/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zCollectedHeap.hpp"
#include "gc/z/zCPU.inline.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zHeap.inline.hpp"
#include "gc/z/zLargePages.inline.hpp"
#include "gc/z/zNMethodTable.hpp"
#include "gc/z/zNUMA.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "gc/z/zUtils.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "runtime/timer.hpp"
#include "utilities/align.hpp"
#include "utilities/compilerWarnings.hpp"
#include "utilities/debug.hpp"
#include "utilities/ticks.hpp"
#define ZSIZE_FMT SIZE_FORMAT "M(%.0f%%)"
#define ZSIZE_ARGS(size) ((size) / M), (percent_of(size, ZStatHeap::max_capacity()))
#define ZTABLE_ARGS_NA "%9s", "-"
#define ZTABLE_ARGS(size) SIZE_FORMAT_W(8) "M (%.0f%%)", \
((size) / M), (percent_of(size, ZStatHeap::max_capacity()))
//
// Stat sampler/counter data
//
struct ZStatSamplerData {
uint64_t _nsamples;
uint64_t _sum;
uint64_t _max;
ZStatSamplerData() :
_nsamples(0),
_sum(0),
_max(0) {}
void add(const ZStatSamplerData& new_sample) {
_nsamples += new_sample._nsamples;
_sum += new_sample._sum;
_max = MAX2(_max, new_sample._max);
}
};
struct ZStatCounterData {
uint64_t _counter;
ZStatCounterData() :
_counter(0) {}
};
//
// Stat sampler history
//
template <size_t size>
class ZStatSamplerHistoryInterval {
private:
size_t _next;
ZStatSamplerData _samples[size];
ZStatSamplerData _accumulated;
ZStatSamplerData _total;
public:
ZStatSamplerHistoryInterval() :
_next(0),
_samples(),
_accumulated(),
_total() {}
bool add(const ZStatSamplerData& new_sample) {
// Insert sample
const ZStatSamplerData old_sample = _samples[_next];
_samples[_next] = new_sample;
// Adjust accumulated
_accumulated._nsamples += new_sample._nsamples;
_accumulated._sum += new_sample._sum;
_accumulated._max = MAX2(_accumulated._max, new_sample._max);
// Adjust total
_total._nsamples -= old_sample._nsamples;
_total._sum -= old_sample._sum;
_total._nsamples += new_sample._nsamples;
_total._sum += new_sample._sum;
if (_total._max < new_sample._max) {
// Found new max
_total._max = new_sample._max;
} else if (_total._max == old_sample._max) {
// Removed old max, reset and find new max
_total._max = 0;
for (size_t i = 0; i < size; i++) {
if (_total._max < _samples[i]._max) {
_total._max = _samples[i]._max;
}
}
}
// Adjust next
if (++_next == size) {
_next = 0;
// Clear accumulated
const ZStatSamplerData zero;
_accumulated = zero;
// Became full
return true;
}
// Not yet full
return false;
}
const ZStatSamplerData& total() const {
return _total;
}
const ZStatSamplerData& accumulated() const {
return _accumulated;
}
};
class ZStatSamplerHistory : public CHeapObj<mtGC> {
private:
ZStatSamplerHistoryInterval<10> _10seconds;
ZStatSamplerHistoryInterval<60> _10minutes;
ZStatSamplerHistoryInterval<60> _10hours;
ZStatSamplerData _total;
uint64_t avg(uint64_t sum, uint64_t nsamples) const {
return (nsamples > 0) ? sum / nsamples : 0;
}
public:
ZStatSamplerHistory() :
_10seconds(),
_10minutes(),
_10hours(),
_total() {}
void add(const ZStatSamplerData& new_sample) {
if (_10seconds.add(new_sample)) {
if (_10minutes.add(_10seconds.total())) {
if (_10hours.add(_10minutes.total())) {
_total.add(_10hours.total());
}
}
}
}
uint64_t avg_10_seconds() const {
const uint64_t sum = _10seconds.total()._sum;
const uint64_t nsamples = _10seconds.total()._nsamples;
return avg(sum, nsamples);
}
uint64_t avg_10_minutes() const {
const uint64_t sum = _10seconds.accumulated()._sum +
_10minutes.total()._sum;
const uint64_t nsamples = _10seconds.accumulated()._nsamples +
_10minutes.total()._nsamples;
return avg(sum, nsamples);
}
uint64_t avg_10_hours() const {
const uint64_t sum = _10seconds.accumulated()._sum +
_10minutes.accumulated()._sum +
_10hours.total()._sum;
const uint64_t nsamples = _10seconds.accumulated()._nsamples +
_10minutes.accumulated()._nsamples +
_10hours.total()._nsamples;
return avg(sum, nsamples);
}
uint64_t avg_total() const {
const uint64_t sum = _10seconds.accumulated()._sum +
_10minutes.accumulated()._sum +
_10hours.accumulated()._sum +
_total._sum;
const uint64_t nsamples = _10seconds.accumulated()._nsamples +
_10minutes.accumulated()._nsamples +
