/*
* Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "code/compiledIC.hpp"
#include "compiler/compileBroker.hpp"
#include "jvmci/jvmciCodeInstaller.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/align.hpp"
// frequently used constants
// Allocate them with new so they are never destroyed (otherwise, a
// forced exit could destroy these objects while they are still in
// use).
ConstantOopWriteValue* CodeInstaller::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtJVMCI) ConstantOopWriteValue(NULL);
ConstantIntValue* CodeInstaller::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtJVMCI) ConstantIntValue(-1);
ConstantIntValue* CodeInstaller::_int_0_scope_value = new (ResourceObj::C_HEAP, mtJVMCI) ConstantIntValue((jint)0);
ConstantIntValue* CodeInstaller::_int_1_scope_value = new (ResourceObj::C_HEAP, mtJVMCI) ConstantIntValue(1);
ConstantIntValue* CodeInstaller::_int_2_scope_value = new (ResourceObj::C_HEAP, mtJVMCI) ConstantIntValue(2);
LocationValue* CodeInstaller::_illegal_value = new (ResourceObj::C_HEAP, mtJVMCI) LocationValue(Location());
VMReg CodeInstaller::getVMRegFromLocation(JVMCIObject location, int total_frame_size, JVMCI_TRAPS) {
if (location.is_null()) {
JVMCI_THROW_NULL(NullPointerException);
}
JVMCIObject reg = jvmci_env()->get_code_Location_reg(location);
jint offset = jvmci_env()->get_code_Location_offset(location);
if (reg.is_non_null()) {
// register
jint number = jvmci_env()->get_code_Register_number(reg);
VMReg vmReg = CodeInstaller::get_hotspot_reg(number, JVMCI_CHECK_NULL);
if (offset % 4 == 0) {
return vmReg->next(offset / 4);
} else {
JVMCI_ERROR_NULL("unaligned subregister offset %d in oop map", offset);
}
} else {
// stack slot
if (offset % 4 == 0) {
VMReg vmReg = VMRegImpl::stack2reg(offset / 4);
if (!OopMapValue::legal_vm_reg_name(vmReg)) {
// This restriction only applies to VMRegs that are used in OopMap but
// since that's the only use of VMRegs it's simplest to put this test
// here. This test should also be equivalent legal_vm_reg_name but JVMCI
// clients can use max_oop_map_stack_stack_offset to detect this problem
// directly. The asserts just ensure that the tests are in agreement.
assert(offset > CompilerToVM::Data::max_oop_map_stack_offset(), "illegal VMReg");
JVMCI_ERROR_NULL("stack offset %d is too large to be encoded in OopMap (max %d)",
offset, CompilerToVM::Data::max_oop_map_stack_offset());
}
assert(OopMapValue::legal_vm_reg_name(vmReg), "illegal VMReg");
return vmReg;
} else {
JVMCI_ERROR_NULL("unaligned stack offset %d in oop map", offset);
}
}
}
// creates a HotSpot oop map out of the byte arrays provided by DebugInfo
OopMap* CodeInstaller::create_oop_map(JVMCIObject debug_info, JVMCI_TRAPS) {
JVMCIObject reference_map = jvmci_env()->get_DebugInfo_referenceMap(debug_info);
if (reference_map.is_null()) {
JVMCI_THROW_NULL(NullPointerException);
}
if (!jvmci_env()->isa_HotSpotReferenceMap(reference_map)) {
JVMCI_ERROR_NULL("unknown reference map: %s", jvmci_env()->klass_name(reference_map));
}
if (!_has_wide_vector && SharedRuntime::is_wide_vector(jvmci_env()->get_HotSpotReferenceMap_maxRegisterSize(reference_map))) {
if (SharedRuntime::polling_page_vectors_safepoint_handler_blob() == NULL) {
JVMCI_ERROR_NULL("JVMCI is producing code using vectors larger than the runtime supports");
}
_has_wide_vector = true;
}
OopMap* map = new OopMap(_total_frame_size, _parameter_count);
JVMCIObjectArray objects = jvmci_env()->get_HotSpotReferenceMap_objects(reference_map);
JVMCIObjectArray derivedBase = jvmci_env()->get_HotSpotReferenceMap_derivedBase(reference_map);
JVMCIPrimitiveArray sizeInBytes = jvmci_env()->get_HotSpotReferenceMap_sizeInBytes(reference_map);
if (objects.is_null() || derivedBase.is_null() || sizeInBytes.is_null()) {
JVMCI_THROW_NULL(NullPointerException);
}
if (JVMCIENV->get_length(objects) != JVMCIENV->get_length(derivedBase) || JVMCIENV->get_length(objects) != JVMCIENV->get_length(sizeInBytes)) {
JVMCI_ERROR_NULL("arrays in reference map have different sizes: %d %d %d", JVMCIENV->get_length(objects), JVMCIENV->get_length(derivedBase), JVMCIENV->get_length(sizeInBytes));
}
for (int i = 0; i < JVMCIENV->get_length(objects); i++) {
JVMCIObject location = JVMCIENV->get_object_at(objects, i);
JVMCIObject baseLocation = JVMCIENV->get_object_at(derivedBase, i);
jint bytes = JVMCIENV->get_int_at(sizeInBytes, i);
VMReg vmReg = getVMRegFromLocation(location, _total_frame_size, JVMCI_CHECK_NULL);
if (baseLocation.is_non_null()) {
// derived oop
#ifdef _LP64
if (bytes == 8) {
#else
if (bytes == 4) {
#endif
VMReg baseReg = getVMRegFromLocation(baseLocation, _total_frame_size, JVMCI_CHECK_NULL);
map->set_derived_oop(vmReg, baseReg);
} else {
JVMCI_ERROR_NULL("invalid derived oop size in ReferenceMap: %d", bytes);
}
#ifdef _LP64
} else if (bytes == 8) {
// wide oop
map->set_oop(vmReg);
} else if (bytes == 4) {
// narrow oop
map->set_narrowoop(vmReg);
#else
} else if (bytes == 4) {
map->set_oop(vmReg);
#endif
} else {
JVMCI_ERROR_NULL("invalid oop size in ReferenceMap: %d", bytes);
}
}
JVMCIObject callee_save_info = jvmci_env()->get_DebugInfo_calleeSaveInfo(debug_info);
if (callee_save_info.is_non_null()) {
JVMCIObjectArray registers = jvmci_env()->get_RegisterSaveLayout_registers(callee_save_info);
JVMCIPrimitiveArray slots = jvmci_env()->get_RegisterSaveLayout_slots(callee_save_info);
for (jint i = 0; i < JVMCIENV->get_length(slots); i++) {
