/*
* Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shenandoah/shenandoahTraversalGC.hpp"
#include "gc/shared/space.inline.hpp"
#include "jfr/jfrEvents.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
size_t ShenandoahHeapRegion::RegionCount = 0;
size_t ShenandoahHeapRegion::RegionSizeBytes = 0;
size_t ShenandoahHeapRegion::RegionSizeWords = 0;
size_t ShenandoahHeapRegion::RegionSizeBytesShift = 0;
size_t ShenandoahHeapRegion::RegionSizeWordsShift = 0;
size_t ShenandoahHeapRegion::RegionSizeBytesMask = 0;
size_t ShenandoahHeapRegion::RegionSizeWordsMask = 0;
size_t ShenandoahHeapRegion::HumongousThresholdBytes = 0;
size_t ShenandoahHeapRegion::HumongousThresholdWords = 0;
size_t ShenandoahHeapRegion::MaxTLABSizeBytes = 0;
size_t ShenandoahHeapRegion::MaxTLABSizeWords = 0;
ShenandoahHeapRegion::PaddedAllocSeqNum ShenandoahHeapRegion::_alloc_seq_num;
ShenandoahHeapRegion::ShenandoahHeapRegion(ShenandoahHeap* heap, HeapWord* start,
size_t size_words, size_t index, bool committed) :
_heap(heap),
_reserved(MemRegion(start, size_words)),
_region_number(index),
_new_top(NULL),
_empty_time(os::elapsedTime()),
_state(committed ? _empty_committed : _empty_uncommitted),
_tlab_allocs(0),
_gclab_allocs(0),
_shared_allocs(0),
_seqnum_first_alloc_mutator(0),
_seqnum_first_alloc_gc(0),
_seqnum_last_alloc_mutator(0),
_seqnum_last_alloc_gc(0),
_live_data(0),
_critical_pins(0) {
ContiguousSpace::initialize(_reserved, true, committed);
}
size_t ShenandoahHeapRegion::region_number() const {
return _region_number;
}
void ShenandoahHeapRegion::report_illegal_transition(const char *method) {
ResourceMark rm;
stringStream ss;
ss.print("Illegal region state transition from \"%s\", at %s\n ", region_state_to_string(_state), method);
print_on(&ss);
fatal("%s", ss.as_string());
}
void ShenandoahHeapRegion::make_regular_allocation() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_regular);
case _regular:
case _pinned:
return;
default:
report_illegal_transition("regular allocation");
}
}
void ShenandoahHeapRegion::make_regular_bypass() {
_heap->assert_heaplock_owned_by_current_thread();
assert (_heap->is_full_gc_in_progress() || _heap->is_degenerated_gc_in_progress(),
"only for full or degen GC");
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
case _cset:
case _humongous_start:
case _humongous_cont:
set_state(_regular);
return;
case _pinned_cset:
set_state(_pinned);
return;
case _regular:
case _pinned:
return;
default:
report_illegal_transition("regular bypass");
}
}
void ShenandoahHeapRegion::make_humongous_start() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_humongous_start);
return;
default:
report_illegal_transition("humongous start allocation");
}
}
void ShenandoahHeapRegion::make_humongous_start_bypass() {
_heap->assert_heaplock_owned_by_current_thread();
assert (_heap->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_committed:
case _regular:
case _humongous_start:
case _humongous_cont:
set_state(_humongous_start);
return;
default:
report_illegal_transition("humongous start bypass");
}
}
void ShenandoahHeapRegion::make_humongous_cont() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_humongous_cont);
return;
default:
report_illegal_transition("humongous continuation allocation");
}
}
void ShenandoahHeapRegion::make_humongous_cont_bypass() {
_heap->assert_heaplock_owned_by_current_thread();
