// Node layout (parallels PhiNode):
enum { Region, // Generally points to self.
Control // Control arcs are [1..len)
};
RegionNode( uint required ) : Node(required) {
init_class_id(Class_Region);
init_req(0,this);
}
Node* is_copy() const {
const Node* r = _in[Region];
if (r == NULL)
return nonnull_req();
return NULL; // not a copy!
}
PhiNode* has_phi() const; // returns an arbitrary phi user, or NULL
PhiNode* has_unique_phi() const; // returns the unique phi user, or NULL
// Is this region node unreachable from root?
bool is_unreachable_region(PhaseGVN *phase) const;
virtual int Opcode() const;
virtual bool pinned() const { return (const Node *)in(0) == this; }
virtual bool is_CFG () const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual bool depends_only_on_test() const { return false; }
virtual const Type *bottom_type() const { return Type::CONTROL; }
virtual const Type* Value(PhaseGVN* phase) const;
virtual Node* Identity(PhaseGVN* phase);
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const RegMask &out_RegMask() const;
bool try_clean_mem_phi(PhaseGVN *phase);
bool optimize_trichotomy(PhaseIterGVN* igvn);
};
//------------------------------JProjNode--------------------------------------
// jump projection for node that produces multiple control-flow paths
class JProjNode : public ProjNode {
public:
JProjNode( Node* ctrl, uint idx ) : ProjNode(ctrl,idx) {}
virtual int Opcode() const;
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node* is_block_proj() const { return in(0); }
virtual const RegMask& out_RegMask() const;
virtual uint ideal_reg() const { return 0; }
};
//------------------------------PhiNode----------------------------------------
// PhiNodes merge values from different Control paths. Slot 0 points to the
// controlling RegionNode. Other slots map 1-for-1 with incoming control flow
// paths to the RegionNode. For speed reasons (to avoid another pass) we
// can turn PhiNodes into copys in-place by NULL'ing out their RegionNode
// input in slot 0.
class PhiNode : public TypeNode {
friend class PhaseRenumberLive;
const TypePtr* const _adr_type; // non-null only for Type::MEMORY nodes.
// The following fields are only used for data PhiNodes to indicate
// that the PhiNode represents the value of a known instance field.
int _inst_mem_id; // Instance memory id (node index of the memory Phi)
int _inst_id; // Instance id of the memory slice.
const int _inst_index; // Alias index of the instance memory slice.
// Array elements references have the same alias_idx but different offset.
const int _inst_offset; // Offset of the instance memory slice.
// Size is bigger to hold the _adr_type field.
virtual uint hash() const; // Check the type
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
// Determine if CMoveNode::is_cmove_id can be used at this join point.
Node* is_cmove_id(PhaseTransform* phase, int true_path);
public:
// Node layout (parallels RegionNode):
enum { Region, // Control input is the Phi's region.
Input // Input values are [1..len)
};
PhiNode( Node *r, const Type *t, const TypePtr* at = NULL,
const int imid = -1,
const int iid = TypeOopPtr::InstanceTop,
const int iidx = Compile::AliasIdxTop,
const int ioffs = Type::OffsetTop )
: TypeNode(t,r->req()),
_adr_type(at),
_inst_mem_id(imid),
_inst_id(iid),
_inst_index(iidx),
_inst_offset(ioffs)
{
init_class_id(Class_Phi);
init_req(0, r);
verify_adr_type();
}
// create a new phi with in edges matching r and set (initially) to x
static PhiNode* make( Node* r, Node* x );
// extra type arguments override the new phi's bottom_type and adr_type
static PhiNode* make( Node* r, Node* x, const Type *t, const TypePtr* at = NULL );
// create a new phi with narrowed memory type
PhiNode* slice_memory(const TypePtr* adr_type) const;
PhiNode* split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const;
// like make(r, x), but does not initialize the in edges to x
static PhiNode* make_blank( Node* r, Node* x );
// Accessors
RegionNode* region() const { Node* r = in(Region); assert(!r || r->is_Region(), ""); return (RegionNode*)r; }
Node* is_copy() const {
// The node is a real phi if _in[0] is a Region node.
DEBUG_ONLY(const Node* r = _in[Region];)
assert(r != NULL && r->is_Region(), "Not valid control");
return NULL; // not a copy!
}
bool is_tripcount() const;
// Determine a unique non-trivial input, if any.
// Ignore casts if it helps. Return NULL on failure.