_10hours.accumulated()._nsamples +
_total._nsamples;
return avg(sum, nsamples);
}
uint64_t max_10_seconds() const {
return _10seconds.total()._max;
}
uint64_t max_10_minutes() const {
return MAX2(_10seconds.accumulated()._max,
_10minutes.total()._max);
}
uint64_t max_10_hours() const {
return MAX3(_10seconds.accumulated()._max,
_10minutes.accumulated()._max,
_10hours.total()._max);
}
uint64_t max_total() const {
return MAX4(_10seconds.accumulated()._max,
_10minutes.accumulated()._max,
_10hours.accumulated()._max,
_total._max);
}
};
//
// Stat unit printers
//
void ZStatUnitTime(LogTargetHandle log, const ZStatSampler& sampler, const ZStatSamplerHistory& history) {
log.print(" %10s: %-41s "
"%9.3f / %-9.3f "
"%9.3f / %-9.3f "
"%9.3f / %-9.3f "
"%9.3f / %-9.3f ms",
sampler.group(),
sampler.name(),
TimeHelper::counter_to_millis(history.avg_10_seconds()),
TimeHelper::counter_to_millis(history.max_10_seconds()),
TimeHelper::counter_to_millis(history.avg_10_minutes()),
TimeHelper::counter_to_millis(history.max_10_minutes()),
TimeHelper::counter_to_millis(history.avg_10_hours()),
TimeHelper::counter_to_millis(history.max_10_hours()),
TimeHelper::counter_to_millis(history.avg_total()),
TimeHelper::counter_to_millis(history.max_total()));
}
void ZStatUnitBytes(LogTargetHandle log, const ZStatSampler& sampler, const ZStatSamplerHistory& history) {
log.print(" %10s: %-41s "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " MB",
sampler.group(),
sampler.name(),
history.avg_10_seconds() / M,
history.max_10_seconds() / M,
history.avg_10_minutes() / M,
history.max_10_minutes() / M,
history.avg_10_hours() / M,
history.max_10_hours() / M,
history.avg_total() / M,
history.max_total() / M);
}
void ZStatUnitThreads(LogTargetHandle log, const ZStatSampler& sampler, const ZStatSamplerHistory& history) {
log.print(" %10s: %-41s "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " threads",
sampler.group(),
sampler.name(),
history.avg_10_seconds(),
history.max_10_seconds(),
history.avg_10_minutes(),
history.max_10_minutes(),
history.avg_10_hours(),
history.max_10_hours(),
history.avg_total(),
history.max_total());
}
void ZStatUnitBytesPerSecond(LogTargetHandle log, const ZStatSampler& sampler, const ZStatSamplerHistory& history) {
log.print(" %10s: %-41s "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " MB/s",
sampler.group(),
sampler.name(),
history.avg_10_seconds() / M,
history.max_10_seconds() / M,
history.avg_10_minutes() / M,
history.max_10_minutes() / M,
history.avg_10_hours() / M,
history.max_10_hours() / M,
history.avg_total() / M,
history.max_total() / M);
}
void ZStatUnitOpsPerSecond(LogTargetHandle log, const ZStatSampler& sampler, const ZStatSamplerHistory& history) {
log.print(" %10s: %-41s "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " "
UINT64_FORMAT_W(9) " / " UINT64_FORMAT_W(-9) " ops/s",
sampler.group(),
sampler.name(),
history.avg_10_seconds(),
history.max_10_seconds(),
history.avg_10_minutes(),
history.max_10_minutes(),
history.avg_10_hours(),
history.max_10_hours(),
history.avg_total(),
history.max_total());
}
//
// Stat value
//
uintptr_t ZStatValue::_base = 0;
uint32_t ZStatValue::_cpu_offset = 0;
ZStatValue::ZStatValue(const char* group,
const char* name,
uint32_t id,
uint32_t size) :
_group(group),
_name(name),
_id(id),
_offset(_cpu_offset) {
assert(_base == 0, "Already initialized");
_cpu_offset += size;
}
template <typename T>
T* ZStatValue::get_cpu_local(uint32_t cpu) const {
assert(_base != 0, "Not initialized");
const uintptr_t cpu_base = _base + (_cpu_offset * cpu);
const uintptr_t value_addr = cpu_base + _offset;
return (T*)value_addr;
}
void ZStatValue::initialize() {
// Finalize and align CPU offset
_cpu_offset = align_up(_cpu_offset, (uint32_t)ZCacheLineSize);
// Allocation aligned memory
const size_t size = _cpu_offset * ZCPU::count();
_base = ZUtils::alloc_aligned(ZCacheLineSize, size);
}
const char* ZStatValue::group() const {
return _group;
}
const char* ZStatValue::name() const {
return _name;
}
uint32_t ZStatValue::id() const {
return _id;
}
//
// Stat iterable value
//
template <typename T> uint32_t ZStatIterableValue<T>::_count = 0;
