/*
* Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_MEMORY_ITERATOR_INLINE_HPP
#define SHARE_MEMORY_ITERATOR_INLINE_HPP
#include "classfile/classLoaderData.hpp"
#include "memory/iterator.hpp"
#include "memory/universe.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.hpp"
#include "oops/instanceKlass.inline.hpp"
#include "oops/instanceMirrorKlass.inline.hpp"
#include "oops/instanceClassLoaderKlass.inline.hpp"
#include "oops/instanceRefKlass.inline.hpp"
#include "oops/objArrayKlass.inline.hpp"
#include "oops/typeArrayKlass.inline.hpp"
#include "utilities/debug.hpp"
// Defaults to strong claiming.
inline MetadataVisitingOopIterateClosure::MetadataVisitingOopIterateClosure(ReferenceDiscoverer* rd) :
ClaimMetadataVisitingOopIterateClosure(ClassLoaderData::_claim_strong, rd) {}
inline void ClaimMetadataVisitingOopIterateClosure::do_cld(ClassLoaderData* cld) {
cld->oops_do(this, _claim);
}
inline void ClaimMetadataVisitingOopIterateClosure::do_klass(Klass* k) {
ClassLoaderData* cld = k->class_loader_data();
ClaimMetadataVisitingOopIterateClosure::do_cld(cld);
}
#ifdef ASSERT
// This verification is applied to all visited oops.
// The closures can turn is off by overriding should_verify_oops().
template <typename T>
void OopIterateClosure::verify(T* p) {
if (should_verify_oops()) {
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop o = CompressedOops::decode_not_null(heap_oop);
assert(Universe::heap()->is_in(o),
"should be in closed *p " PTR_FORMAT " " PTR_FORMAT, p2i(p), p2i(o));
}
}
}
#endif
// Implementation of the non-virtual do_oop dispatch.
//
// The same implementation is used for do_metadata, do_klass, and do_cld.
//
// Preconditions:
// - Base has a pure virtual do_oop
// - Only one of the classes in the inheritance chain from OopClosureType to
// Base implements do_oop.
//
// Given the preconditions:
// - If &OopClosureType::do_oop is resolved to &Base::do_oop, then there is no
// implementation of do_oop between Base and OopClosureType. However, there
// must be one implementation in one of the subclasses of OopClosureType.
// In this case we take the virtual call.
//
// - Conversely, if &OopClosureType::do_oop is not resolved to &Base::do_oop,
// then we've found the one and only concrete implementation. In this case we
// take a non-virtual call.
//
// Because of this it's clear when we should call the virtual call and
// when the non-virtual call should be made.
//
// The way we find if &OopClosureType::do_oop is resolved to &Base::do_oop is to
// check if the resulting type of the class of a member-function pointer to
// &OopClosureType::do_oop is equal to the type of the class of a
// &Base::do_oop member-function pointer. Template parameter deduction is used
// to find these types, and then the IsSame trait is used to check if they are
// equal. Finally, SFINAE is used to select the appropriate implementation.
//
// Template parameters:
// T - narrowOop or oop
// Receiver - the resolved type of the class of the
// &OopClosureType::do_oop member-function pointer. That is,
// the klass with the do_oop member function.
// Base - klass with the pure virtual do_oop member function.
// OopClosureType - The dynamic closure type
//
// Parameters:
// closure - The closure to call
// p - The oop (or narrowOop) field to pass to the closure
template <typename T, typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<IsSame<Receiver, Base>::value, void>::type
call_do_oop(void (Receiver::*)(T*), void (Base::*)(T*), OopClosureType* closure, T* p) {
closure->do_oop(p);
}
template <typename T, typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<!IsSame<Receiver, Base>::value, void>::type
call_do_oop(void (Receiver::*)(T*), void (Base::*)(T*), OopClosureType* closure, T* p) {
// Sanity check
STATIC_ASSERT((!IsSame<OopClosureType, OopIterateClosure>::value));
closure->OopClosureType::do_oop(p);
}
template <typename OopClosureType, typename T>
inline void Devirtualizer::do_oop_no_verify(OopClosureType* closure, T* p) {
call_do_oop<T>(&OopClosureType::do_oop, &OopClosure::do_oop, closure, p);
}
template <typename OopClosureType, typename T>
inline void Devirtualizer::do_oop(OopClosureType* closure, T* p) {
debug_only(closure->verify(p));
do_oop_no_verify(closure, p);
}
// Implementation of the non-virtual do_metadata dispatch.
