/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_INTERPRETER_ABSTRACTINTERPRETER_HPP
#define SHARE_INTERPRETER_ABSTRACTINTERPRETER_HPP
#include "asm/macroAssembler.hpp"
#include "code/stubs.hpp"
#include "interpreter/bytecodes.hpp"
#include "runtime/frame.hpp"
#include "runtime/thread.hpp"
#include "runtime/vmThread.hpp"
// This file contains the platform-independent parts
// of the abstract interpreter and the abstract interpreter generator.
// Organization of the interpreter(s). There exists two different interpreters in hotpot
// an assembly language version (aka template interpreter) and a high level language version
// (aka c++ interpreter). Th division of labor is as follows:
// Template Interpreter C++ Interpreter Functionality
//
// templateTable* bytecodeInterpreter* actual interpretation of bytecodes
//
// templateInterpreter* cppInterpreter* generation of assembly code that creates
// and manages interpreter runtime frames.
// Also code for populating interpreter
// frames created during deoptimization.
//
class InterpreterMacroAssembler;
class AbstractInterpreter: AllStatic {
friend class VMStructs;
friend class CppInterpreterGenerator;
friend class TemplateInterpreterGenerator;
public:
enum MethodKind {
zerolocals, // method needs locals initialization
zerolocals_synchronized, // method needs locals initialization & is synchronized
native, // native method
native_synchronized, // native method & is synchronized
empty, // empty method (code: _return)
accessor, // accessor method (code: _aload_0, _getfield, _(a|i)return)
abstract, // abstract method (throws an AbstractMethodException)
method_handle_invoke_FIRST, // java.lang.invoke.MethodHandles::invokeExact, etc.
method_handle_invoke_LAST = (method_handle_invoke_FIRST
+ (vmIntrinsics::LAST_MH_SIG_POLY
- vmIntrinsics::FIRST_MH_SIG_POLY)),
java_lang_math_sin, // implementation of java.lang.Math.sin (x)
java_lang_math_cos, // implementation of java.lang.Math.cos (x)
java_lang_math_tan, // implementation of java.lang.Math.tan (x)
java_lang_math_abs, // implementation of java.lang.Math.abs (x)
java_lang_math_sqrt, // implementation of java.lang.Math.sqrt (x)
java_lang_math_log, // implementation of java.lang.Math.log (x)
java_lang_math_log10, // implementation of java.lang.Math.log10 (x)
java_lang_math_pow, // implementation of java.lang.Math.pow (x,y)
java_lang_math_exp, // implementation of java.lang.Math.exp (x)
java_lang_math_fmaF, // implementation of java.lang.Math.fma (x, y, z)
java_lang_math_fmaD, // implementation of java.lang.Math.fma (x, y, z)
java_lang_ref_reference_get, // implementation of java.lang.ref.Reference.get()
java_util_zip_CRC32_update, // implementation of java.util.zip.CRC32.update()
java_util_zip_CRC32_updateBytes, // implementation of java.util.zip.CRC32.updateBytes()
java_util_zip_CRC32_updateByteBuffer, // implementation of java.util.zip.CRC32.updateByteBuffer()
java_util_zip_CRC32C_updateBytes, // implementation of java.util.zip.CRC32C.updateBytes(crc, b[], off, end)
java_util_zip_CRC32C_updateDirectByteBuffer, // implementation of java.util.zip.CRC32C.updateDirectByteBuffer(crc, address, off, end)
java_lang_Float_intBitsToFloat, // implementation of java.lang.Float.intBitsToFloat()
java_lang_Float_floatToRawIntBits, // implementation of java.lang.Float.floatToRawIntBits()
java_lang_Double_longBitsToDouble, // implementation of java.lang.Double.longBitsToDouble()
java_lang_Double_doubleToRawLongBits, // implementation of java.lang.Double.doubleToRawLongBits()
number_of_method_entries,
invalid = -1
};
// Conversion from the part of the above enum to vmIntrinsics::_invokeExact, etc.
static vmIntrinsics::ID method_handle_intrinsic(MethodKind kind) {
if (kind >= method_handle_invoke_FIRST && kind <= method_handle_invoke_LAST)
return (vmIntrinsics::ID)( vmIntrinsics::FIRST_MH_SIG_POLY + (kind - method_handle_invoke_FIRST) );
else
return vmIntrinsics::_none;
}
enum SomeConstants {
number_of_result_handlers = 10 // number of result handlers for native calls
};
protected:
static StubQueue* _code; // the interpreter code (codelets)
static bool _notice_safepoints; // true if safepoints are activated
static address _native_entry_begin; // Region for native entry code
static address _native_entry_end;
// method entry points
static address _entry_table[number_of_method_entries]; // entry points for a given method
static address _cds_entry_table[number_of_method_entries]; // entry points for methods in the CDS archive
static address _native_abi_to_tosca[number_of_result_handlers]; // for native method result handlers
static address _slow_signature_handler; // the native method generic (slow) signature handler
static address _rethrow_exception_entry; // rethrows an activation in previous frame
friend class AbstractInterpreterGenerator;
friend class InterpreterMacroAssembler;
public:
// Initialization/debugging
static void initialize();
static StubQueue* code() { return _code; }
// Method activation
static MethodKind method_kind(const methodHandle& m);
static address entry_for_kind(MethodKind k) { assert(0 <= k && k < number_of_method_entries, "illegal kind"); return _entry_table[k]; }
static address entry_for_method(const methodHandle& m) { return entry_for_kind(method_kind(m)); }
static address entry_for_cds_method(const methodHandle& m) {
MethodKind k = method_kind(m);
assert(0 <= k && k < number_of_method_entries, "illegal kind");
return _cds_entry_table[k];
}
// used by class data sharing
static void update_cds_entry_table(MethodKind kind) NOT_CDS_RETURN;
static address get_trampoline_code_buffer(AbstractInterpreter::MethodKind kind) NOT_CDS_RETURN_(0);
// used for bootstrapping method handles:
static void set_entry_for_kind(MethodKind k, address e);
static void print_method_kind(MethodKind kind) PRODUCT_RETURN;
// These should never be compiled since the interpreter will prefer
// the compiled version to the intrinsic version.