template <typename T> T* ZStatIterableValue<T>::_first = NULL;
template <typename T>
ZStatIterableValue<T>::ZStatIterableValue(const char* group,
const char* name,
uint32_t size) :
ZStatValue(group, name, _count++, size),
_next(insert()) {}
template <typename T>
T* ZStatIterableValue<T>::insert() const {
T** current = &_first;
while (*current != NULL) {
// First sort by group, then by name
const int group_cmp = strcmp((*current)->group(), group());
const int name_cmp = strcmp((*current)->name(), name());
if ((group_cmp > 0) || (group_cmp == 0 && name_cmp > 0)) {
break;
}
current = &(*current)->_next;
}
T* const next = *current;
*current = (T*)this;
return next;
}
//
// Stat sampler
//
ZStatSampler::ZStatSampler(const char* group, const char* name, ZStatUnitPrinter printer) :
ZStatIterableValue<ZStatSampler>(group, name, sizeof(ZStatSamplerData)),
_printer(printer) {}
ZStatSamplerData* ZStatSampler::get() const {
return get_cpu_local<ZStatSamplerData>(ZCPU::id());
}
ZStatSamplerData ZStatSampler::collect_and_reset() const {
ZStatSamplerData all;
const uint32_t ncpus = ZCPU::count();
for (uint32_t i = 0; i < ncpus; i++) {
ZStatSamplerData* const cpu_data = get_cpu_local<ZStatSamplerData>(i);
if (cpu_data->_nsamples > 0) {
const uint64_t nsamples = Atomic::xchg(&cpu_data->_nsamples, (uint64_t)0);
const uint64_t sum = Atomic::xchg(&cpu_data->_sum, (uint64_t)0);
const uint64_t max = Atomic::xchg(&cpu_data->_max, (uint64_t)0);
all._nsamples += nsamples;
all._sum += sum;
if (all._max < max) {
all._max = max;
}
}
}
return all;
}
ZStatUnitPrinter ZStatSampler::printer() const {
return _printer;
}
//
// Stat counter
//
ZStatCounter::ZStatCounter(const char* group, const char* name, ZStatUnitPrinter printer) :
ZStatIterableValue<ZStatCounter>(group, name, sizeof(ZStatCounterData)),
_sampler(group, name, printer) {}
ZStatCounterData* ZStatCounter::get() const {
return get_cpu_local<ZStatCounterData>(ZCPU::id());
}
void ZStatCounter::sample_and_reset() const {
uint64_t counter = 0;
const uint32_t ncpus = ZCPU::count();
for (uint32_t i = 0; i < ncpus; i++) {
ZStatCounterData* const cpu_data = get_cpu_local<ZStatCounterData>(i);
counter += Atomic::xchg(&cpu_data->_counter, (uint64_t)0);
}
ZStatSample(_sampler, counter);
}
//
// Stat unsampled counter
//
ZStatUnsampledCounter::ZStatUnsampledCounter(const char* name) :
ZStatIterableValue<ZStatUnsampledCounter>("Unsampled", name, sizeof(ZStatCounterData)) {}
ZStatCounterData* ZStatUnsampledCounter::get() const {
return get_cpu_local<ZStatCounterData>(ZCPU::id());
}
ZStatCounterData ZStatUnsampledCounter::collect_and_reset() const {
ZStatCounterData all;
const uint32_t ncpus = ZCPU::count();
for (uint32_t i = 0; i < ncpus; i++) {
ZStatCounterData* const cpu_data = get_cpu_local<ZStatCounterData>(i);
all._counter += Atomic::xchg(&cpu_data->_counter, (uint64_t)0);
}
return all;
}
//
// Stat MMU (Minimum Mutator Utilization)
//
ZStatMMUPause::ZStatMMUPause() :
_start(0.0),
_end(0.0) {}
ZStatMMUPause::ZStatMMUPause(const Ticks& start, const Ticks& end) :
_start(TimeHelper::counter_to_millis(start.value())),
_end(TimeHelper::counter_to_millis(end.value())) {}
double ZStatMMUPause::end() const {
return _end;
}
double ZStatMMUPause::overlap(double start, double end) const {
const double start_max = MAX2(start, _start);
const double end_min = MIN2(end, _end);
if (end_min > start_max) {
// Overlap found
return end_min - start_max;
}
// No overlap
return 0.0;
}
size_t ZStatMMU::_next = 0;
size_t ZStatMMU::_npauses = 0;
ZStatMMUPause ZStatMMU::_pauses[200];
double ZStatMMU::_mmu_2ms = 100.0;
double ZStatMMU::_mmu_5ms = 100.0;
double ZStatMMU::_mmu_10ms = 100.0;
double ZStatMMU::_mmu_20ms = 100.0;
double ZStatMMU::_mmu_50ms = 100.0;
double ZStatMMU::_mmu_100ms = 100.0;
const ZStatMMUPause& ZStatMMU::pause(size_t index) {
return _pauses[(_next - index - 1) % ARRAY_SIZE(_pauses)];
}
double ZStatMMU::calculate_mmu(double time_slice) {
const double end = pause(0).end();
const double start = end - time_slice;
double time_paused = 0.0;
// Find all overlapping pauses
for (size_t i = 0; i < _npauses; i++) {
const double overlap = pause(i).overlap(start, end);
if (overlap == 0.0) {
// No overlap