Node* unique_input(PhaseTransform *phase, bool uncast);
Node* unique_input(PhaseTransform *phase) {
Node* uin = unique_input(phase, false);
if (uin == NULL) {
uin = unique_input(phase, true);
}
return uin;
}
// Check for a simple dead loop.
enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
LoopSafety simple_data_loop_check(Node *in) const;
// Is it unsafe data loop? It becomes a dead loop if this phi node removed.
bool is_unsafe_data_reference(Node *in) const;
int is_diamond_phi(bool check_control_only = false) const;
virtual int Opcode() const;
virtual bool pinned() const { return in(0) != 0; }
virtual const TypePtr *adr_type() const { verify_adr_type(true); return _adr_type; }
void set_inst_mem_id(int inst_mem_id) { _inst_mem_id = inst_mem_id; }
const int inst_mem_id() const { return _inst_mem_id; }
const int inst_id() const { return _inst_id; }
const int inst_index() const { return _inst_index; }
const int inst_offset() const { return _inst_offset; }
bool is_same_inst_field(const Type* tp, int mem_id, int id, int index, int offset) {
return type()->basic_type() == tp->basic_type() &&
inst_mem_id() == mem_id &&
inst_id() == id &&
inst_index() == index &&
inst_offset() == offset &&
type()->higher_equal(tp);
}
virtual const Type* Value(PhaseGVN* phase) const;
virtual Node* Identity(PhaseGVN* phase);
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const RegMask &out_RegMask() const;
virtual const RegMask &in_RegMask(uint) const;
#ifndef PRODUCT
virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
virtual void dump_spec(outputStream *st) const;
#endif
#ifdef ASSERT
void verify_adr_type(VectorSet& visited, const TypePtr* at) const;
void verify_adr_type(bool recursive = false) const;
#else //ASSERT
void verify_adr_type(bool recursive = false) const {}
#endif //ASSERT
};
//------------------------------GotoNode---------------------------------------
// GotoNodes perform direct branches.
class GotoNode : public Node {
public:
GotoNode( Node *control ) : Node(control) {}
virtual int Opcode() const;
virtual bool pinned() const { return true; }
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node *is_block_proj() const { return this; }
virtual bool depends_only_on_test() const { return false; }
virtual const Type *bottom_type() const { return Type::CONTROL; }
virtual const Type* Value(PhaseGVN* phase) const;
virtual Node* Identity(PhaseGVN* phase);
virtual const RegMask &out_RegMask() const;
#ifndef PRODUCT
virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
#endif
};
//------------------------------CProjNode--------------------------------------
// control projection for node that produces multiple control-flow paths
class CProjNode : public ProjNode {
public:
CProjNode( Node *ctrl, uint idx ) : ProjNode(ctrl,idx) {}
virtual int Opcode() const;
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node *is_block_proj() const { return in(0); }
virtual const RegMask &out_RegMask() const;
virtual uint ideal_reg() const { return 0; }
};
//---------------------------MultiBranchNode-----------------------------------
// This class defines a MultiBranchNode, a MultiNode which yields multiple
// control values. These are distinguished from other types of MultiNodes
// which yield multiple values, but control is always and only projection #0.
class MultiBranchNode : public MultiNode {
public:
MultiBranchNode( uint required ) : MultiNode(required) {
init_class_id(Class_MultiBranch);
}
// returns required number of users to be well formed.
virtual int required_outcnt() const = 0;
};
//------------------------------IfNode-----------------------------------------
// Output selected Control, based on a boolean test
class IfNode : public MultiBranchNode {
// Size is bigger to hold the probability field. However, _prob does not
// change the semantics so it does not appear in the hash & cmp functions.
virtual uint size_of() const { return sizeof(*this); }
private:
// Helper methods for fold_compares
bool cmpi_folds(PhaseIterGVN* igvn);
bool is_ctrl_folds(Node* ctrl, PhaseIterGVN* igvn);
bool has_shared_region(ProjNode* proj, ProjNode*& success, ProjNode*& fail);
bool has_only_uncommon_traps(ProjNode* proj, ProjNode*& success, ProjNode*& fail, PhaseIterGVN* igvn);
Node* merge_uncommon_traps(ProjNode* proj, ProjNode* success, ProjNode* fail, PhaseIterGVN* igvn);
static void improve_address_types(Node* l, Node* r, ProjNode* fail, PhaseIterGVN* igvn);
bool is_cmp_with_loadrange(ProjNode* proj);
bool is_null_check(ProjNode* proj, PhaseIterGVN* igvn);
bool is_side_effect_free_test(ProjNode* proj, PhaseIterGVN* igvn);
void reroute_side_effect_free_unc(ProjNode* proj, ProjNode* dom_proj, PhaseIterGVN* igvn);
ProjNode* uncommon_trap_proj(CallStaticJavaNode*& call) const;
bool fold_compares_helper(ProjNode* proj, ProjNode* success, ProjNode* fail, PhaseIterGVN* igvn);
static bool is_dominator_unc(CallStaticJavaNode* dom_unc, CallStaticJavaNode* unc);
protected:
ProjNode* range_check_trap_proj(int& flip, Node*& l, Node*& r);
Node* Ideal_common(PhaseGVN *phase, bool can_reshape);
Node* search_identical(int dist);
Node* simple_subsuming(PhaseIterGVN* igvn);
public:
// Degrees of branch prediction probability by order of magnitude:
// PROB_UNLIKELY_1e(N) is a 1 in 1eN chance.