JVMCIObject jvmci_reg = JVMCIENV->get_object_at(registers, i);
jint jvmci_reg_number = jvmci_env()->get_code_Register_number(jvmci_reg);
VMReg hotspot_reg = CodeInstaller::get_hotspot_reg(jvmci_reg_number, JVMCI_CHECK_NULL);
// HotSpot stack slots are 4 bytes
jint jvmci_slot = JVMCIENV->get_int_at(slots, i);
jint hotspot_slot = jvmci_slot * VMRegImpl::slots_per_word;
VMReg hotspot_slot_as_reg = VMRegImpl::stack2reg(hotspot_slot);
map->set_callee_saved(hotspot_slot_as_reg, hotspot_reg);
#ifdef _LP64
// (copied from generate_oop_map() in c1_Runtime1_x86.cpp)
VMReg hotspot_slot_hi_as_reg = VMRegImpl::stack2reg(hotspot_slot + 1);
map->set_callee_saved(hotspot_slot_hi_as_reg, hotspot_reg->next());
#endif
}
}
return map;
}
#if INCLUDE_AOT
AOTOopRecorder::AOTOopRecorder(CodeInstaller* code_inst, Arena* arena, bool deduplicate) : OopRecorder(arena, deduplicate) {
_code_inst = code_inst;
_meta_refs = new GrowableArray<jobject>();
}
int AOTOopRecorder::nr_meta_refs() const {
return _meta_refs->length();
}
jobject AOTOopRecorder::meta_element(int pos) const {
return _meta_refs->at(pos);
}
int AOTOopRecorder::find_index(Metadata* h) {
JavaThread* THREAD = JavaThread::current();
JVMCIEnv* JVMCIENV = _code_inst->jvmci_env();
int oldCount = metadata_count();
int index = this->OopRecorder::find_index(h);
int newCount = metadata_count();
if (oldCount == newCount) {
// found a match
return index;
}
vmassert(index + 1 == newCount, "must be last");
JVMCIKlassHandle klass(THREAD);
JVMCIObject result;
guarantee(h != NULL,
"If DebugInformationRecorder::describe_scope passes NULL oldCount == newCount must hold.");
if (h->is_klass()) {
klass = (Klass*) h;
result = JVMCIENV->get_jvmci_type(klass, JVMCI_CATCH);
} else if (h->is_method()) {
Method* method = (Method*) h;
methodHandle mh(THREAD, method);
result = JVMCIENV->get_jvmci_method(mh, JVMCI_CATCH);
}
jobject ref = JVMCIENV->get_jobject(result);
record_meta_ref(ref, index);
return index;
}
int AOTOopRecorder::find_index(jobject h) {
if (h == NULL) {
return 0;
}
oop javaMirror = JNIHandles::resolve(h);
Klass* klass = java_lang_Class::as_Klass(javaMirror);
return find_index(klass);
}
void AOTOopRecorder::record_meta_ref(jobject o, int index) {
assert(index > 0, "must be 1..n");
index -= 1; // reduce by one to convert to array index
assert(index == _meta_refs->length(), "must be last");
_meta_refs->append(o);
}
#endif // INCLUDE_AOT
void* CodeInstaller::record_metadata_reference(CodeSection* section, address dest, JVMCIObject constant, JVMCI_TRAPS) {
/*
* This method needs to return a raw (untyped) pointer, since the value of a pointer to the base
* class is in general not equal to the pointer of the subclass. When patching metaspace pointers,
* the compiler expects a direct pointer to the subclass (Klass* or Method*), not a pointer to the
* base class (Metadata* or MetaspaceObj*).
*/
JVMCIObject obj = jvmci_env()->get_HotSpotMetaspaceConstantImpl_metaspaceObject(constant);
if (jvmci_env()->isa_HotSpotResolvedObjectTypeImpl(obj)) {
Klass* klass = JVMCIENV->asKlass(obj);
assert(!jvmci_env()->get_HotSpotMetaspaceConstantImpl_compressed(constant), "unexpected compressed klass pointer %s @ " INTPTR_FORMAT, klass->name()->as_C_string(), p2i(klass));
int index = _oop_recorder->find_index(klass);
section->relocate(dest, metadata_Relocation::spec(index));
TRACE_jvmci_3("metadata[%d of %d] = %s", index, _oop_recorder->metadata_count(), klass->name()->as_C_string());
return klass;
} else if (jvmci_env()->isa_HotSpotResolvedJavaMethodImpl(obj)) {
Method* method = jvmci_env()->asMethod(obj);
assert(!jvmci_env()->get_HotSpotMetaspaceConstantImpl_compressed(constant), "unexpected compressed method pointer %s @ " INTPTR_FORMAT, method->name()->as_C_string(), p2i(method));
int index = _oop_recorder->find_index(method);
section->relocate(dest, metadata_Relocation::spec(index));
TRACE_jvmci_3("metadata[%d of %d] = %s", index, _oop_recorder->metadata_count(), method->name()->as_C_string());
return method;
} else {
JVMCI_ERROR_NULL("unexpected metadata reference for constant of type %s", jvmci_env()->klass_name(obj));
}
}
#ifdef _LP64
narrowKlass CodeInstaller::record_narrow_metadata_reference(CodeSection* section, address dest, JVMCIObject constant, JVMCI_TRAPS) {
JVMCIObject obj = jvmci_env()->get_HotSpotMetaspaceConstantImpl_metaspaceObject(constant);
assert(jvmci_env()->get_HotSpotMetaspaceConstantImpl_compressed(constant), "unexpected uncompressed pointer");
if (!jvmci_env()->isa_HotSpotResolvedObjectTypeImpl(obj)) {
JVMCI_ERROR_0("unexpected compressed pointer of type %s", jvmci_env()->klass_name(obj));
}
Klass* klass = JVMCIENV->asKlass(obj);
int index = _oop_recorder->find_index(klass);
section->relocate(dest, metadata_Relocation::spec(index));
TRACE_jvmci_3("narrowKlass[%d of %d] = %s", index, _oop_recorder->metadata_count(), klass->name()->as_C_string());
return CompressedKlassPointers::encode(klass);
}
#endif
Location::Type CodeInstaller::get_oop_type(JVMCIObject value) {
JVMCIObject valueKind = jvmci_env()->get_Value_valueKind(value);
JVMCIObject platformKind = jvmci_env()->get_ValueKind_platformKind(valueKind);
if (jvmci_env()->equals(platformKind, word_kind())) {
return Location::oop;
} else {
return Location::narrowoop;
}
}
ScopeValue* CodeInstaller::get_scope_value(JVMCIObject value, BasicType type, GrowableArray<ScopeValue*>* objects, ScopeValue* &second, JVMCI_TRAPS) {
second = NULL;
if (value.is_null()) {