break;
}
time_paused += overlap;
}
// Calculate MMU
const double time_mutator = time_slice - time_paused;
return percent_of(time_mutator, time_slice);
}
void ZStatMMU::register_pause(const Ticks& start, const Ticks& end) {
// Add pause
const size_t index = _next++ % ARRAY_SIZE(_pauses);
_pauses[index] = ZStatMMUPause(start, end);
_npauses = MIN2(_npauses + 1, ARRAY_SIZE(_pauses));
// Recalculate MMUs
_mmu_2ms = MIN2(_mmu_2ms, calculate_mmu(2));
_mmu_5ms = MIN2(_mmu_5ms, calculate_mmu(5));
_mmu_10ms = MIN2(_mmu_10ms, calculate_mmu(10));
_mmu_20ms = MIN2(_mmu_20ms, calculate_mmu(20));
_mmu_50ms = MIN2(_mmu_50ms, calculate_mmu(50));
_mmu_100ms = MIN2(_mmu_100ms, calculate_mmu(100));
}
void ZStatMMU::print() {
log_info(gc, mmu)("MMU: 2ms/%.1f%%, 5ms/%.1f%%, 10ms/%.1f%%, 20ms/%.1f%%, 50ms/%.1f%%, 100ms/%.1f%%",
_mmu_2ms, _mmu_5ms, _mmu_10ms, _mmu_20ms, _mmu_50ms, _mmu_100ms);
}
//
// Stat phases
//
ConcurrentGCTimer ZStatPhase::_timer;
ZStatPhase::ZStatPhase(const char* group, const char* name) :
_sampler(group, name, ZStatUnitTime) {}
void ZStatPhase::log_start(LogTargetHandle log, bool thread) const {
if (!log.is_enabled()) {
return;
}
if (thread) {
ResourceMark rm;
log.print("%s (%s)", name(), Thread::current()->name());
} else {
log.print("%s", name());
}
}
void ZStatPhase::log_end(LogTargetHandle log, const Tickspan& duration, bool thread) const {
if (!log.is_enabled()) {
return;
}
if (thread) {
ResourceMark rm;
log.print("%s (%s) %.3fms", name(), Thread::current()->name(), TimeHelper::counter_to_millis(duration.value()));
} else {
log.print("%s %.3fms", name(), TimeHelper::counter_to_millis(duration.value()));
}
}
ConcurrentGCTimer* ZStatPhase::timer() {
return &_timer;
}
const char* ZStatPhase::name() const {
return _sampler.name();
}
ZStatPhaseCycle::ZStatPhaseCycle(const char* name) :
ZStatPhase("Collector", name) {}
void ZStatPhaseCycle::register_start(const Ticks& start) const {
timer()->register_gc_start(start);
ZTracer::tracer()->report_gc_start(ZCollectedHeap::heap()->gc_cause(), start);
ZCollectedHeap::heap()->print_heap_before_gc();
ZCollectedHeap::heap()->trace_heap_before_gc(ZTracer::tracer());
log_info(gc, start)("Garbage Collection (%s)",
GCCause::to_string(ZCollectedHeap::heap()->gc_cause()));
}
void ZStatPhaseCycle::register_end(const Ticks& start, const Ticks& end) const {
timer()->register_gc_end(end);
ZCollectedHeap::heap()->print_heap_after_gc();
ZCollectedHeap::heap()->trace_heap_after_gc(ZTracer::tracer());
ZTracer::tracer()->report_gc_end(end, timer()->time_partitions());
const Tickspan duration = end - start;
ZStatSample(_sampler, duration.value());
ZStatLoad::print();
ZStatMMU::print();
ZStatMark::print();
ZStatRelocation::print();
ZStatNMethods::print();
ZStatMetaspace::print();
ZStatReferences::print();
ZStatHeap::print();
log_info(gc)("Garbage Collection (%s) " ZSIZE_FMT "->" ZSIZE_FMT,
GCCause::to_string(ZCollectedHeap::heap()->gc_cause()),
ZSIZE_ARGS(ZStatHeap::used_at_mark_start()),
ZSIZE_ARGS(ZStatHeap::used_at_relocate_end()));
}
Tickspan ZStatPhasePause::_max;
ZStatPhasePause::ZStatPhasePause(const char* name) :
ZStatPhase("Phase", name) {}
const Tickspan& ZStatPhasePause::max() {
return _max;
}
void ZStatPhasePause::register_start(const Ticks& start) const {
timer()->register_gc_pause_start(name(), start);
LogTarget(Debug, gc, phases, start) log;
log_start(log);
}
void ZStatPhasePause::register_end(const Ticks& start, const Ticks& end) const {
timer()->register_gc_pause_end(end);
const Tickspan duration = end - start;
ZStatSample(_sampler, duration.value());
// Track max pause time
if (_max < duration) {
_max = duration;
}
// Track minimum mutator utilization
ZStatMMU::register_pause(start, end);
LogTarget(Info, gc, phases) log;
log_end(log, duration);
}
ZStatPhaseConcurrent::ZStatPhaseConcurrent(const char* name) :
ZStatPhase("Phase", name) {}
void ZStatPhaseConcurrent::register_start(const Ticks& start) const {
timer()->register_gc_concurrent_start(name(), start);
LogTarget(Debug, gc, phases, start) log;
log_start(log);
}
void ZStatPhaseConcurrent::register_end(const Ticks& start, const Ticks& end) const {
timer()->register_gc_concurrent_end(end);