assert (_heap->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_committed:
case _regular:
case _humongous_start:
case _humongous_cont:
set_state(_humongous_cont);
return;
default:
report_illegal_transition("humongous continuation bypass");
}
}
void ShenandoahHeapRegion::make_pinned() {
_heap->assert_heaplock_owned_by_current_thread();
assert(pin_count() > 0, "Should have pins: " SIZE_FORMAT, pin_count());
switch (_state) {
case _regular:
set_state(_pinned);
case _pinned_cset:
case _pinned:
return;
case _humongous_start:
set_state(_pinned_humongous_start);
case _pinned_humongous_start:
return;
case _cset:
_state = _pinned_cset;
return;
default:
report_illegal_transition("pinning");
}
}
void ShenandoahHeapRegion::make_unpinned() {
_heap->assert_heaplock_owned_by_current_thread();
assert(pin_count() == 0, "Should not have pins: " SIZE_FORMAT, pin_count());
switch (_state) {
case _pinned:
set_state(_regular);
return;
case _regular:
case _humongous_start:
return;
case _pinned_cset:
set_state(_cset);
return;
case _pinned_humongous_start:
set_state(_humongous_start);
return;
default:
report_illegal_transition("unpinning");
}
}
void ShenandoahHeapRegion::make_cset() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _regular:
set_state(_cset);
case _cset:
return;
default:
report_illegal_transition("cset");
}
}
void ShenandoahHeapRegion::make_trash() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _cset:
// Reclaiming cset regions
case _humongous_start:
case _humongous_cont:
// Reclaiming humongous regions
case _regular:
// Immediate region reclaim
set_state(_trash);
return;
default:
report_illegal_transition("trashing");
}
}
void ShenandoahHeapRegion::make_trash_immediate() {
make_trash();
// On this path, we know there are no marked objects in the region,
// tell marking context about it to bypass bitmap resets.
_heap->complete_marking_context()->reset_top_bitmap(this);
}
void ShenandoahHeapRegion::make_empty() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _trash:
set_state(_empty_committed);
_empty_time = os::elapsedTime();
return;
default:
report_illegal_transition("emptying");
}
}
void ShenandoahHeapRegion::make_uncommitted() {
_heap->assert_heaplock_owned_by_current_thread();
switch (_state) {
case _empty_committed:
do_uncommit();
set_state(_empty_uncommitted);
return;
default:
report_illegal_transition("uncommiting");
}
}
void ShenandoahHeapRegion::make_committed_bypass() {
_heap->assert_heaplock_owned_by_current_thread();
assert (_heap->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_uncommitted:
do_commit();
set_state(_empty_committed);
return;
default:
report_illegal_transition("commit bypass");
}
}
void ShenandoahHeapRegion::clear_live_data() {
Atomic::release_store_fence(&_live_data, (size_t)0);
}
void ShenandoahHeapRegion::reset_alloc_metadata() {
_tlab_allocs = 0;
_gclab_allocs = 0;
_shared_allocs = 0;
_seqnum_first_alloc_mutator = 0;
_seqnum_last_alloc_mutator = 0;
_seqnum_first_alloc_gc = 0;
_seqnum_last_alloc_gc = 0;
}
void ShenandoahHeapRegion::reset_alloc_metadata_to_shared() {
if (used() > 0) {
_tlab_allocs = 0;
_gclab_allocs = 0;
_shared_allocs = used() >> LogHeapWordSize;
uint64_t next = _alloc_seq_num.value++;
_seqnum_first_alloc_mutator = next;
_seqnum_last_alloc_mutator = next;
_seqnum_first_alloc_gc = 0;
_seqnum_last_alloc_gc = 0;
} else {
reset_alloc_metadata();
}
}
size_t ShenandoahHeapRegion::get_shared_allocs() const {