static bool can_be_compiled(const methodHandle& m) {
switch (m->intrinsic_id()) {
case vmIntrinsics::_dsin : // fall thru
case vmIntrinsics::_dcos : // fall thru
case vmIntrinsics::_dtan : // fall thru
case vmIntrinsics::_dabs : // fall thru
case vmIntrinsics::_dsqrt : // fall thru
case vmIntrinsics::_dlog : // fall thru
case vmIntrinsics::_dlog10: // fall thru
case vmIntrinsics::_dpow : // fall thru
case vmIntrinsics::_dexp : // fall thru
case vmIntrinsics::_fmaD : // fall thru
case vmIntrinsics::_fmaF : // fall thru
return false;
default:
return true;
}
}
// Runtime support
// length = invoke bytecode length (to advance to next bytecode)
static address deopt_entry(TosState state, int length) { ShouldNotReachHere(); return NULL; }
static address return_entry(TosState state, int length, Bytecodes::Code code) { ShouldNotReachHere(); return NULL; }
static address rethrow_exception_entry() { return _rethrow_exception_entry; }
// Activation size in words for a method that is just being called.
// Parameters haven't been pushed so count them too.
static int size_top_interpreter_activation(Method* method);
// Deoptimization support
// Compute the entry address for continuation after
static address deopt_continue_after_entry(Method* method,
address bcp,
int callee_parameters,
bool is_top_frame);
// Compute the entry address for reexecution
static address deopt_reexecute_entry(Method* method, address bcp);
// Deoptimization should reexecute this bytecode
static bool bytecode_should_reexecute(Bytecodes::Code code);
// deoptimization support
static int size_activation(int max_stack,
int temps,
int extra_args,
int monitors,
int callee_params,
int callee_locals,
bool is_top_frame);
static void layout_activation(Method* method,
int temps,
int popframe_args,
int monitors,
int caller_actual_parameters,
int callee_params,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame);
// Runtime support
static bool is_not_reached(const methodHandle& method, int bci);
// Safepoint support
static void notice_safepoints() { ShouldNotReachHere(); } // stops the thread when reaching a safepoint
static void ignore_safepoints() { ShouldNotReachHere(); } // ignores safepoints
// Support for native calls
static address slow_signature_handler() { return _slow_signature_handler; }
static address result_handler(BasicType type) { return _native_abi_to_tosca[BasicType_as_index(type)]; }
static int BasicType_as_index(BasicType type); // computes index into result_handler_by_index table
static bool in_native_entry(address pc) { return _native_entry_begin <= pc && pc < _native_entry_end; }
// Debugging/printing
static void print(); // prints the interpreter code
public:
// Interpreter helpers
const static int stackElementWords = 1;
const static int stackElementSize = stackElementWords * wordSize;
const static int logStackElementSize = LogBytesPerWord;
static int expr_index_at(int i) {
return stackElementWords * i;
}
static int expr_offset_in_bytes(int i) {
#if !defined(ZERO) && (defined(PPC) || defined(S390) || defined(SPARC))
return stackElementSize * i + wordSize; // both point to one word past TOS
#else
return stackElementSize * i;
#endif
}
static int local_index_at(int i) {
assert(i <= 0, "local direction already negated");
return stackElementWords * i;
}
#if !defined(ZERO) && (defined(IA32) || defined(AMD64))
static Address::ScaleFactor stackElementScale() {
return NOT_LP64(Address::times_4) LP64_ONLY(Address::times_8);
}
#endif
// Local values relative to locals[n]
static int local_offset_in_bytes(int n) {
return ((frame::interpreter_frame_expression_stack_direction() * n) * stackElementSize);
}
// access to stacked values according to type:
static oop* oop_addr_in_slot(intptr_t* slot_addr) {
return (oop*) slot_addr;
}
static jint* int_addr_in_slot(intptr_t* slot_addr) {
if ((int) sizeof(jint) < wordSize && !Endian::is_Java_byte_ordering_different())
// big-endian LP64
return (jint*)(slot_addr + 1) - 1;
else
return (jint*) slot_addr;
}
static jlong long_in_slot(intptr_t* slot_addr) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
return *(jlong*) slot_addr;
} else {
return Bytes::get_native_u8((address)slot_addr);
}
}
static void set_long_in_slot(intptr_t* slot_addr, jlong value) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
*(jlong*) slot_addr = value;
} else {
Bytes::put_native_u8((address)slot_addr, value);
}
}
static void get_jvalue_in_slot(intptr_t* slot_addr, BasicType type, jvalue* value) {
switch (type) {
case T_BOOLEAN: value->z = *int_addr_in_slot(slot_addr); break;
case T_CHAR: value->c = *int_addr_in_slot(slot_addr); break;
case T_BYTE: value->b = *int_addr_in_slot(slot_addr); break;
case T_SHORT: value->s = *int_addr_in_slot(slot_addr); break;
case T_INT: value->i = *int_addr_in_slot(slot_addr); break;
/**代码未完, 请加载全部代码(NowJava.com).**/