const Tickspan duration = end - start;
ZStatSample(_sampler, duration.value());
LogTarget(Info, gc, phases) log;
log_end(log, duration);
}
ZStatSubPhase::ZStatSubPhase(const char* name) :
ZStatPhase("Subphase", name) {}
void ZStatSubPhase::register_start(const Ticks& start) const {
LogTarget(Debug, gc, phases, start) log;
log_start(log, true /* thread */);
}
void ZStatSubPhase::register_end(const Ticks& start, const Ticks& end) const {
ZTracer::tracer()->report_thread_phase(name(), start, end);
const Tickspan duration = end - start;
ZStatSample(_sampler, duration.value());
LogTarget(Debug, gc, phases) log;
log_end(log, duration, true /* thread */);
}
ZStatCriticalPhase::ZStatCriticalPhase(const char* name, bool verbose) :
ZStatPhase("Critical", name),
_counter("Critical", name, ZStatUnitOpsPerSecond),
_verbose(verbose) {}
void ZStatCriticalPhase::register_start(const Ticks& start) const {
LogTarget(Debug, gc, start) log;
log_start(log, true /* thread */);
}
void ZStatCriticalPhase::register_end(const Ticks& start, const Ticks& end) const {
ZTracer::tracer()->report_thread_phase(name(), start, end);
const Tickspan duration = end - start;
ZStatSample(_sampler, duration.value());
ZStatInc(_counter);
if (_verbose) {
LogTarget(Info, gc) log;
log_end(log, duration, true /* thread */);
} else {
LogTarget(Debug, gc) log;
log_end(log, duration, true /* thread */);
}
}
//
// Stat timer
//
THREAD_LOCAL uint32_t ZStatTimerDisable::_active = 0;
//
// Stat sample/inc
//
void ZStatSample(const ZStatSampler& sampler, uint64_t value) {
ZStatSamplerData* const cpu_data = sampler.get();
Atomic::add(&cpu_data->_nsamples, 1u);
Atomic::add(&cpu_data->_sum, value);
uint64_t max = cpu_data->_max;
for (;;) {
if (max >= value) {
// Not max
break;
}
const uint64_t new_max = value;
const uint64_t prev_max = Atomic::cmpxchg(&cpu_data->_max, max, new_max);
if (prev_max == max) {
// Success
break;
}
// Retry
max = prev_max;
}
ZTracer::tracer()->report_stat_sampler(sampler, value);
}
void ZStatInc(const ZStatCounter& counter, uint64_t increment) {
ZStatCounterData* const cpu_data = counter.get();
const uint64_t value = Atomic::add(&cpu_data->_counter, increment);
ZTracer::tracer()->report_stat_counter(counter, increment, value);
}
void ZStatInc(const ZStatUnsampledCounter& counter, uint64_t increment) {
ZStatCounterData* const cpu_data = counter.get();
Atomic::add(&cpu_data->_counter, increment);
}
//
// Stat allocation rate
//
const ZStatUnsampledCounter ZStatAllocRate::_counter("Allocation Rate");
TruncatedSeq ZStatAllocRate::_rate(ZStatAllocRate::sample_window_sec * ZStatAllocRate::sample_hz);
TruncatedSeq ZStatAllocRate::_rate_avg(ZStatAllocRate::sample_window_sec * ZStatAllocRate::sample_hz);
const ZStatUnsampledCounter& ZStatAllocRate::counter() {
return _counter;
}
uint64_t ZStatAllocRate::sample_and_reset() {
const ZStatCounterData bytes_per_sample = _counter.collect_and_reset();
const uint64_t bytes_per_second = bytes_per_sample._counter * sample_hz;
_rate.add(bytes_per_second);
_rate_avg.add(_rate.avg());
return bytes_per_second;
}
double ZStatAllocRate::avg() {
return _rate.avg();
}
double ZStatAllocRate::avg_sd() {
return _rate_avg.sd();
}
//
// Stat thread
//
ZStat::ZStat() :
_metronome(sample_hz) {
set_name("ZStat");
create_and_start();
}
void ZStat::sample_and_collect(ZStatSamplerHistory* history) const {
// Sample counters
for (const ZStatCounter* counter = ZStatCounter::first(); counter != NULL; counter = counter->next()) {
counter->sample_and_reset();
}
// Collect samples
for (const ZStatSampler* sampler = ZStatSampler::first(); sampler != NULL; sampler = sampler->next()) {
ZStatSamplerHistory& sampler_history = history[sampler->id()];
sampler_history.add(sampler->collect_and_reset());
}
}
bool ZStat::should_print(LogTargetHandle log) const {
static uint64_t print_at = ZStatisticsInterval;
const uint64_t now = os::elapsedTime();
if (now < print_at) {
return false;
}
print_at = ((now / ZStatisticsInterval) * ZStatisticsInterval) + ZStatisticsInterval;
return log.is_enabled();
}
void ZStat::print(LogTargetHandle log, const ZStatSamplerHistory* history) const {
// Print
