/*
* Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp"
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeuristics.hpp"
#include "gc/shenandoah/shenandoahTraversalGC.hpp"
#include "logging/log.hpp"
#include "logging/logTag.hpp"
#include "utilities/quickSort.hpp"
ShenandoahTraversalHeuristics::ShenandoahTraversalHeuristics() : ShenandoahHeuristics(),
_last_cset_select(0) {}
bool ShenandoahTraversalHeuristics::is_experimental() {
return false;
}
bool ShenandoahTraversalHeuristics::is_diagnostic() {
return false;
}
const char* ShenandoahTraversalHeuristics::name() {
return "traversal";
}
void ShenandoahTraversalHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
ShenandoahHeap* heap = ShenandoahHeap::heap();
ShenandoahTraversalGC* traversal_gc = heap->traversal_gc();
ShenandoahHeapRegionSet* traversal_set = traversal_gc->traversal_set();
traversal_set->clear();
RegionData *data = get_region_data_cache(heap->num_regions());
size_t cnt = 0;
// About to choose the collection set, make sure we have pinned regions in correct state
heap->assert_pinned_region_status();
// Step 0. Prepare all regions
for (size_t i = 0; i < heap->num_regions(); i++) {
ShenandoahHeapRegion* r = heap->get_region(i);
if (r->used() > 0) {
if (r->is_regular()) {
data[cnt]._region = r;
data[cnt]._garbage = r->garbage();
data[cnt]._seqnum_last_alloc = r->seqnum_last_alloc_mutator();
cnt++;
}
traversal_set->add_region(r);
}
}
// The logic for cset selection is similar to that of adaptive:
//
// 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
// during evacuation, and thus guarantee full GC. In practice, we also want to let
// application to allocate something. This is why we limit CSet to some fraction of
// available space. In non-overloaded heap, max_cset would contain all plausible candidates
// over garbage threshold.
//
// 2. We should not get cset too low so that free threshold would not be met right
// after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
// too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
//
// Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
// before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
// we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
// ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
//
// The significant complication is that liveness data was collected at the previous cycle, and only
// for those regions that were allocated before previous cycle started.
size_t capacity = heap->max_capacity();
size_t actual_free = heap->free_set()->available();
size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold;
size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
byte_size_in_proper_unit(max_cset), proper_unit_for_byte_size(max_cset),
byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
// Better select garbage-first regions, and then older ones
QuickSort::sort<RegionData>(data, (int) cnt, compare_by_garbage_then_alloc_seq_ascending, false);
size_t cur_cset = 0;
size_t cur_garbage = 0;
size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() / 100 * ShenandoahGarbageThreshold;
// Step 1. Add trustworthy regions to collection set.
//
// We can trust live/garbage data from regions that were fully traversed during
// previous cycle. Even if actual liveness is different now, we can only have _less_
// live objects, because dead objects are not resurrected. Which means we can undershoot
// the collection set, but not overshoot it.
for (size_t i = 0; i < cnt; i++) {
if (data[i]._seqnum_last_alloc > _last_cset_select) continue;
ShenandoahHeapRegion* r = data[i]._region;
assert (r->is_regular(), "should have been filtered before");
size_t new_garbage = cur_garbage + r->garbage();
size_t new_cset = cur_cset + r->get_live_data_bytes();
if (new_cset > max_cset) {
break;
}
if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
assert(!collection_set->is_in(r), "must not yet be in cset");
collection_set->add_region(r);
cur_cset = new_cset;
cur_garbage = new_garbage;
}
}
// Step 2. Try to catch some recently allocated regions for evacuation ride.
//
// Pessimistically assume we are going to evacuate the entire region. While this
// is very pessimistic and in most cases undershoots the collection set when regions
// are mostly dead, it also provides more safety against running into allocation
// failure when newly allocated regions are fully live.
for (size_t i = 0; i < cnt; i++) {
if (data[i]._seqnum_last_alloc <= _last_cset_select) continue;
ShenandoahHeapRegion* r = data[i]._region;
assert (r->is_regular(), "should have been filtered before");
// size_t new_garbage = cur_garbage + 0; (implied)
size_t new_cset = cur_cset + r->used();
if (new_cset > max_cset) {
break;
}
assert(!collection_set->is_in(r), "must not yet be in cset");
collection_set->add_region(r);
cur_cset = new_cset;
}
// Step 3. Clear liveness data
// TODO: Merge it with step 0, but save live data in RegionData before.
for (size_t i = 0; i < heap->num_regions(); i++) {
ShenandoahHeapRegion* r = heap->get_region(i);
if (r->used() > 0) {
r->clear_live_data();
}
}
collection_set->update_region_status();
_last_cset_select = ShenandoahHeapRegion::seqnum_current_alloc();
}
bool ShenandoahTraversalHeuristics::should_start_gc() const {
ShenandoahHeap* heap = ShenandoahHeap::heap();
assert(!heap->has_forwarded_objects(), "no forwarded objects here");
size_t capacity = heap->max_capacity();
size_t available = heap->free_set()->available();
// Check if we are falling below the worst limit, time to trigger the GC, regardless of
// anything else.
size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
if (available < min_threshold) {
log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
return true;
}
// Check if are need to learn a bit about the application
const size_t max_learn = ShenandoahLearningSteps;
if (_gc_times_learned < max_learn) {
size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
if (available < init_threshold) {
log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
_gc_times_learned + 1, max_learn,
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
return true;
}
}
// Check if allocation headroom is still okay. This also factors in:
// 1. Some space to absorb allocation spikes
// 2. Accumulated penalties from Degenerated and Full GC
size_t allocation_headroom = available;
size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
size_t penalties = capacity / 100 * _gc_time_penalties;
allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
allocation_headroom -= MIN2(allocation_headroom, penalties);
double average_gc = _gc_time_history->avg();
double time_since_last = time_since_last_gc();
double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
if (average_gc > allocation_headroom / allocation_rate) {
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s)",
average_gc * 1000,
/**代码未完, 请加载全部代码(NowJava.com).**/