// PROB_LIKELY_1e(N) is a 1 - PROB_UNLIKELY_1e(N)
#define PROB_UNLIKELY_MAG(N) (1e- ## N ## f)
#define PROB_LIKELY_MAG(N) (1.0f-PROB_UNLIKELY_MAG(N))
// Maximum and minimum branch prediction probabilties
// 1 in 1,000,000 (magnitude 6)
//
// Although PROB_NEVER == PROB_MIN and PROB_ALWAYS == PROB_MAX
// they are used to distinguish different situations:
//
// The name PROB_MAX (PROB_MIN) is for probabilities which correspond to
// very likely (unlikely) but with a concrete possibility of a rare
// contrary case. These constants would be used for pinning
// measurements, and as measures for assertions that have high
// confidence, but some evidence of occasional failure.
//
// The name PROB_ALWAYS (PROB_NEVER) is to stand for situations for which
// there is no evidence at all that the contrary case has ever occurred.
#define PROB_NEVER PROB_UNLIKELY_MAG(6)
#define PROB_ALWAYS PROB_LIKELY_MAG(6)
#define PROB_MIN PROB_UNLIKELY_MAG(6)
#define PROB_MAX PROB_LIKELY_MAG(6)
// Static branch prediction probabilities
// 1 in 10 (magnitude 1)
#define PROB_STATIC_INFREQUENT PROB_UNLIKELY_MAG(1)
#define PROB_STATIC_FREQUENT PROB_LIKELY_MAG(1)
// Fair probability 50/50
#define PROB_FAIR (0.5f)
// Unknown probability sentinel
#define PROB_UNKNOWN (-1.0f)
// Probability "constructors", to distinguish as a probability any manifest
// constant without a names
#define PROB_LIKELY(x) ((float) (x))
#define PROB_UNLIKELY(x) (1.0f - (float)(x))
// Other probabilities in use, but without a unique name, are documented
// here for lack of a better place:
//
// 1 in 1000 probabilities (magnitude 3):
// threshold for converting to conditional move
// likelihood of null check failure if a null HAS been seen before
// likelihood of slow path taken in library calls
//
// 1 in 10,000 probabilities (magnitude 4):
// threshold for making an uncommon trap probability more extreme
// threshold for for making a null check implicit
// likelihood of needing a gc if eden top moves during an allocation
// likelihood of a predicted call failure
//
// 1 in 100,000 probabilities (magnitude 5):
// threshold for ignoring counts when estimating path frequency
// likelihood of FP clipping failure
// likelihood of catching an exception from a try block
// likelihood of null check failure if a null has NOT been seen before
//
// Magic manifest probabilities such as 0.83, 0.7, ... can be found in
// gen_subtype_check() and catch_inline_exceptions().
float _prob; // Probability of true path being taken.
float _fcnt; // Frequency counter
IfNode( Node *control, Node *b, float p, float fcnt )
: MultiBranchNode(2), _prob(p), _fcnt(fcnt) {
init_class_id(Class_If);
init_req(0,control);
init_req(1,b);
}
virtual int Opcode() const;
virtual bool pinned() const { return true; }
virtual const Type *bottom_type() const { return TypeTuple::IFBOTH; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type* Value(PhaseGVN* phase) const;
virtual int required_outcnt() const { return 2; }
virtual const RegMask &out_RegMask() const;
Node* fold_compares(PhaseIterGVN* phase);
static Node* up_one_dom(Node* curr, bool linear_only = false);
Node* dominated_by(Node* prev_dom, PhaseIterGVN* igvn);
// Takes the type of val and filters it through the test represented
// by if_proj and returns a more refined type if one is produced.