log.print("=== Garbage Collection Statistics =======================================================================================================================");
log.print(" Last 10s Last 10m Last 10h Total");
log.print(" Avg / Max Avg / Max Avg / Max Avg / Max");
for (const ZStatSampler* sampler = ZStatSampler::first(); sampler != NULL; sampler = sampler->next()) {
const ZStatSamplerHistory& sampler_history = history[sampler->id()];
const ZStatUnitPrinter printer = sampler->printer();
printer(log, *sampler, sampler_history);
}
log.print("=========================================================================================================================================================");
}
void ZStat::run_service() {
ZStatSamplerHistory* const history = new ZStatSamplerHistory[ZStatSampler::count()];
LogTarget(Info, gc, stats) log;
// Main loop
while (_metronome.wait_for_tick()) {
sample_and_collect(history);
if (should_print(log)) {
print(log, history);
}
}
delete [] history;
}
void ZStat::stop_service() {
_metronome.stop();
}
//
// Stat table
//
class ZStatTablePrinter {
private:
static const size_t _buffer_size = 256;
const size_t _column0_width;
const size_t _columnN_width;
char _buffer[_buffer_size];
public:
class ZColumn {
private:
char* const _buffer;
const size_t _position;
const size_t _width;
const size_t _width_next;
ZColumn next() const {
// Insert space between columns
_buffer[_position + _width] = ' ';
return ZColumn(_buffer, _position + _width + 1, _width_next, _width_next);
}
size_t print(size_t position, const char* fmt, va_list va) {
const int res = jio_vsnprintf(_buffer + position, _buffer_size - position, fmt, va);
if (res < 0) {
return 0;
}
return (size_t)res;
}
public:
ZColumn(char* buffer, size_t position, size_t width, size_t width_next) :
_buffer(buffer),
_position(position),
_width(width),
_width_next(width_next) {}
ZColumn left(const char* fmt, ...) ATTRIBUTE_PRINTF(2, 3) {
va_list va;
va_start(va, fmt);
const size_t written = print(_position, fmt, va);
va_end(va);
if (written < _width) {
// Fill empty space
memset(_buffer + _position + written, ' ', _width - written);
}
return next();
}
ZColumn right(const char* fmt, ...) ATTRIBUTE_PRINTF(2, 3) {
va_list va;
va_start(va, fmt);
const size_t written = print(_position, fmt, va);
va_end(va);
if (written > _width) {
// Line too long
return fill('?');
}
if (written < _width) {
// Short line, move all to right
memmove(_buffer + _position + _width - written, _buffer + _position, written);
// Fill empty space
memset(_buffer + _position, ' ', _width - written);
}
return next();
}
ZColumn center(const char* fmt, ...) ATTRIBUTE_PRINTF(2, 3) {
va_list va;
va_start(va, fmt);
const size_t written = print(_position, fmt, va);
va_end(va);
if (written > _width) {
// Line too long
return fill('?');
}
if (written < _width) {
// Short line, move all to center
const size_t start_space = (_width - written) / 2;
const size_t end_space = _width - written - start_space;
memmove(_buffer + _position + start_space, _buffer + _position, written);
// Fill empty spaces
memset(_buffer + _position, ' ', start_space);
memset(_buffer + _position + start_space + written, ' ', end_space);
}
return next();
}
ZColumn fill(char filler = ' ') {
memset(_buffer + _position, filler, _width);
return next();
}
const char* end() {
_buffer[_position] = '\0';
return _buffer;
}
};
public:
ZStatTablePrinter(size_t column0_width, size_t columnN_width) :
_column0_width(column0_width),
_columnN_width(columnN_width) {}
ZColumn operator()() {
return ZColumn(_buffer, 0, _column0_width, _columnN_width);
}
};
//
// Stat cycle
//
uint64_t ZStatCycle::_nwarmup_cycles = 0;
Ticks ZStatCycle::_start_of_last;
Ticks ZStatCycle::_end_of_last;
NumberSeq ZStatCycle::_normalized_duration(0.3 /* alpha */);
void ZStatCycle::at_start() {
_start_of_last = Ticks::now();
}
void ZStatCycle::at_end(GCCause::Cause cause, double boost_factor) {
_end_of_last = Ticks::now();
if (cause == GCCause::_z_warmup) {
_nwarmup_cycles++;
}
// Calculate normalized cycle duration. The measured duration is
// normalized using the boost factor to avoid artificial deflation
// of the duration when boost mode is enabled.