JVMCI_THROW_NULL(NullPointerException);
} else if (JVMCIENV->equals(value, jvmci_env()->get_Value_ILLEGAL())) {
if (type != T_ILLEGAL) {
JVMCI_ERROR_NULL("unexpected illegal value, expected %s", basictype_to_str(type));
}
return _illegal_value;
} else if (jvmci_env()->isa_RegisterValue(value)) {
JVMCIObject reg = jvmci_env()->get_RegisterValue_reg(value);
jint number = jvmci_env()->get_code_Register_number(reg);
VMReg hotspotRegister = get_hotspot_reg(number, JVMCI_CHECK_NULL);
if (is_general_purpose_reg(hotspotRegister)) {
Location::Type locationType;
if (type == T_OBJECT) {
locationType = get_oop_type(value);
} else if (type == T_LONG) {
locationType = Location::lng;
} else if (type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN) {
locationType = Location::int_in_long;
} else {
JVMCI_ERROR_NULL("unexpected type %s in cpu register", basictype_to_str(type));
}
ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister));
if (type == T_LONG) {
second = value;
}
return value;
} else {
Location::Type locationType;
if (type == T_FLOAT) {
// this seems weird, but the same value is used in c1_LinearScan
locationType = Location::normal;
} else if (type == T_DOUBLE) {
locationType = Location::dbl;
} else {
JVMCI_ERROR_NULL("unexpected type %s in floating point register", basictype_to_str(type));
}
ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister));
if (type == T_DOUBLE) {
second = value;
}
return value;
}
} else if (jvmci_env()->isa_StackSlot(value)) {
jint offset = jvmci_env()->get_StackSlot_offset(value);
if (jvmci_env()->get_StackSlot_addFrameSize(value)) {
offset += _total_frame_size;
}
Location::Type locationType;
if (type == T_OBJECT) {
locationType = get_oop_type(value);
} else if (type == T_LONG) {
locationType = Location::lng;
} else if (type == T_DOUBLE) {
locationType = Location::dbl;
} else if (type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN) {
locationType = Location::normal;
} else {
JVMCI_ERROR_NULL("unexpected type %s in stack slot", basictype_to_str(type));
}
ScopeValue* value = new LocationValue(Location::new_stk_loc(locationType, offset));
if (type == T_DOUBLE || type == T_LONG) {
second = value;
}
return value;
} else if (jvmci_env()->isa_JavaConstant(value)) {
if (jvmci_env()->isa_PrimitiveConstant(value)) {
if (jvmci_env()->isa_RawConstant(value)) {
jlong prim = jvmci_env()->get_PrimitiveConstant_primitive(value);
return new ConstantLongValue(prim);
} else {
BasicType constantType = jvmci_env()->kindToBasicType(jvmci_env()->get_PrimitiveConstant_kind(value), JVMCI_CHECK_NULL);
if (type != constantType) {
JVMCI_ERROR_NULL("primitive constant type doesn't match, expected %s but got %s", basictype_to_str(type), basictype_to_str(constantType));
}
if (type == T_INT || type == T_FLOAT) {
jint prim = (jint)jvmci_env()->get_PrimitiveConstant_primitive(value);
switch (prim) {
case -1: return _int_m1_scope_value;
case 0: return _int_0_scope_value;
case 1: return _int_1_scope_value;
case 2: return _int_2_scope_value;
default: return new ConstantIntValue(prim);
}
} else if (type == T_LONG || type == T_DOUBLE) {
jlong prim = jvmci_env()->get_PrimitiveConstant_primitive(value);
second = _int_1_scope_value;
return new ConstantLongValue(prim);
} else {
JVMCI_ERROR_NULL("unexpected primitive constant type %s", basictype_to_str(type));
}
}
} else if (jvmci_env()->isa_NullConstant(value) || jvmci_env()->isa_HotSpotCompressedNullConstant(value)) {
if (type == T_OBJECT) {
return _oop_null_scope_value;
} else {
JVMCI_ERROR_NULL("unexpected null constant, expected %s", basictype_to_str(type));
}
} else if (jvmci_env()->isa_HotSpotObjectConstantImpl(value)) {
if (type == T_OBJECT) {
Handle obj = jvmci_env()->asConstant(value, JVMCI_CHECK_NULL);
if (obj == NULL) {
JVMCI_ERROR_NULL("null value must be in NullConstant");
}
return new ConstantOopWriteValue(JNIHandles::make_local(obj()));
} else {
JVMCI_ERROR_NULL("unexpected object constant, expected %s", basictype_to_str(type));
}
}
} else if (jvmci_env()->isa_VirtualObject(value)) {
if (type == T_OBJECT) {
int id = jvmci_env()->get_VirtualObject_id(value);
if (0 <= id && id < objects->length()) {
ScopeValue* object = objects->at(id);
if (object != NULL) {
return object;
}
}
JVMCI_ERROR_NULL("unknown virtual object id %d", id);
} else {
JVMCI_ERROR_NULL("unexpected virtual object, expected %s", basictype_to_str(type));
}
}
JVMCI_ERROR_NULL("unexpected value in scope: %s", jvmci_env()->klass_name(value))
}
void CodeInstaller::record_object_value(ObjectValue* sv, JVMCIObject value, GrowableArray<ScopeValue*>* objects, JVMCI_TRAPS) {
JVMCIObject type = jvmci_env()->get_VirtualObject_type(value);
int id = jvmci_env()->get_VirtualObject_id(value);
Klass* klass = JVMCIENV->asKlass(type);
bool isLongArray = klass == Universe::longArrayKlassObj();
JVMCIObjectArray values = jvmci_env()->get_VirtualObject_values(value);
JVMCIObjectArray slotKinds = jvmci_env()->get_VirtualObject_slotKinds(value);
for (jint i = 0; i < JVMCIENV->get_length(values); i++) {
ScopeValue* cur_second = NULL;
JVMCIObject object = JVMCIENV->get_object_at(values, i);
BasicType type = jvmci_env()->kindToBasicType(JVMCIENV->get_object_at(slotKinds, i), JVMCI_CHECK);
ScopeValue* value = get_scope_value(object, type, objects, cur_second, JVMCI_CHECK);
if (isLongArray && cur_second == NULL) {
// we're trying to put ints into a long array... this isn't really valid, but it's used for some optimizations.