return _shared_allocs * HeapWordSize;
}
size_t ShenandoahHeapRegion::get_tlab_allocs() const {
return _tlab_allocs * HeapWordSize;
}
size_t ShenandoahHeapRegion::get_gclab_allocs() const {
return _gclab_allocs * HeapWordSize;
}
void ShenandoahHeapRegion::set_live_data(size_t s) {
assert(Thread::current()->is_VM_thread(), "by VM thread");
_live_data = (s >> LogHeapWordSize);
}
size_t ShenandoahHeapRegion::get_live_data_words() const {
return Atomic::load_acquire(&_live_data);
}
size_t ShenandoahHeapRegion::get_live_data_bytes() const {
return get_live_data_words() * HeapWordSize;
}
bool ShenandoahHeapRegion::has_live() const {
return get_live_data_words() != 0;
}
size_t ShenandoahHeapRegion::garbage() const {
assert(used() >= get_live_data_bytes(), "Live Data must be a subset of used() live: " SIZE_FORMAT " used: " SIZE_FORMAT,
get_live_data_bytes(), used());
size_t result = used() - get_live_data_bytes();
return result;
}
void ShenandoahHeapRegion::print_on(outputStream* st) const {
st->print("|");
st->print(SIZE_FORMAT_W(5), this->_region_number);
switch (_state) {
case _empty_uncommitted:
st->print("|EU ");
break;
case _empty_committed:
st->print("|EC ");
break;
case _regular:
st->print("|R ");
break;
case _humongous_start:
st->print("|H ");
break;
case _pinned_humongous_start:
st->print("|HP ");
break;
case _humongous_cont:
st->print("|HC ");
break;
case _cset:
st->print("|CS ");
break;
case _trash:
st->print("|T ");
break;
case _pinned:
st->print("|P ");
break;
case _pinned_cset:
st->print("|CSP");
break;
default:
ShouldNotReachHere();
}
st->print("|BTE " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12),
p2i(bottom()), p2i(top()), p2i(end()));
st->print("|TAMS " INTPTR_FORMAT_W(12),
p2i(_heap->marking_context()->top_at_mark_start(const_cast<ShenandoahHeapRegion*>(this))));
st->print("|U " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used()));
st->print("|T " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_tlab_allocs()), proper_unit_for_byte_size(get_tlab_allocs()));
st->print("|G " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_gclab_allocs()), proper_unit_for_byte_size(get_gclab_allocs()));
st->print("|S " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_shared_allocs()), proper_unit_for_byte_size(get_shared_allocs()));
st->print("|L " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_live_data_bytes()), proper_unit_for_byte_size(get_live_data_bytes()));
st->print("|CP " SIZE_FORMAT_W(3), pin_count());
st->print("|SN " UINT64_FORMAT_X_W(12) ", " UINT64_FORMAT_X_W(8) ", " UINT64_FORMAT_X_W(8) ", " UINT64_FORMAT_X_W(8),
seqnum_first_alloc_mutator(), seqnum_last_alloc_mutator(),
seqnum_first_alloc_gc(), seqnum_last_alloc_gc());
st->cr();
}
void ShenandoahHeapRegion::oop_iterate(OopIterateClosure* blk) {
if (!is_active()) return;
if (is_humongous()) {
oop_iterate_humongous(blk);
} else {
oop_iterate_objects(blk);
}
}
void ShenandoahHeapRegion::oop_iterate_objects(OopIterateClosure* blk) {
assert(! is_humongous(), "no humongous region here");
HeapWord* obj_addr = bottom();
HeapWord* t = top();
// Could call objects iterate, but this is easier.
while (obj_addr < t) {
oop obj = oop(obj_addr);
obj_addr += obj->oop_iterate_size(blk);
}
}
void ShenandoahHeapRegion::oop_iterate_humongous(OopIterateClosure* blk) {
assert(is_humongous(), "only humongous region here");
// Find head.