const double duration = (_end_of_last - _start_of_last).seconds();
const double normalized_duration = duration * boost_factor;
_normalized_duration.add(normalized_duration);
}
bool ZStatCycle::is_warm() {
return _nwarmup_cycles >= 3;
}
uint64_t ZStatCycle::nwarmup_cycles() {
return _nwarmup_cycles;
}
bool ZStatCycle::is_normalized_duration_trustable() {
// The normalized duration is considered trustable if we have
// completed at least one warmup cycle
return _nwarmup_cycles > 0;
}
const AbsSeq& ZStatCycle::normalized_duration() {
return _normalized_duration;
}
double ZStatCycle::time_since_last() {
if (_end_of_last.value() == 0) {
// No end recorded yet, return time since VM start
return os::elapsedTime();
}
const Ticks now = Ticks::now();
const Tickspan time_since_last = now - _end_of_last;
return time_since_last.seconds();
}
//
// Stat load
//
void ZStatLoad::print() {
double loadavg[3] = {};
os::loadavg(loadavg, ARRAY_SIZE(loadavg));
log_info(gc, load)("Load: %.2f/%.2f/%.2f", loadavg[0], loadavg[1], loadavg[2]);
}
//
// Stat mark
//
size_t ZStatMark::_nstripes;
size_t ZStatMark::_nproactiveflush;
size_t ZStatMark::_nterminateflush;
size_t ZStatMark::_ntrycomplete;
size_t ZStatMark::_ncontinue;
void ZStatMark::set_at_mark_start(size_t nstripes) {
_nstripes = nstripes;
}
void ZStatMark::set_at_mark_end(size_t nproactiveflush,
size_t nterminateflush,
size_t ntrycomplete,
size_t ncontinue) {
_nproactiveflush = nproactiveflush;
_nterminateflush = nterminateflush;
_ntrycomplete = ntrycomplete;
_ncontinue = ncontinue;
}
void ZStatMark::print() {
log_info(gc, marking)("Mark: "
SIZE_FORMAT " stripe(s), "
SIZE_FORMAT " proactive flush(es), "
SIZE_FORMAT " terminate flush(es), "
SIZE_FORMAT " completion(s), "
SIZE_FORMAT " continuation(s) ",
_nstripes,
_nproactiveflush,
_nterminateflush,
_ntrycomplete,
_ncontinue);
}
//
// Stat relocation
//
size_t ZStatRelocation::_relocating;
bool ZStatRelocation::_success;
void ZStatRelocation::set_at_select_relocation_set(size_t relocating) {
_relocating = relocating;
}
void ZStatRelocation::set_at_relocate_end(bool success) {
_success = success;
}
void ZStatRelocation::print() {
if (_success) {
log_info(gc, reloc)("Relocation: Successful, " SIZE_FORMAT "M relocated", _relocating / M);
} else {
log_info(gc, reloc)("Relocation: Incomplete");
}
}
//
// Stat nmethods
//
void ZStatNMethods::print() {
log_info(gc, nmethod)("NMethods: " SIZE_FORMAT " registered, " SIZE_FORMAT " unregistered",
ZNMethodTable::registered_nmethods(),
ZNMethodTable::unregistered_nmethods());
}
//
// Stat metaspace
//
void ZStatMetaspace::print() {
log_info(gc, metaspace)("Metaspace: "
SIZE_FORMAT "M used, " SIZE_FORMAT "M capacity, "
SIZE_FORMAT "M committed, " SIZE_FORMAT "M reserved",
MetaspaceUtils::used_bytes() / M,
MetaspaceUtils::capacity_bytes() / M,
MetaspaceUtils::committed_bytes() / M,
MetaspaceUtils::reserved_bytes() / M);
}
//
// Stat references
//
ZStatReferences::ZCount ZStatReferences::_soft;
ZStatReferences::ZCount ZStatReferences::_weak;
ZStatReferences::ZCount ZStatReferences::_final;
ZStatReferences::ZCount ZStatReferences::_phantom;
void ZStatReferences::set(ZCount* count, size_t encountered, size_t discovered, size_t enqueued) {
count->encountered = encountered;
count->discovered = discovered;
count->enqueued = enqueued;
}
void ZStatReferences::set_soft(size_t encountered, size_t discovered, size_t enqueued) {
set(&_soft, encountered, discovered, enqueued);
}
void ZStatReferences::set_weak(size_t encountered, size_t discovered, size_t enqueued) {
set(&_weak, encountered, discovered, enqueued);
}
void ZStatReferences::set_final(size_t encountered, size_t discovered, size_t enqueued) {
set(&_final, encountered, discovered, enqueued);
}