// add an int 0 constant
cur_second = _int_0_scope_value;
}
if (cur_second != NULL) {
sv->field_values()->append(cur_second);
}
assert(value != NULL, "missing value");
sv->field_values()->append(value);
}
}
MonitorValue* CodeInstaller::get_monitor_value(JVMCIObject value, GrowableArray<ScopeValue*>* objects, JVMCI_TRAPS) {
if (value.is_null()) {
JVMCI_THROW_NULL(NullPointerException);
}
if (!jvmci_env()->isa_StackLockValue(value)) {
JVMCI_ERROR_NULL("Monitors must be of type StackLockValue, got %s", jvmci_env()->klass_name(value));
}
ScopeValue* second = NULL;
ScopeValue* owner_value = get_scope_value(jvmci_env()->get_StackLockValue_owner(value), T_OBJECT, objects, second, JVMCI_CHECK_NULL);
assert(second == NULL, "monitor cannot occupy two stack slots");
ScopeValue* lock_data_value = get_scope_value(jvmci_env()->get_StackLockValue_slot(value), T_LONG, objects, second, JVMCI_CHECK_NULL);
assert(second == lock_data_value, "monitor is LONG value that occupies two stack slots");
assert(lock_data_value->is_location(), "invalid monitor location");
Location lock_data_loc = ((LocationValue*)lock_data_value)->location();
bool eliminated = false;
if (jvmci_env()->get_StackLockValue_eliminated(value)) {
eliminated = true;
}
return new MonitorValue(owner_value, lock_data_loc, eliminated);
}
void CodeInstaller::initialize_dependencies(JVMCIObject compiled_code, OopRecorder* oop_recorder, JVMCI_TRAPS) {
JavaThread* thread = JavaThread::current();
CompilerThread* compilerThread = thread->is_Compiler_thread() ? thread->as_CompilerThread() : NULL;
_oop_recorder = oop_recorder;
_dependencies = new Dependencies(&_arena, _oop_recorder, compilerThread != NULL ? compilerThread->log() : NULL);
JVMCIObjectArray assumptions = jvmci_env()->get_HotSpotCompiledCode_assumptions(compiled_code);
if (assumptions.is_non_null()) {
int length = JVMCIENV->get_length(assumptions);
for (int i = 0; i < length; ++i) {
JVMCIObject assumption = JVMCIENV->get_object_at(assumptions, i);
if (assumption.is_non_null()) {
if (jvmci_env()->isa_Assumptions_NoFinalizableSubclass(assumption)) {
assumption_NoFinalizableSubclass(assumption);
} else if (jvmci_env()->isa_Assumptions_ConcreteSubtype(assumption)) {
assumption_ConcreteSubtype(assumption);
} else if (jvmci_env()->isa_Assumptions_LeafType(assumption)) {
assumption_LeafType(assumption);
} else if (jvmci_env()->isa_Assumptions_ConcreteMethod(assumption)) {
assumption_ConcreteMethod(assumption);
} else if (jvmci_env()->isa_Assumptions_CallSiteTargetValue(assumption)) {
assumption_CallSiteTargetValue(assumption, JVMCI_CHECK);
} else {
JVMCI_ERROR("unexpected Assumption subclass %s", jvmci_env()->klass_name(assumption));
}
}
}
}
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
JVMCIObjectArray methods = jvmci_env()->get_HotSpotCompiledCode_methods(compiled_code);
if (methods.is_non_null()) {
int length = JVMCIENV->get_length(methods);
for (int i = 0; i < length; ++i) {
JVMCIObject method_handle = JVMCIENV->get_object_at(methods, i);
Method* method = jvmci_env()->asMethod(method_handle);
_dependencies->assert_evol_method(method);
}
}
}
}
#if INCLUDE_AOT
RelocBuffer::~RelocBuffer() {
FREE_C_HEAP_ARRAY(char, _buffer);
}
address RelocBuffer::begin() const {
if (_buffer != NULL) {
return (address) _buffer;
}
return (address) _static_buffer;
}
void RelocBuffer::set_size(size_t bytes) {
assert(bytes <= _size, "can't grow in size!");
_size = bytes;
}
void RelocBuffer::ensure_size(size_t bytes) {
assert(_buffer == NULL, "can only be used once");
assert(_size == 0, "can only be used once");
if (bytes >= RelocBuffer::stack_size) {
_buffer = NEW_C_HEAP_ARRAY(char, bytes, mtJVMCI);
}
_size = bytes;
}
JVMCI::CodeInstallResult CodeInstaller::gather_metadata(JVMCIObject target, JVMCIObject compiled_code, CodeMetadata& metadata, JVMCI_TRAPS) {
assert(JVMCIENV->is_hotspot(), "AOT code is executed only in HotSpot mode");
CodeBuffer buffer("JVMCI Compiler CodeBuffer for Metadata");
AOTOopRecorder* recorder = new AOTOopRecorder(this, &_arena, true);
initialize_dependencies(compiled_code, recorder, JVMCI_CHECK_OK);
metadata.set_oop_recorder(recorder);
// Get instructions and constants CodeSections early because we need it.
_instructions = buffer.insts();
_constants = buffer.consts();
buffer.set_immutable_PIC(_immutable_pic_compilation);
initialize_fields(target, compiled_code, JVMCI_CHECK_OK);
JVMCI::CodeInstallResult result = initialize_buffer(buffer, false, JVMCI_CHECK_OK);
if (result != JVMCI::ok) {
return result;
}
_debug_recorder->pcs_size(); // create the sentinel record
assert(_debug_recorder->pcs_length() >= 2, "must be at least 2");
metadata.set_pc_desc(_debug_recorder->pcs(), _debug_recorder->pcs_length());
metadata.set_scopes(_debug_recorder->stream()->buffer(), _debug_recorder->data_size());
metadata.set_exception_table(&_exception_handler_table);
metadata.set_implicit_exception_table(&_implicit_exception_table);
RelocBuffer* reloc_buffer = metadata.get_reloc_buffer();
reloc_buffer->ensure_size(buffer.total_relocation_size());
size_t size = (size_t) buffer.copy_relocations_to(reloc_buffer->begin(), (CodeBuffer::csize_t) reloc_buffer->size(), true);
reloc_buffer->set_size(size);
return JVMCI::ok;
}
#endif // INCLUDE_AOT
// constructor used to create a method
JVMCI::CodeInstallResult CodeInstaller::install(JVMCICompiler* compiler,
JVMCIObject target,
JVMCIObject compiled_code,
CodeBlob*& cb,
JVMCIObject installed_code,
FailedSpeculation** failed_speculations,
char* speculations,
int speculations_len,
JVMCI_TRAPS) {
CodeBuffer buffer("JVMCI Compiler CodeBuffer");
OopRecorder* recorder = new OopRecorder(&_arena, true);
initialize_dependencies(compiled_code, recorder, JVMCI_CHECK_OK);
// Get instructions and constants CodeSections early because we need it.
_instructions = buffer.insts();
_constants = buffer.consts();
#if INCLUDE_AOT
buffer.set_immutable_PIC(_immutable_pic_compilation);
#endif
initialize_fields(target, compiled_code, JVMCI_CHECK_OK);
JVMCI::CodeInstallResult result = initialize_buffer(buffer, true, JVMCI_CHECK_OK);
if (result != JVMCI::ok) {
return result;
}
int stack_slots = _total_frame_size / HeapWordSize; // conversion to words
if (!jvmci_env()->isa_HotSpotCompiledNmethod(compiled_code)) {
JVMCIObject stubName = jvmci_env()->get_HotSpotCompiledCode_name(compiled_code);
if (stubName.is_null()) {
JVMCI_ERROR_OK("stub should have a name");
}
char* name = strdup(jvmci_env()->as_utf8_string(stubName));
cb = RuntimeStub::new_runtime_stub(name,
&buffer,
CodeOffsets::frame_never_safe,
stack_slots,
_debug_recorder->_oopmaps,
false);
result = JVMCI::ok;
} else {
JVMCICompileState* compile_state = (JVMCICompileState*) (address) jvmci_env()->get_HotSpotCompiledNmethod_compileState(compiled_code);
if (compile_state != NULL) {
jvmci_env()->set_compile_state(compile_state);
}
Thread* thread = Thread::current();
methodHandle method(thread, jvmci_env()->asMethod(jvmci_env()->get_HotSpotCompiledNmethod_method(compiled_code)));
jint entry_bci = jvmci_env()->get_HotSpotCompiledNmethod_entryBCI(compiled_code);
bool has_unsafe_access = jvmci_env()->get_HotSpotCompiledNmethod_hasUnsafeAccess(compiled_code) == JNI_TRUE;
jint id = jvmci_env()->get_HotSpotCompiledNmethod_id(compiled_code);
if (id == -1) {
// Make sure a valid compile_id is associated with every compile
id = CompileBroker::assign_compile_id_unlocked(thread, method, entry_bci);
jvmci_env()->set_HotSpotCompiledNmethod_id(compiled_code, id);
}
if (!jvmci_env()->isa_HotSpotNmethod(installed_code)) {
JVMCI_THROW_MSG_(IllegalArgumentException, "InstalledCode object must be a HotSpotNmethod when installing a HotSpotCompiledNmethod", JVMCI::ok);
}
JVMCIObject mirror = installed_code;
nmethod* nm = NULL;
result = runtime()->register_method(jvmci_env(), method, nm, entry_bci, &_offsets, _orig_pc_offset, &buffer,
stack_slots, _debug_recorder->_oopmaps, &_exception_handler_table, &_implicit_exception_table,
compiler, _debug_recorder, _dependencies, id,
has_unsafe_access, _has_wide_vector, compiled_code, mirror,
failed_speculations, speculations, speculations_len);
cb = nm->as_codeblob_or_null();
if (nm != NULL && compile_state == NULL) {
// This compile didn't come through the CompileBroker so perform the printing here
DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, compiler);
nm->maybe_print_nmethod(directive);
DirectivesStack::release(directive);
}
}
if (cb != NULL) {
// Make sure the pre-calculated constants section size was correct.