ShenandoahHeapRegion* r = humongous_start_region();
assert(r->is_humongous_start(), "need humongous head here");
oop obj = oop(r->bottom());
obj->oop_iterate(blk, MemRegion(bottom(), top()));
}
ShenandoahHeapRegion* ShenandoahHeapRegion::humongous_start_region() const {
assert(is_humongous(), "Must be a part of the humongous region");
size_t reg_num = region_number();
ShenandoahHeapRegion* r = const_cast<ShenandoahHeapRegion*>(this);
while (!r->is_humongous_start()) {
assert(reg_num > 0, "Sanity");
reg_num --;
r = _heap->get_region(reg_num);
assert(r->is_humongous(), "Must be a part of the humongous region");
}
assert(r->is_humongous_start(), "Must be");
return r;
}
void ShenandoahHeapRegion::recycle() {
ContiguousSpace::clear(false);
if (ZapUnusedHeapArea) {
ContiguousSpace::mangle_unused_area_complete();
}
clear_live_data();
reset_alloc_metadata();
_heap->marking_context()->reset_top_at_mark_start(this);
make_empty();
}
HeapWord* ShenandoahHeapRegion::block_start_const(const void* p) const {
assert(MemRegion(bottom(), end()).contains(p),
"p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(bottom()), p2i(end()));
if (p >= top()) {
return top();
} else {
HeapWord* last = bottom();
HeapWord* cur = last;
while (cur <= p) {
last = cur;
cur += oop(cur)->size();
}
shenandoah_assert_correct(NULL, oop(last));
return last;
}
}
void ShenandoahHeapRegion::setup_sizes(size_t max_heap_size) {
// Absolute minimums we should not ever break.
static const size_t MIN_REGION_SIZE = 256*K;
if (FLAG_IS_DEFAULT(ShenandoahMinRegionSize)) {
FLAG_SET_DEFAULT(ShenandoahMinRegionSize, MIN_REGION_SIZE);
}
size_t region_size;
if (FLAG_IS_DEFAULT(ShenandoahHeapRegionSize)) {
if (ShenandoahMinRegionSize > max_heap_size / MIN_NUM_REGIONS) {
err_msg message("Max heap size (" SIZE_FORMAT "%s) is too low to afford the minimum number "
"of regions (" SIZE_FORMAT ") of minimum region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(max_heap_size), proper_unit_for_byte_size(max_heap_size),
MIN_NUM_REGIONS,
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMinRegionSize < MIN_REGION_SIZE) {
err_msg message("" SIZE_FORMAT "%s should not be lower than minimum region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(MIN_REGION_SIZE), proper_unit_for_byte_size(MIN_REGION_SIZE));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMinRegionSize < MinTLABSize) {
err_msg message("" SIZE_FORMAT "%s should not be lower than TLAB size size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(MinTLABSize), proper_unit_for_byte_size(MinTLABSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMaxRegionSize < MIN_REGION_SIZE) {
err_msg message("" SIZE_FORMAT "%s should not be lower than min region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize),
byte_size_in_proper_unit(MIN_REGION_SIZE), proper_unit_for_byte_size(MIN_REGION_SIZE));
vm_exit_during_initialization("Invalid -XX:ShenandoahMaxRegionSize option", message);
}
if (ShenandoahMinRegionSize > ShenandoahMaxRegionSize) {
err_msg message("Minimum (" SIZE_FORMAT "%s) should be larger than maximum (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize or -XX:ShenandoahMaxRegionSize", message);
}
// We rapidly expand to max_heap_size in most scenarios, so that is the measure
// for usual heap sizes. Do not depend on initial_heap_size here.
region_size = max_heap_size / ShenandoahTargetNumRegions;
// Now make sure that we don't go over or under our limits.