void ZStatReferences::set_phantom(size_t encountered, size_t discovered, size_t enqueued) {
set(&_phantom, encountered, discovered, enqueued);
}
void ZStatReferences::print(const char* name, const ZStatReferences::ZCount& ref) {
log_info(gc, ref)("%s: "
SIZE_FORMAT " encountered, "
SIZE_FORMAT " discovered, "
SIZE_FORMAT " enqueued",
name,
ref.encountered,
ref.discovered,
ref.enqueued);
}
void ZStatReferences::print() {
print("Soft", _soft);
print("Weak", _weak);
print("Final", _final);
print("Phantom", _phantom);
}
//
// Stat heap
//
ZStatHeap::ZAtInitialize ZStatHeap::_at_initialize;
ZStatHeap::ZAtMarkStart ZStatHeap::_at_mark_start;
ZStatHeap::ZAtMarkEnd ZStatHeap::_at_mark_end;
ZStatHeap::ZAtRelocateStart ZStatHeap::_at_relocate_start;
ZStatHeap::ZAtRelocateEnd ZStatHeap::_at_relocate_end;
size_t ZStatHeap::capacity_high() {
return MAX4(_at_mark_start.capacity,
_at_mark_end.capacity,
_at_relocate_start.capacity,
_at_relocate_end.capacity);
}
size_t ZStatHeap::capacity_low() {
return MIN4(_at_mark_start.capacity,
_at_mark_end.capacity,
_at_relocate_start.capacity,
_at_relocate_end.capacity);
}
size_t ZStatHeap::available(size_t used) {
return _at_initialize.max_capacity - used;
}
size_t ZStatHeap::reserve(size_t used) {
return MIN2(_at_initialize.max_reserve, available(used));
}
size_t ZStatHeap::free(size_t used) {
return available(used) - reserve(used);
}
void ZStatHeap::set_at_initialize(size_t min_capacity,
size_t max_capacity,
size_t max_reserve) {
_at_initialize.min_capacity = min_capacity;
_at_initialize.max_capacity = max_capacity;
_at_initialize.max_reserve = max_reserve;
}
void ZStatHeap::set_at_mark_start(size_t soft_max_capacity,
size_t capacity,
size_t used) {
_at_mark_start.soft_max_capacity = soft_max_capacity;
_at_mark_start.capacity = capacity;
_at_mark_start.reserve = reserve(used);
_at_mark_start.used = used;
_at_mark_start.free = free(used);
}
void ZStatHeap::set_at_mark_end(size_t capacity,
size_t allocated,
size_t used) {
_at_mark_end.capacity = capacity;
_at_mark_end.reserve = reserve(used);
_at_mark_end.allocated = allocated;
_at_mark_end.used = used;
_at_mark_end.free = free(used);
}
void ZStatHeap::set_at_select_relocation_set(size_t live,
size_t garbage,
size_t reclaimed) {
_at_mark_end.live = live;
_at_mark_end.garbage = garbage;
_at_relocate_start.garbage = garbage - reclaimed;
_at_relocate_start.reclaimed = reclaimed;
}
void ZStatHeap::set_at_relocate_start(size_t capacity,
size_t allocated,
size_t used) {
_at_relocate_start.capacity = capacity;
_at_relocate_start.reserve = reserve(used);
_at_relocate_start.allocated = allocated;
_at_relocate_start.used = used;
_at_relocate_start.free = free(used);
}
void ZStatHeap::set_at_relocate_end(size_t capacity,
size_t allocated,
size_t reclaimed,
size_t used,
size_t used_high,
size_t used_low) {
_at_relocate_end.capacity = capacity;
_at_relocate_end.capacity_high = capacity_high();
_at_relocate_end.capacity_low = capacity_low();
_at_relocate_end.reserve = reserve(used);
_at_relocate_end.reserve_high = reserve(used_low);
_at_relocate_end.reserve_low = reserve(used_high);
_at_relocate_end.garbage = _at_mark_end.garbage - reclaimed;
_at_relocate_end.allocated = allocated;
_at_relocate_end.reclaimed = reclaimed;
_at_relocate_end.used = used;
_at_relocate_end.used_high = used_high;
_at_relocate_end.used_low = used_low;
_at_relocate_end.free = free(used);
_at_relocate_end.free_high = free(used_low);
_at_relocate_end.free_low = free(used_high);
}
size_t ZStatHeap::max_capacity() {
return _at_initialize.max_capacity;
}
size_t ZStatHeap::used_at_mark_start() {
return _at_mark_start.used;
}
size_t ZStatHeap::used_at_relocate_end() {
return _at_relocate_end.used;
}
void ZStatHeap::print() {
/**代码未完, 请加载全部代码(NowJava.com).**/