/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/bytecodeInterpreter.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "oops/arrayOop.hpp"
#include "oops/constantPool.hpp"
#include "oops/cpCache.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/forte.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/timer.hpp"
# define __ _masm->
//------------------------------------------------------------------------------------------------------------------------
// Implementation of platform independent aspects of Interpreter
void AbstractInterpreter::initialize() {
if (_code != NULL) return;
// make sure 'imported' classes are initialized
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) BytecodeCounter::reset();
if (PrintBytecodeHistogram) BytecodeHistogram::reset();
if (PrintBytecodePairHistogram) BytecodePairHistogram::reset();
InvocationCounter::reinitialize();
}
void AbstractInterpreter::print() {
tty->cr();
tty->print_cr("----------------------------------------------------------------------");
tty->print_cr("Interpreter");
tty->cr();
tty->print_cr("code size = %6dK bytes", (int)_code->used_space()/1024);
tty->print_cr("total space = %6dK bytes", (int)_code->total_space()/1024);
tty->print_cr("wasted space = %6dK bytes", (int)_code->available_space()/1024);
tty->cr();
tty->print_cr("# of codelets = %6d" , _code->number_of_stubs());
if (_code->number_of_stubs() != 0) {
tty->print_cr("avg codelet size = %6d bytes", _code->used_space() / _code->number_of_stubs());
tty->cr();
}
_code->print();
tty->print_cr("----------------------------------------------------------------------");
tty->cr();
}
//------------------------------------------------------------------------------------------------------------------------
// Implementation of interpreter
StubQueue* AbstractInterpreter::_code = NULL;
bool AbstractInterpreter::_notice_safepoints = false;
address AbstractInterpreter::_rethrow_exception_entry = NULL;
address AbstractInterpreter::_native_entry_begin = NULL;
address AbstractInterpreter::_native_entry_end = NULL;
address AbstractInterpreter::_slow_signature_handler;
address AbstractInterpreter::_entry_table [AbstractInterpreter::number_of_method_entries];
address AbstractInterpreter::_cds_entry_table [AbstractInterpreter::number_of_method_entries];
address AbstractInterpreter::_native_abi_to_tosca [AbstractInterpreter::number_of_result_handlers];
//------------------------------------------------------------------------------------------------------------------------
// Generation of complete interpreter
AbstractInterpreterGenerator::AbstractInterpreterGenerator(StubQueue* _code) {
_masm = NULL;
}
//------------------------------------------------------------------------------------------------------------------------
// Entry points
AbstractInterpreter::MethodKind AbstractInterpreter::method_kind(const methodHandle& m) {
// Abstract method?
if (m->is_abstract()) return abstract;
// Method handle primitive?
if (m->is_method_handle_intrinsic()) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(MethodHandles::is_signature_polymorphic(id), "must match an intrinsic");
MethodKind kind = (MethodKind)( method_handle_invoke_FIRST +
((int)id - vmIntrinsics::FIRST_MH_SIG_POLY) );
assert(kind <= method_handle_invoke_LAST, "parallel enum ranges");
return kind;
}
#ifndef CC_INTERP
switch (m->intrinsic_id()) {
// Use optimized stub code for CRC32 native methods.
case vmIntrinsics::_updateCRC32 : return java_util_zip_CRC32_update;
case vmIntrinsics::_updateBytesCRC32 : return java_util_zip_CRC32_updateBytes;
case vmIntrinsics::_updateByteBufferCRC32 : return java_util_zip_CRC32_updateByteBuffer;
// Use optimized stub code for CRC32C methods.
case vmIntrinsics::_updateBytesCRC32C : return java_util_zip_CRC32C_updateBytes;
case vmIntrinsics::_updateDirectByteBufferCRC32C : return java_util_zip_CRC32C_updateDirectByteBuffer;
case vmIntrinsics::_intBitsToFloat: return java_lang_Float_intBitsToFloat;
case vmIntrinsics::_floatToRawIntBits: return java_lang_Float_floatToRawIntBits;
case vmIntrinsics::_longBitsToDouble: return java_lang_Double_longBitsToDouble;
case vmIntrinsics::_doubleToRawLongBits: return java_lang_Double_doubleToRawLongBits;
default: break;
}
#endif // CC_INTERP
// Native method?
// Note: This test must come _before_ the test for intrinsic
// methods. See also comments below.
if (m->is_native()) {
assert(!m->is_method_handle_intrinsic(), "overlapping bits here, watch out");
return m->is_synchronized() ? native_synchronized : native;
}
// Synchronized?
if (m->is_synchronized()) {
return zerolocals_synchronized;
}
if (RegisterFinalizersAtInit && m->code_size() == 1 &&
m->intrinsic_id() == vmIntrinsics::_Object_init) {
// We need to execute the special return bytecode to check for
// finalizer registration so create a normal frame.
return zerolocals;
}
// Empty method?
if (m->is_empty_method()) {
return empty;
}
// Special intrinsic method?