guarantee((cb->code_begin() - cb->content_begin()) >= _constants_size, "%d < %d", (int)(cb->code_begin() - cb->content_begin()), _constants_size);
}
return result;
}
void CodeInstaller::initialize_fields(JVMCIObject target, JVMCIObject compiled_code, JVMCI_TRAPS) {
if (jvmci_env()->isa_HotSpotCompiledNmethod(compiled_code)) {
JVMCIObject hotspotJavaMethod = jvmci_env()->get_HotSpotCompiledNmethod_method(compiled_code);
Thread* thread = Thread::current();
methodHandle method(thread, jvmci_env()->asMethod(hotspotJavaMethod));
_parameter_count = method->size_of_parameters();
TRACE_jvmci_2("installing code for %s", method->name_and_sig_as_C_string());
} else {
// Must be a HotSpotCompiledRuntimeStub.
// Only used in OopMap constructor for non-product builds
_parameter_count = 0;
}
_sites_handle = jvmci_env()->get_HotSpotCompiledCode_sites(compiled_code);
_code_handle = jvmci_env()->get_HotSpotCompiledCode_targetCode(compiled_code);
_code_size = jvmci_env()->get_HotSpotCompiledCode_targetCodeSize(compiled_code);
_total_frame_size = jvmci_env()->get_HotSpotCompiledCode_totalFrameSize(compiled_code);
JVMCIObject deoptRescueSlot = jvmci_env()->get_HotSpotCompiledCode_deoptRescueSlot(compiled_code);
if (deoptRescueSlot.is_null()) {
_orig_pc_offset = -1;
} else {
_orig_pc_offset = jvmci_env()->get_StackSlot_offset(deoptRescueSlot);
if (jvmci_env()->get_StackSlot_addFrameSize(deoptRescueSlot)) {
_orig_pc_offset += _total_frame_size;
}
if (_orig_pc_offset < 0) {
JVMCI_ERROR("invalid deopt rescue slot: %d", _orig_pc_offset);
}
}
// Pre-calculate the constants section size. This is required for PC-relative addressing.
_data_section_handle = jvmci_env()->get_HotSpotCompiledCode_dataSection(compiled_code);
if ((_constants->alignment() % jvmci_env()->get_HotSpotCompiledCode_dataSectionAlignment(compiled_code)) != 0) {
JVMCI_ERROR("invalid data section alignment: %d", jvmci_env()->get_HotSpotCompiledCode_dataSectionAlignment(compiled_code));
}
_constants_size = JVMCIENV->get_length(data_section());
_data_section_patches_handle = jvmci_env()->get_HotSpotCompiledCode_dataSectionPatches(compiled_code);
#ifndef PRODUCT
_comments_handle = jvmci_env()->get_HotSpotCompiledCode_comments(compiled_code);
#endif
_next_call_type = INVOKE_INVALID;
_has_wide_vector = false;
JVMCIObject arch = jvmci_env()->get_TargetDescription_arch(target);
_word_kind_handle = jvmci_env()->get_Architecture_wordKind(arch);
}
int CodeInstaller::estimate_stubs_size(JVMCI_TRAPS) {
// Estimate the number of static and aot call stubs that might be emitted.
int static_call_stubs = 0;
int aot_call_stubs = 0;
int trampoline_stubs = 0;
JVMCIObjectArray sites = this->sites();
for (int i = 0; i < JVMCIENV->get_length(sites); i++) {
JVMCIObject site = JVMCIENV->get_object_at(sites, i);
if (!site.is_null()) {
if (jvmci_env()->isa_site_Mark(site)) {
JVMCIObject id_obj = jvmci_env()->get_site_Mark_id(site);
if (id_obj.is_non_null()) {
if (!jvmci_env()->is_boxing_object(T_INT, id_obj)) {
JVMCI_ERROR_0("expected Integer id, got %s", jvmci_env()->klass_name(id_obj));
}
jint id = jvmci_env()->get_boxed_value(T_INT, id_obj).i;
switch (id) {
case INVOKEINTERFACE:
case INVOKEVIRTUAL:
trampoline_stubs++;
break;
case INVOKESTATIC:
case INVOKESPECIAL:
static_call_stubs++;
trampoline_stubs++;
break;
default:
break;
}
}
}
#if INCLUDE_AOT
if (UseAOT && jvmci_env()->isa_site_Call(site)) {
JVMCIObject target = jvmci_env()-> get_site_Call_target(site);
if (!jvmci_env()->isa_HotSpotForeignCallTarget(target)) {
// Add far aot trampolines.
aot_call_stubs++;
}
}
#endif
}
}
int size = static_call_stubs * CompiledStaticCall::to_interp_stub_size();
size += trampoline_stubs * CompiledStaticCall::to_trampoline_stub_size();
#if INCLUDE_AOT
size += aot_call_stubs * CompiledStaticCall::to_aot_stub_size();
#endif
return size;
}
// perform data and call relocation on the CodeBuffer
JVMCI::CodeInstallResult CodeInstaller::initialize_buffer(CodeBuffer& buffer, bool check_size, JVMCI_TRAPS) {
HandleMark hm;
JVMCIObjectArray sites = this->sites();
int locs_buffer_size = JVMCIENV->get_length(sites) * (relocInfo::length_limit + sizeof(relocInfo));
// Allocate enough space in the stub section for the static call
// stubs. Stubs have extra relocs but they are managed by the stub
// section itself so they don't need to be accounted for in the
// locs_buffer above.