// Returns NULL is it couldn't improve the type.
static const TypeInt* filtered_int_type(PhaseGVN* phase, Node* val, Node* if_proj);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
virtual void related(GrowableArray <Node *> *in_rel, GrowableArray <Node *> *out_rel, bool compact) const;
#endif
};
class RangeCheckNode : public IfNode {
private:
int is_range_check(Node* &range, Node* &index, jint &offset);
public:
RangeCheckNode(Node* control, Node *b, float p, float fcnt)
: IfNode(control, b, p, fcnt) {
init_class_id(Class_RangeCheck);
}
virtual int Opcode() const;
virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
};
class IfProjNode : public CProjNode {
public:
IfProjNode(IfNode *ifnode, uint idx) : CProjNode(ifnode,idx) {}
virtual Node* Identity(PhaseGVN* phase);
protected:
// Type of If input when this branch is always taken
virtual bool always_taken(const TypeTuple* t) const = 0;
#ifndef PRODUCT
public:
virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
#endif
};
class IfTrueNode : public IfProjNode {
public:
IfTrueNode( IfNode *ifnode ) : IfProjNode(ifnode,1) {
init_class_id(Class_IfTrue);
}
virtual int Opcode() const;
protected:
virtual bool always_taken(const TypeTuple* t) const { return t == TypeTuple::IFTRUE; }
};
class IfFalseNode : public IfProjNode {
public:
IfFalseNode( IfNode *ifnode ) : IfProjNode(ifnode,0) {
init_class_id(Class_IfFalse);
}
virtual int Opcode() const;
protected:
virtual bool always_taken(const TypeTuple* t) const { return t == TypeTuple::IFFALSE; }
};
//------------------------------PCTableNode------------------------------------
// Build an indirect branch table. Given a control and a table index,
// control is passed to the Projection matching the table index. Used to
// implement switch statements and exception-handling capabilities.
// Undefined behavior if passed-in index is not inside the table.
class PCTableNode : public MultiBranchNode {
virtual uint hash() const; // Target count; table size
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
public:
const uint _size; // Number of targets
PCTableNode( Node *ctrl, Node *idx, uint size ) : MultiBranchNode(2), _size(size) {
init_class_id(Class_PCTable);
init_req(0, ctrl);
init_req(1, idx);
}
virtual int Opcode() const;
virtual const Type* Value(PhaseGVN* phase) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *bottom_type() const;
virtual bool pinned() const { return true; }
virtual int required_outcnt() const { return _size; }
};
//------------------------------JumpNode---------------------------------------
// Indirect branch. Uses PCTable above to implement a switch statement.
// It emits as a table load and local branch.
class JumpNode : public PCTableNode {
virtual uint size_of() const { return sizeof(*this); }
public:
float* _probs; // probability of each projection
float _fcnt; // total number of times this Jump was executed
JumpNode( Node* control, Node* switch_val, uint size, float* probs, float cnt)
: PCTableNode(control, switch_val, size),
_probs(probs), _fcnt(cnt) {
init_class_id(Class_Jump);
}
virtual int Opcode() const;
virtual const RegMask& out_RegMask() const;
virtual const Node* is_block_proj() const { return this; }
#ifndef PRODUCT
virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
#endif
};
class JumpProjNode : public JProjNode {
virtual uint hash() const;
virtual bool cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
private:
const int _dest_bci;
const uint _proj_no;
const int _switch_val;
public:
JumpProjNode(Node* jumpnode, uint proj_no, int dest_bci, int switch_val)
: JProjNode(jumpnode, proj_no), _dest_bci(dest_bci), _proj_no(proj_no), _switch_val(switch_val) {
init_class_id(Class_JumpProj);
}
virtual int Opcode() const;
virtual const Type* bottom_type() const { return Type::CONTROL; }
int dest_bci() const { return _dest_bci; }
int switch_val() const { return _switch_val; }
uint proj_no() const { return _proj_no; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
virtual void dump_compact_spec(outputStream *st) const;
virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
#endif
};
//------------------------------CatchNode--------------------------------------
// Helper node to fork exceptions. "Catch" catches any exceptions thrown by
// a just-prior call. Looks like a PCTableNode but emits no code - just the
// table. The table lookup and branch is implemented by RethrowNode.
class CatchNode : public PCTableNode {
public:
CatchNode( Node *ctrl, Node *idx, uint size ) : PCTableNode(ctrl,idx,size){
init_class_id(Class_Catch);
}
virtual int Opcode() const;
virtual const Type* Value(PhaseGVN* phase) const;
};
// CatchProjNode controls which exception handler is targetted after a call.
// It is passed in the bci of the target handler, or no_handler_bci in case
// the projection doesn't lead to an exception handler.
class CatchProjNode : public CProjNode {
virtual uint hash() const;
/**代码未完, 请加载全部代码(NowJava.com).**/