// Note: This test must come _after_ the test for native methods,
// otherwise we will run into problems with JDK 1.2, see also
// TemplateInterpreterGenerator::generate_method_entry() for
// for details.
switch (m->intrinsic_id()) {
case vmIntrinsics::_dsin : return java_lang_math_sin ;
case vmIntrinsics::_dcos : return java_lang_math_cos ;
case vmIntrinsics::_dtan : return java_lang_math_tan ;
case vmIntrinsics::_dabs : return java_lang_math_abs ;
case vmIntrinsics::_dsqrt : return java_lang_math_sqrt ;
case vmIntrinsics::_dlog : return java_lang_math_log ;
case vmIntrinsics::_dlog10: return java_lang_math_log10;
case vmIntrinsics::_dpow : return java_lang_math_pow ;
case vmIntrinsics::_dexp : return java_lang_math_exp ;
case vmIntrinsics::_fmaD : return java_lang_math_fmaD ;
case vmIntrinsics::_fmaF : return java_lang_math_fmaF ;
case vmIntrinsics::_Reference_get
: return java_lang_ref_reference_get;
default : break;
}
// Accessor method?
if (m->is_getter()) {
// TODO: We should have used ::is_accessor above, but fast accessors in Zero expect only getters.
// See CppInterpreter::accessor_entry in cppInterpreter_zero.cpp. This should be fixed in Zero,
// then the call above updated to ::is_accessor
assert(m->size_of_parameters() == 1, "fast code for accessors assumes parameter size = 1");
return accessor;
}
// Note: for now: zero locals for all non-empty methods
return zerolocals;
}
#if INCLUDE_CDS
address AbstractInterpreter::get_trampoline_code_buffer(AbstractInterpreter::MethodKind kind) {
const size_t trampoline_size = SharedRuntime::trampoline_size();
address addr = MetaspaceShared::i2i_entry_code_buffers((size_t)(AbstractInterpreter::number_of_method_entries) * trampoline_size);
addr += (size_t)(kind) * trampoline_size;
return addr;
}
void AbstractInterpreter::update_cds_entry_table(AbstractInterpreter::MethodKind kind) {
if (DumpSharedSpaces || UseSharedSpaces) {
address trampoline = get_trampoline_code_buffer(kind);
_cds_entry_table[kind] = trampoline;
CodeBuffer buffer(trampoline, (int)(SharedRuntime::trampoline_size()));
MacroAssembler _masm(&buffer);
SharedRuntime::generate_trampoline(&_masm, _entry_table[kind]);
_masm.flush();
if (PrintInterpreter) {
Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
}
}
}
#endif
void AbstractInterpreter::set_entry_for_kind(AbstractInterpreter::MethodKind kind, address entry) {
assert(kind >= method_handle_invoke_FIRST &&
kind <= method_handle_invoke_LAST, "late initialization only for MH entry points");
assert(_entry_table[kind] == _entry_table[abstract], "previous value must be AME entry");
_entry_table[kind] = entry;
update_cds_entry_table(kind);
}
// Return true if the interpreter can prove that the given bytecode has
// not yet been executed (in Java semantics, not in actual operation).
bool AbstractInterpreter::is_not_reached(const methodHandle& method, int bci) {
BytecodeStream s(method, bci);
Bytecodes::Code code = s.next();
if (Bytecodes::is_invoke(code)) {
assert(!Bytecodes::must_rewrite(code), "invokes aren't rewritten");
ConstantPool* cpool = method()->constants();
Bytecode invoke_bc(s.bytecode());
switch (code) {
case Bytecodes::_invokedynamic: {
assert(invoke_bc.has_index_u4(code), "sanity");
int method_index = invoke_bc.get_index_u4(code);
return cpool->invokedynamic_cp_cache_entry_at(method_index)->is_f1_null();
}
case Bytecodes::_invokevirtual: // fall-through
case Bytecodes::_invokeinterface: // fall-through
case Bytecodes::_invokespecial: // fall-through
case Bytecodes::_invokestatic: {
if (cpool->has_preresolution()) {
return false; // might have been reached
}
assert(!invoke_bc.has_index_u4(code), "sanity");
int method_index = invoke_bc.get_index_u2_cpcache(code);
constantPoolHandle cp(Thread::current(), cpool);
Method* resolved_method = ConstantPool::method_at_if_loaded(cp, method_index);
return (resolved_method == NULL);
}
default: ShouldNotReachHere();
}
} else if (!Bytecodes::must_rewrite(code)) {
// might have been reached
return false;
}
// the bytecode might not be rewritten if the method is an accessor, etc.
address ientry = method->interpreter_entry();
if (ientry != entry_for_kind(AbstractInterpreter::zerolocals) &&
ientry != entry_for_kind(AbstractInterpreter::zerolocals_synchronized))
return false; // interpreter does not run this method!