int stubs_size = estimate_stubs_size(JVMCI_CHECK_OK);
int total_size = align_up(_code_size, buffer.insts()->alignment()) + align_up(_constants_size, buffer.consts()->alignment()) + align_up(stubs_size, buffer.stubs()->alignment());
if (check_size && total_size > JVMCINMethodSizeLimit) {
return JVMCI::code_too_large;
}
buffer.initialize(total_size, locs_buffer_size);
if (buffer.blob() == NULL) {
return JVMCI::cache_full;
}
buffer.initialize_stubs_size(stubs_size);
buffer.initialize_consts_size(_constants_size);
_debug_recorder = new DebugInformationRecorder(_oop_recorder);
_debug_recorder->set_oopmaps(new OopMapSet());
buffer.initialize_oop_recorder(_oop_recorder);
// copy the constant data into the newly created CodeBuffer
address end_data = _constants->start() + _constants_size;
JVMCIENV->copy_bytes_to(data_section(), (jbyte*) _constants->start(), 0, _constants_size);
_constants->set_end(end_data);
// copy the code into the newly created CodeBuffer
address end_pc = _instructions->start() + _code_size;
guarantee(_instructions->allocates2(end_pc), "initialize should have reserved enough space for all the code");
JVMCIENV->copy_bytes_to(code(), (jbyte*) _instructions->start(), 0, _code_size);
_instructions->set_end(end_pc);
for (int i = 0; i < JVMCIENV->get_length(data_section_patches()); i++) {
// HandleMark hm(THREAD);
JVMCIObject patch = JVMCIENV->get_object_at(data_section_patches(), i);
if (patch.is_null()) {
JVMCI_THROW_(NullPointerException, JVMCI::ok);
}
JVMCIObject reference = jvmci_env()->get_site_DataPatch_reference(patch);
if (reference.is_null()) {
JVMCI_THROW_(NullPointerException, JVMCI::ok);
}
if (!jvmci_env()->isa_site_ConstantReference(reference)) {
JVMCI_ERROR_OK("invalid patch in data section: %s", jvmci_env()->klass_name(reference));
}
JVMCIObject constant = jvmci_env()->get_site_ConstantReference_constant(reference);
if (constant.is_null()) {
JVMCI_THROW_(NullPointerException, JVMCI::ok);
}
address dest = _constants->start() + jvmci_env()->get_site_Site_pcOffset(patch);
if (jvmci_env()->isa_HotSpotMetaspaceConstantImpl(constant)) {
if (jvmci_env()->get_HotSpotMetaspaceConstantImpl_compressed(constant)) {
#ifdef _LP64
*((narrowKlass*) dest) = record_narrow_metadata_reference(_constants, dest, constant, JVMCI_CHECK_OK);
#else
JVMCI_ERROR_OK("unexpected compressed Klass* in 32-bit mode");
#endif
} else {
*((void**) dest) = record_metadata_reference(_constants, dest, constant, JVMCI_CHECK_OK);
}
} else if (jvmci_env()->isa_HotSpotObjectConstantImpl(constant)) {
Handle obj = jvmci_env()->asConstant(constant, JVMCI_CHECK_OK);
jobject value = JNIHandles::make_local(obj());
int oop_index = _oop_recorder->find_index(value);
if (jvmci_env()->get_HotSpotObjectConstantImpl_compressed(constant)) {
#ifdef _LP64
_constants->relocate(dest, oop_Relocation::spec(oop_index), relocInfo::narrow_oop_in_const);
#else
JVMCI_ERROR_OK("unexpected compressed oop in 32-bit mode");
#endif
} else {
_constants->relocate(dest, oop_Relocation::spec(oop_index));
}
} else {
JVMCI_ERROR_OK("invalid constant in data section: %s", jvmci_env()->klass_name(constant));
}
}
jint last_pc_offset = -1;
for (int i = 0; i < JVMCIENV->get_length(sites); i++) {
// HandleMark hm(THREAD);
JVMCIObject site = JVMCIENV->get_object_at(sites, i);
if (site.is_null()) {
JVMCI_THROW_(NullPointerException, JVMCI::ok);
}
jint pc_offset = jvmci_env()->get_site_Site_pcOffset(site);
if (jvmci_env()->isa_site_Call(site)) {
TRACE_jvmci_4("call at %i", pc_offset);
site_Call(buffer, pc_offset, site, JVMCI_CHECK_OK);
} else if (jvmci_env()->isa_site_Infopoint(site)) {
// three reasons for infopoints denote actual safepoints
JVMCIObject reason = jvmci_env()->get_site_Infopoint_reason(site);
if (JVMCIENV->equals(reason, jvmci_env()->get_site_InfopointReason_SAFEPOINT()) ||
JVMCIENV->equals(reason, jvmci_env()->get_site_InfopointReason_CALL()) ||
JVMCIENV->equals(reason, jvmci_env()->get_site_InfopointReason_IMPLICIT_EXCEPTION())) {
TRACE_jvmci_4("safepoint at %i", pc_offset);
site_Safepoint(buffer, pc_offset, site, JVMCI_CHECK_OK);
if (_orig_pc_offset < 0) {
JVMCI_ERROR_OK("method contains safepoint, but has no deopt rescue slot");
}
if (JVMCIENV->equals(reason, jvmci_env()->get_site_InfopointReason_IMPLICIT_EXCEPTION())) {
TRACE_jvmci_4("implicit exception at %i", pc_offset);
_implicit_exception_table.add_deoptimize(pc_offset);
}
} else {
TRACE_jvmci_4("infopoint at %i", pc_offset);
site_Infopoint(buffer, pc_offset, site, JVMCI_CHECK_OK);
}
} else if (jvmci_env()->isa_site_DataPatch(site)) {
TRACE_jvmci_4("datapatch at %i", pc_offset);
site_DataPatch(buffer, pc_offset, site, JVMCI_CHECK_OK);
} else if (jvmci_env()->isa_site_Mark(site)) {
TRACE_jvmci_4("mark at %i", pc_offset);
site_Mark(buffer, pc_offset, site, JVMCI_CHECK_OK);
} else if (jvmci_env()->isa_site_ExceptionHandler(site)) {
TRACE_jvmci_4("exceptionhandler at %i", pc_offset);
site_ExceptionHandler(pc_offset, site);
} else {
JVMCI_ERROR_OK("unexpected site subclass: %s", jvmci_env()->klass_name(site));
}
last_pc_offset = pc_offset;
JavaThread* thread = JavaThread::current();
if (SafepointMechanism::should_block(thread)) {
// this is a hacky way to force a safepoint check but nothing else was jumping out at me.