region_size = MAX2(ShenandoahMinRegionSize, region_size);
region_size = MIN2(ShenandoahMaxRegionSize, region_size);
} else {
if (ShenandoahHeapRegionSize > max_heap_size / MIN_NUM_REGIONS) {
err_msg message("Max heap size (" SIZE_FORMAT "%s) is too low to afford the minimum number "
"of regions (" SIZE_FORMAT ") of requested size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(max_heap_size), proper_unit_for_byte_size(max_heap_size),
MIN_NUM_REGIONS,
byte_size_in_proper_unit(ShenandoahHeapRegionSize), proper_unit_for_byte_size(ShenandoahHeapRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message);
}
if (ShenandoahHeapRegionSize < ShenandoahMinRegionSize) {
err_msg message("Heap region size (" SIZE_FORMAT "%s) should be larger than min region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahHeapRegionSize), proper_unit_for_byte_size(ShenandoahHeapRegionSize),
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message);
}
if (ShenandoahHeapRegionSize > ShenandoahMaxRegionSize) {
err_msg message("Heap region size (" SIZE_FORMAT "%s) should be lower than max region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahHeapRegionSize), proper_unit_for_byte_size(ShenandoahHeapRegionSize),
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message);
}
region_size = ShenandoahHeapRegionSize;
}
// Make sure region size is at least one large page, if enabled.
// Otherwise, uncommitting one region may falsely uncommit the adjacent
// regions too.
// Also see shenandoahArguments.cpp, where it handles UseLargePages.
if (UseLargePages && ShenandoahUncommit) {
region_size = MAX2(region_size, os::large_page_size());
}
int region_size_log = log2_long((jlong) region_size);
// Recalculate the region size to make sure it's a power of
// 2. This means that region_size is the largest power of 2 that's
// <= what we've calculated so far.
region_size = size_t(1) << region_size_log;
// Now, set up the globals.
guarantee(RegionSizeBytesShift == 0, "we should only set it once");
RegionSizeBytesShift = (size_t)region_size_log;
guarantee(RegionSizeWordsShift == 0, "we should only set it once");
RegionSizeWordsShift = RegionSizeBytesShift - LogHeapWordSize;
guarantee(RegionSizeBytes == 0, "we should only set it once");
RegionSizeBytes = region_size;
RegionSizeWords = RegionSizeBytes >> LogHeapWordSize;
assert (RegionSizeWords*HeapWordSize == RegionSizeBytes, "sanity");
guarantee(RegionSizeWordsMask == 0, "we should only set it once");
RegionSizeWordsMask = RegionSizeWords - 1;
guarantee(RegionSizeBytesMask == 0, "we should only set it once");
RegionSizeBytesMask = RegionSizeBytes - 1;
guarantee(RegionCount == 0, "we should only set it once");
RegionCount = max_heap_size / RegionSizeBytes;
guarantee(RegionCount >= MIN_NUM_REGIONS, "Should have at least minimum regions");
guarantee(HumongousThresholdWords == 0, "we should only set it once");
HumongousThresholdWords = RegionSizeWords * ShenandoahHumongousThreshold / 100;
HumongousThresholdWords = align_down(HumongousThresholdWords, MinObjAlignment);
assert (HumongousThresholdWords <= RegionSizeWords, "sanity");
guarantee(HumongousThresholdBytes == 0, "we should only set it once");
HumongousThresholdBytes = HumongousThresholdWords * HeapWordSize;
assert (HumongousThresholdBytes <= RegionSizeBytes, "sanity");
// The rationale for trimming the TLAB sizes has to do with the raciness in
// TLAB allocation machinery. It may happen that TLAB sizing policy polls Shenandoah
// about next free size, gets the answer for region #N, goes away for a while, then
// tries to allocate in region #N, and fail because some other thread have claimed part
// of the region #N, and then the freeset allocation code has to retire the region #N,
// before moving the allocation to region #N+1.
//
// The worst case realizes when "answer" is "region size", which means it could
// prematurely retire an entire region. Having smaller TLABs does not fix that
// completely, but reduces the probability of too wasteful region retirement.
// With current divisor, we will waste no more than 1/8 of region size in the worst
// case. This also has a secondary effect on collection set selection: even under
// the race, the regions would be at least 7/8 used, which allows relying on
// "used" - "live" for cset selection. Otherwise, we can get the fragmented region
// below the garbage threshold that would never be considered for collection.
//
/**代码未完, 请加载全部代码(NowJava.com).**/