// otherwise, we can be sure this bytecode has never been executed
return true;
}
#ifndef PRODUCT
void AbstractInterpreter::print_method_kind(MethodKind kind) {
switch (kind) {
case zerolocals : tty->print("zerolocals" ); break;
case zerolocals_synchronized: tty->print("zerolocals_synchronized"); break;
case native : tty->print("native" ); break;
case native_synchronized : tty->print("native_synchronized" ); break;
case empty : tty->print("empty" ); break;
case accessor : tty->print("accessor" ); break;
case abstract : tty->print("abstract" ); break;
case java_lang_math_sin : tty->print("java_lang_math_sin" ); break;
case java_lang_math_cos : tty->print("java_lang_math_cos" ); break;
case java_lang_math_tan : tty->print("java_lang_math_tan" ); break;
case java_lang_math_abs : tty->print("java_lang_math_abs" ); break;
case java_lang_math_sqrt : tty->print("java_lang_math_sqrt" ); break;
case java_lang_math_log : tty->print("java_lang_math_log" ); break;
case java_lang_math_log10 : tty->print("java_lang_math_log10" ); break;
case java_lang_math_fmaD : tty->print("java_lang_math_fmaD" ); break;
case java_lang_math_fmaF : tty->print("java_lang_math_fmaF" ); break;
case java_util_zip_CRC32_update : tty->print("java_util_zip_CRC32_update"); break;
case java_util_zip_CRC32_updateBytes : tty->print("java_util_zip_CRC32_updateBytes"); break;
case java_util_zip_CRC32_updateByteBuffer : tty->print("java_util_zip_CRC32_updateByteBuffer"); break;
case java_util_zip_CRC32C_updateBytes : tty->print("java_util_zip_CRC32C_updateBytes"); break;
case java_util_zip_CRC32C_updateDirectByteBuffer: tty->print("java_util_zip_CRC32C_updateDirectByteByffer"); break;
default:
if (kind >= method_handle_invoke_FIRST &&
kind <= method_handle_invoke_LAST) {
const char* kind_name = vmIntrinsics::name_at(method_handle_intrinsic(kind));
if (kind_name[0] == '_') kind_name = &kind_name[1]; // '_invokeExact' => 'invokeExact'
tty->print("method_handle_%s", kind_name);
break;
}
ShouldNotReachHere();
break;
}
}
#endif // PRODUCT
//------------------------------------------------------------------------------------------------------------------------
// Deoptimization support
/**
* If a deoptimization happens, this function returns the point of next bytecode to continue execution.
*/
address AbstractInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
assert(method->contains(bcp), "just checkin'");
// Get the original and rewritten bytecode.
Bytecodes::Code code = Bytecodes::java_code_at(method, bcp);
assert(!Interpreter::bytecode_should_reexecute(code), "should not reexecute");
const int bci = method->bci_from(bcp);
// compute continuation length
const int length = Bytecodes::length_at(method, bcp);
// compute result type
BasicType type = T_ILLEGAL;
switch (code) {
case Bytecodes::_invokevirtual :
case Bytecodes::_invokespecial :
case Bytecodes::_invokestatic :
case Bytecodes::_invokeinterface: {
Thread *thread = Thread::current();
ResourceMark rm(thread);
methodHandle mh(thread, method);
type = Bytecode_invoke(mh, bci).result_type();
// since the cache entry might not be initialized:
// (NOT needed for the old calling convension)
if (!is_top_frame) {
int index = Bytes::get_native_u2(bcp+1);
method->constants()->cache()->entry_at(index)->set_parameter_size(callee_parameters);
}
break;
}
case Bytecodes::_invokedynamic: {
Thread *thread = Thread::current();
ResourceMark rm(thread);
methodHandle mh(thread, method);
type = Bytecode_invoke(mh, bci).result_type();
// since the cache entry might not be initialized:
// (NOT needed for the old calling convension)
if (!is_top_frame) {
int index = Bytes::get_native_u4(bcp+1);
method->constants()->invokedynamic_cp_cache_entry_at(index)->set_parameter_size(callee_parameters);
}
break;
}
case Bytecodes::_ldc :
case Bytecodes::_ldc_w : // fall through
case Bytecodes::_ldc2_w:
{
Thread *thread = Thread::current();
ResourceMark rm(thread);
methodHandle mh(thread, method);
type = Bytecode_loadconstant(mh, bci).result_type();
break;
}
default:
type = Bytecodes::result_type(code);
break;
}
// return entry point for computed continuation state & bytecode length
return
is_top_frame
? Interpreter::deopt_entry (as_TosState(type), length)
: Interpreter::return_entry(as_TosState(type), length, code);
}
// If deoptimization happens, this function returns the point where the interpreter reexecutes
// the bytecode.
// Note: Bytecodes::_athrow is a special case in that it does not return
// Interpreter::deopt_entry(vtos, 0) like others
address AbstractInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
assert(method->contains(bcp), "just checkin'");
Bytecodes::Code code = Bytecodes::java_code_at(method, bcp);
#if defined(COMPILER1) || INCLUDE_JVMCI
if(code == Bytecodes::_athrow ) {
return Interpreter::rethrow_exception_entry();
}
#endif /* COMPILER1 || INCLUDE_JVMCI */
/**代码未完, 请加载全部代码(NowJava.com).**/