ThreadToNativeFromVM ttnfv(thread);
}
}
#ifndef PRODUCT
if (comments().is_non_null()) {
for (int i = 0; i < JVMCIENV->get_length(comments()); i++) {
JVMCIObject comment = JVMCIENV->get_object_at(comments(), i);
assert(jvmci_env()->isa_HotSpotCompiledCode_Comment(comment), "cce");
jint offset = jvmci_env()->get_HotSpotCompiledCode_Comment_pcOffset(comment);
const char* text = jvmci_env()->as_utf8_string(jvmci_env()->get_HotSpotCompiledCode_Comment_text(comment));
buffer.block_comment(offset, text);
}
}
#endif
return JVMCI::ok;
}
void CodeInstaller::assumption_NoFinalizableSubclass(JVMCIObject assumption) {
JVMCIObject receiverType_handle = jvmci_env()->get_Assumptions_NoFinalizableSubclass_receiverType(assumption);
Klass* receiverType = jvmci_env()->asKlass(receiverType_handle);
_dependencies->assert_has_no_finalizable_subclasses(receiverType);
}
void CodeInstaller::assumption_ConcreteSubtype(JVMCIObject assumption) {
JVMCIObject context_handle = jvmci_env()->get_Assumptions_ConcreteSubtype_context(assumption);
JVMCIObject subtype_handle = jvmci_env()->get_Assumptions_ConcreteSubtype_subtype(assumption);
Klass* context = jvmci_env()->asKlass(context_handle);
Klass* subtype = jvmci_env()->asKlass(subtype_handle);
assert(context->is_abstract(), "");
_dependencies->assert_abstract_with_unique_concrete_subtype(context, subtype);
}
void CodeInstaller::assumption_LeafType(JVMCIObject assumption) {
JVMCIObject context_handle = jvmci_env()->get_Assumptions_LeafType_context(assumption);
Klass* context = jvmci_env()->asKlass(context_handle);
_dependencies->assert_leaf_type(context);
}
void CodeInstaller::assumption_ConcreteMethod(JVMCIObject assumption) {
JVMCIObject impl_handle = jvmci_env()->get_Assumptions_ConcreteMethod_impl(assumption);
JVMCIObject context_handle = jvmci_env()->get_Assumptions_ConcreteMethod_context(assumption);
Method* impl = jvmci_env()->asMethod(impl_handle);
Klass* context = jvmci_env()->asKlass(context_handle);
_dependencies->assert_unique_concrete_method(context, impl);
}
void CodeInstaller::assumption_CallSiteTargetValue(JVMCIObject assumption, JVMCI_TRAPS) {
JVMCIObject callSiteConstant = jvmci_env()->get_Assumptions_CallSiteTargetValue_callSite(assumption);
Handle callSite = jvmci_env()->asConstant(callSiteConstant, JVMCI_CHECK);
JVMCIObject methodConstant = jvmci_env()->get_Assumptions_CallSiteTargetValue_methodHandle(assumption);
Handle methodHandle = jvmci_env()->asConstant(methodConstant, JVMCI_CHECK);
_dependencies->assert_call_site_target_value(callSite(), methodHandle());
}
void CodeInstaller::site_ExceptionHandler(jint pc_offset, JVMCIObject exc) {
jint handler_offset = jvmci_env()->get_site_ExceptionHandler_handlerPos(exc);
// Subtable header
_exception_handler_table.add_entry(HandlerTableEntry(1, pc_offset, 0));
// Subtable entry
_exception_handler_table.add_entry(HandlerTableEntry(-1, handler_offset, 0));
}
// If deoptimization happens, the interpreter should reexecute these bytecodes.
// This function mainly helps the compilers to set up the reexecute bit.
static bool bytecode_should_reexecute(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_invokedynamic:
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface:
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
return false;
default:
return true;
}
return true;
}
GrowableArray<ScopeValue*>* CodeInstaller::record_virtual_objects(JVMCIObject debug_info, JVMCI_TRAPS) {
JVMCIObjectArray virtualObjects = jvmci_env()->get_DebugInfo_virtualObjectMapping(debug_info);
if (virtualObjects.is_null()) {
return NULL;
}
GrowableArray<ScopeValue*>* objects = new GrowableArray<ScopeValue*>(JVMCIENV->get_length(virtualObjects), JVMCIENV->get_length(virtualObjects), NULL);
// Create the unique ObjectValues
for (int i = 0; i < JVMCIENV->get_length(virtualObjects); i++) {
// HandleMark hm(THREAD);
JVMCIObject value = JVMCIENV->get_object_at(virtualObjects, i);
int id = jvmci_env()->get_VirtualObject_id(value);
JVMCIObject type = jvmci_env()->get_VirtualObject_type(value);
bool is_auto_box = jvmci_env()->get_VirtualObject_isAutoBox(value);
Klass* klass = jvmci_env()->asKlass(type);
oop javaMirror = klass->java_mirror();
ScopeValue *klass_sv = new ConstantOopWriteValue(JNIHandles::make_local(Thread::current(), javaMirror));
ObjectValue* sv = is_auto_box ? new AutoBoxObjectValue(id, klass_sv) : new ObjectValue(id, klass_sv);
if (id < 0 || id >= objects->length()) {
JVMCI_ERROR_NULL("virtual object id %d out of bounds", id);
}
if (objects->at(id) != NULL) {
JVMCI_ERROR_NULL("duplicate virtual object id %d", id);
}
objects->at_put(id, sv);
}
// All the values which could be referenced by the VirtualObjects
// exist, so now describe all the VirtualObjects themselves.
for (int i = 0; i < JVMCIENV->get_length(virtualObjects); i++) {
// HandleMark hm(THREAD);
JVMCIObject value = JVMCIENV->get_object_at(virtualObjects, i);
int id = jvmci_env()->get_VirtualObject_id(value);
record_object_value(objects->at(id)->as_ObjectValue(), value, objects, JVMCI_CHECK_NULL);
}
_debug_recorder->dump_object_pool(objects);
return objects;
}
void CodeInstaller::record_scope(jint pc_offset, JVMCIObject debug_info, ScopeMode scope_mode, bool return_oop, JVMCI_TRAPS) {
JVMCIObject position = jvmci_env()->get_DebugInfo_bytecodePosition(debug_info);
if (position.is_null()) {
// Stubs do not record scope info, just oop maps
return;
}
GrowableArray<ScopeValue*>* objectMapping;
if (scope_mode == CodeInstaller::FullFrame) {
objectMapping = record_virtual_objects(debug_info, JVMCI_CHECK);
} else {
objectMapping = NULL;
}
record_scope(pc_offset, position, scope_mode, objectMapping, return_oop, JVMCI_CHECK);
}
int CodeInstaller::map_jvmci_bci(int bci) {
if (bci < 0) {
if (bci == jvmci_env()->get_BytecodeFrame_BEFORE_BCI()) {
return BeforeBci;
} else if (bci == jvmci_env()->get_BytecodeFrame_AFTER_BCI()) {
return AfterBci;
} else if (bci == jvmci_env()->get_BytecodeFrame_UNWIND_BCI()) {
return UnwindBci;
} else if (bci == jvmci_env()->get_BytecodeFrame_AFTER_EXCEPTION_BCI()) {
return AfterExceptionBci;
} else if (bci == jvmci_env()->get_BytecodeFrame_UNKNOWN_BCI()) {
return UnknownBci;
} else if (bci == jvmci_env()->get_BytecodeFrame_INVALID_FRAMESTATE_BCI()) {
return InvalidFrameStateBci;
}
ShouldNotReachHere();
}
return bci;
}