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<IsSame<Receiver, Base>::value, bool>::type
call_do_metadata(bool (Receiver::*)(), bool (Base::*)(), OopClosureType* closure) {
return closure->do_metadata();
}
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<!IsSame<Receiver, Base>::value, bool>::type
call_do_metadata(bool (Receiver::*)(), bool (Base::*)(), OopClosureType* closure) {
return closure->OopClosureType::do_metadata();
}
template <typename OopClosureType>
inline bool Devirtualizer::do_metadata(OopClosureType* closure) {
return call_do_metadata(&OopClosureType::do_metadata, &OopIterateClosure::do_metadata, closure);
}
// Implementation of the non-virtual do_klass dispatch.
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<IsSame<Receiver, Base>::value, void>::type
call_do_klass(void (Receiver::*)(Klass*), void (Base::*)(Klass*), OopClosureType* closure, Klass* k) {
closure->do_klass(k);
}
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<!IsSame<Receiver, Base>::value, void>::type
call_do_klass(void (Receiver::*)(Klass*), void (Base::*)(Klass*), OopClosureType* closure, Klass* k) {
closure->OopClosureType::do_klass(k);
}
template <typename OopClosureType>
inline void Devirtualizer::do_klass(OopClosureType* closure, Klass* k) {
call_do_klass(&OopClosureType::do_klass, &OopIterateClosure::do_klass, closure, k);
}
// Implementation of the non-virtual do_cld dispatch.
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<IsSame<Receiver, Base>::value, void>::type
call_do_cld(void (Receiver::*)(ClassLoaderData*), void (Base::*)(ClassLoaderData*), OopClosureType* closure, ClassLoaderData* cld) {
closure->do_cld(cld);
}
template <typename Receiver, typename Base, typename OopClosureType>
static typename EnableIf<!IsSame<Receiver, Base>::value, void>::type
call_do_cld(void (Receiver::*)(ClassLoaderData*), void (Base::*)(ClassLoaderData*), OopClosureType* closure, ClassLoaderData* cld) {
closure->OopClosureType::do_cld(cld);
}
template <typename OopClosureType>
void Devirtualizer::do_cld(OopClosureType* closure, ClassLoaderData* cld) {
call_do_cld(&OopClosureType::do_cld, &OopIterateClosure::do_cld, closure, cld);
}
// Dispatch table implementation for *Klass::oop_oop_iterate
//
// It allows for a single call to do a multi-dispatch to an optimized version
// of oop_oop_iterate that statically know all these types:
// - OopClosureType : static type give at call site
// - Klass* : dynamic to static type through Klass::id() -> table index
// - UseCompressedOops : dynamic to static value determined once
//
// when users call obj->oop_iterate(&cl).
//
// oopDesc::oop_iterate() calls OopOopIterateDispatch::function(klass)(cl, obj, klass),
// which dispatches to an optimized version of
// [Instance, ObjArry, etc]Klass::oop_oop_iterate(oop, OopClosureType)
//
// OopClosureType :
// If OopClosureType has an implementation of do_oop (and do_metadata et.al.),
// then the static type of OopClosureType will be used to allow inlining of
// do_oop (even though do_oop is virtual). Otherwise, a virtual call will be
// used when calling do_oop.
//
// Klass* :
// A table mapping from *Klass::ID to function is setup. This happens once
// when the program starts, when the static _table instance is initialized for
// the OopOopIterateDispatch specialized with the OopClosureType.
//
// UseCompressedOops :
// Initially the table is populated with an init function, and not the actual
// oop_oop_iterate function. This is done, so that the first time we dispatch
// through the init function we check what the value of UseCompressedOops
// became, and use that to determine if we should install an optimized
// narrowOop version or optimized oop version of oop_oop_iterate. The appropriate
// oop_oop_iterate function replaces the init function in the table, and
// succeeding calls will jump directly to oop_oop_iterate.
template <typename OopClosureType>
class OopOopIterateDispatch : public AllStatic {
private:
class Table {
private:
template <typename KlassType, typename T>
static void oop_oop_iterate(OopClosureType* cl, oop obj, Klass* k) {
((KlassType*)k)->KlassType::template oop_oop_iterate<T>(obj, cl);
}
template <typename KlassType>
static void init(OopClosureType* cl, oop obj, Klass* k) {
OopOopIterateDispatch<OopClosureType>::_table.set_resolve_function_and_execute<KlassType>(cl, obj, k);
}
template <typename KlassType>
void set_init_function() {
_function[KlassType::ID] = &init<KlassType>;
}
template <typename KlassType>
void set_resolve_function() {
// Size requirement to prevent word tearing
// when functions pointers are updated.
STATIC_ASSERT(sizeof(_function[0]) == sizeof(void*));
if (UseCompressedOops) {
_function[KlassType::ID] = &oop_oop_iterate<KlassType, narrowOop>;
} else {
_function[KlassType::ID] = &oop_oop_iterate<KlassType, oop>;
}
}
template <typename KlassType>
void set_resolve_function_and_execute(OopClosureType* cl, oop obj, Klass* k) {
set_resolve_function<KlassType>();
_function[KlassType::ID](cl, obj, k);
}
public:
void (*_function[KLASS_ID_COUNT])(OopClosureType*, oop, Klass*);
Table(){
set_init_function<InstanceKlass>();
set_init_function<InstanceRefKlass>();
set_init_function<InstanceMirrorKlass>();
set_init_function<InstanceClassLoaderKlass>();
set_init_function<ObjArrayKlass>();
set_init_function<TypeArrayKlass>();
}
};
static Table _table;
public:
static void (*function(Klass* klass))(OopClosureType*, oop, Klass*) {
return _table._function[klass->id()];
}
};
template <typename OopClosureType>
typename OopOopIterateDispatch<OopClosureType>::Table OopOopIterateDispatch<OopClosureType>::_table;
template <typename OopClosureType>
class OopOopIterateBoundedDispatch {
private:
class Table {
private:
template <typename KlassType, typename T>
static void oop_oop_iterate_bounded(OopClosureType* cl, oop obj, Klass* k, MemRegion mr) {
((KlassType*)k)->KlassType::template oop_oop_iterate_bounded<T>(obj, cl, mr);
}
template <typename KlassType>
static void init(OopClosureType* cl, oop obj, Klass* k, MemRegion mr) {
OopOopIterateBoundedDispatch<OopClosureType>::_table.set_resolve_function_and_execute<KlassType>(cl, obj, k, mr);
}
template <typename KlassType>
void set_init_function() {
_function[KlassType::ID] = &init<KlassType>;
}
template <typename KlassType>
void set_resolve_function() {
if (UseCompressedOops) {
_function[KlassType::ID] = &oop_oop_iterate_bounded<KlassType, narrowOop>;
} else {
_function[KlassType::ID] = &oop_oop_iterate_bounded<KlassType, oop>;
}
}
template <typename KlassType>
void set_resolve_function_and_execute(OopClosureType* cl, oop obj, Klass* k, MemRegion mr) {
set_resolve_function<KlassType>();
_function[KlassType::ID](cl, obj, k, mr);
}
public:
void (*_function[KLASS_ID_COUNT])(OopClosureType*, oop, Klass*, MemRegion);
Table(){
set_init_function<InstanceKlass>();
set_init_function<InstanceRefKlass>();
set_init_function<InstanceMirrorKlass>();
set_init_function<InstanceClassLoaderKlass>();
set_init_function<ObjArrayKlass>();
set_init_function<TypeArrayKlass>();
}
};
static Table _table;
public:
static void (*function(Klass* klass))(OopClosureType*, oop, Klass*, MemRegion) {
return _table._function[klass->id()];
}
};
template <typename OopClosureType>
typename OopOopIterateBoundedDispatch<OopClosureType>::Table OopOopIterateBoundedDispatch<OopClosureType>::_table;
template <typename OopClosureType>
class OopOopIterateBackwardsDispatch {
private:
class Table {
private:
template <typename KlassType, typename T>
static void oop_oop_iterate_backwards(OopClosureType* cl, oop obj, Klass* k) {
((KlassType*)k)->KlassType::template oop_oop_iterate_reverse<T>(obj, cl);
}
template <typename KlassType>
static void init(OopClosureType* cl, oop obj, Klass* k) {
OopOopIterateBackwardsDispatch<OopClosureType>::_table.set_resolve_function_and_execute<KlassType>(cl, obj, k);
}
template <typename KlassType>
void set_init_function() {
_function[KlassType::ID] = &init<KlassType>;
}
template <typename KlassType>
void set_resolve_function() {
if (UseCompressedOops) {
_function[KlassType::ID] = &oop_oop_iterate_backwards<KlassType, narrowOop>;
} else {
/**代码未完, 请加载全部代码(NowJava.com).**/