void CodeInstaller::record_scope(jint pc_offset, JVMCIObject position, ScopeMode scope_mode, GrowableArray<ScopeValue*>* objects, bool return_oop, JVMCI_TRAPS) {
JVMCIObject frame;
if (scope_mode == CodeInstaller::FullFrame) {
if (!jvmci_env()->isa_BytecodeFrame(position)) {
JVMCI_ERROR("Full frame expected for debug info at %i", pc_offset);
}
frame = position;
}
JVMCIObject caller_frame = jvmci_env()->get_BytecodePosition_caller(position);
if (caller_frame.is_non_null()) {
record_scope(pc_offset, caller_frame, scope_mode, objects, return_oop, JVMCI_CHECK);
}
JVMCIObject hotspot_method = jvmci_env()->get_BytecodePosition_method(position);
Thread* thread = Thread::current();
methodHandle method(thread, jvmci_env()->asMethod(hotspot_method));
jint bci = map_jvmci_bci(jvmci_env()->get_BytecodePosition_bci(position));
if (bci == jvmci_env()->get_BytecodeFrame_BEFORE_BCI()) {
bci = SynchronizationEntryBCI;
}
TRACE_jvmci_2("Recording scope pc_offset=%d bci=%d method=%s", pc_offset, bci, method->name_and_sig_as_C_string());
bool reexecute = false;
if (frame.is_non_null()) {
if (bci < 0){
reexecute = false;
} else {
Bytecodes::Code code = Bytecodes::java_code_at(method(), method->bcp_from(bci));
reexecute = bytecode_should_reexecute(code);
if (frame.is_non_null()) {
reexecute = (jvmci_env()->get_BytecodeFrame_duringCall(frame) == JNI_FALSE);
}
}
}
DebugToken* locals_token = NULL;
DebugToken* expressions_token = NULL;
DebugToken* monitors_token = NULL;
bool throw_exception = false;
if (frame.is_non_null()) {
jint local_count = jvmci_env()->get_BytecodeFrame_numLocals(frame);
jint expression_count = jvmci_env()->get_BytecodeFrame_numStack(frame);
jint monitor_count = jvmci_env()->get_BytecodeFrame_numLocks(frame);
JVMCIObjectArray values = jvmci_env()->get_BytecodeFrame_values(frame);
JVMCIObjectArray slotKinds = jvmci_env()->get_BytecodeFrame_slotKinds(frame);
if (values.is_null() || slotKinds.is_null()) {
JVMCI_THROW(NullPointerException);
}
if (local_count + expression_count + monitor_count != JVMCIENV->get_length(values)) {
JVMCI_ERROR("unexpected values length %d in scope (%d locals, %d expressions, %d monitors)", JVMCIENV->get_length(values), local_count, expression_count, monitor_count);
}
if (local_count + expression_count != JVMCIENV->get_length(slotKinds)) {
JVMCI_ERROR("unexpected slotKinds length %d in scope (%d locals, %d expressions)", JVMCIENV->get_length(slotKinds), local_count, expression_count);
}
GrowableArray<ScopeValue*>* locals = local_count > 0 ? new GrowableArray<ScopeValue*> (local_count) : NULL;
GrowableArray<ScopeValue*>* expressions = expression_count > 0 ? new GrowableArray<ScopeValue*> (expression_count) : NULL;
GrowableArray<MonitorValue*>* monitors = monitor_count > 0 ? new GrowableArray<MonitorValue*> (monitor_count) : NULL;
TRACE_jvmci_2("Scope at bci %d with %d values", bci, JVMCIENV->get_length(values));
TRACE_jvmci_2("%d locals %d expressions, %d monitors", local_count, expression_count, monitor_count);
for (jint i = 0; i < JVMCIENV->get_length(values); i++) {
// HandleMark hm(THREAD);
ScopeValue* second = NULL;
JVMCIObject value = JVMCIENV->get_object_at(values, i);
if (i < local_count) {
BasicType type = jvmci_env()->kindToBasicType(JVMCIENV->get_object_at(slotKinds, i), JVMCI_CHECK);
ScopeValue* first = get_scope_value(value, type, objects, second, JVMCI_CHECK);
if (second != NULL) {
locals->append(second);
}
locals->append(first);
} else if (i < local_count + expression_count) {
BasicType type = jvmci_env()->kindToBasicType(JVMCIENV->get_object_at(slotKinds, i), JVMCI_CHECK);
ScopeValue* first = get_scope_value(value, type, objects, second, JVMCI_CHECK);
if (second != NULL) {
expressions->append(second);
}
expressions->append(first);
} else {
MonitorValue *monitor = get_monitor_value(value, objects, JVMCI_CHECK);
monitors->append(monitor);
}
if (second != NULL) {
i++;
if (i >= JVMCIENV->get_length(values) || !JVMCIENV->equals(JVMCIENV->get_object_at(values, i), jvmci_env()->get_Value_ILLEGAL())) {
JVMCI_ERROR("double-slot value not followed by Value.ILLEGAL");
}
}
}
locals_token = _debug_recorder->create_scope_values(locals);
expressions_token = _debug_recorder->create_scope_values(expressions);
monitors_token = _debug_recorder->create_monitor_values(monitors);
throw_exception = jvmci_env()->get_BytecodeFrame_rethrowException(frame) == JNI_TRUE;
}
_debug_recorder->describe_scope(pc_offset, method, NULL, bci, reexecute, throw_exception, false, return_oop,
locals_token, expressions_token, monitors_token);
}
void CodeInstaller::site_Safepoint(CodeBuffer& buffer, jint pc_offset, JVMCIObject site, JVMCI_TRAPS) {
JVMCIObject debug_info = jvmci_env()->get_site_Infopoint_debugInfo(site);
if (debug_info.is_null()) {
JVMCI_ERROR("debug info expected at safepoint at %i", pc_offset);
}
// address instruction = _instructions->start() + pc_offset;
// jint next_pc_offset = Assembler::locate_next_instruction(instruction) - _instructions->start();
OopMap *map = create_oop_map(debug_info, JVMCI_CHECK);
_debug_recorder->add_safepoint(pc_offset, map);
record_scope(pc_offset, debug_info, CodeInstaller::FullFrame, JVMCI_CHECK);
_debug_recorder->end_safepoint(pc_offset);
}
void CodeInstaller::site_Infopoint(CodeBuffer& buffer, jint pc_offset, JVMCIObject site, JVMCI_TRAPS) {
JVMCIObject debug_info = jvmci_env()->get_site_Infopoint_debugInfo(site);
if (debug_info.is_null()) {
JVMCI_ERROR("debug info expected at infopoint at %i", pc_offset);
}
// We'd like to check that pc_offset is greater than the
// last pc recorded with _debug_recorder (raising an exception if not)
// but DebugInformationRecorder doesn't have sufficient public API.
_debug_recorder->add_non_safepoint(pc_offset);
record_scope(pc_offset, debug_info, CodeInstaller::BytecodePosition, JVMCI_CHECK);
_debug_recorder->end_non_safepoint(pc_offset);
}
void CodeInstaller::site_Call(CodeBuffer& buffer, jint pc_offset, JVMCIObject site, JVMCI_TRAPS) {
JVMCIObject target = jvmci_env()->get_site_Call_target(site);
JVMCIObject hotspot_method; // JavaMethod
JVMCIObject foreign_call;
if (jvmci_env()->isa_HotSpotForeignCallTarget(target)) {
foreign_call = target;
} else {
hotspot_method = target;
}
JVMCIObject debug_info = jvmci_env()->get_site_Infopoint_debugInfo(site);
assert(hotspot_method.is_non_null() ^ foreign_call.is_non_null(), "Call site needs exactly one type");
/**代码未完, 请加载全部代码(NowJava.com).**/