/*
* Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/threadLocalAllocBuffer.inline.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/copy.hpp"
size_t ThreadLocalAllocBuffer::_max_size = 0;
int ThreadLocalAllocBuffer::_reserve_for_allocation_prefetch = 0;
unsigned int ThreadLocalAllocBuffer::_target_refills = 0;
size_t ThreadLocalAllocBuffer::remaining() {
if (end() == NULL) {
return 0;
}
return pointer_delta(hard_end(), top());
}
void ThreadLocalAllocBuffer::accumulate_and_reset_statistics(ThreadLocalAllocStats* stats) {
Thread* thr = thread();
size_t capacity = Universe::heap()->tlab_capacity(thr);
size_t used = Universe::heap()->tlab_used(thr);
_gc_waste += (unsigned)remaining();
size_t total_allocated = thr->allocated_bytes();
size_t allocated_since_last_gc = total_allocated - _allocated_before_last_gc;
_allocated_before_last_gc = total_allocated;
print_stats("gc");
if (_number_of_refills > 0) {
// Update allocation history if a reasonable amount of eden was allocated.
bool update_allocation_history = used > 0.5 * capacity;
if (update_allocation_history) {
// Average the fraction of eden allocated in a tlab by this
// thread for use in the next resize operation.
// _gc_waste is not subtracted because it's included in
// "used".
// The result can be larger than 1.0 due to direct to old allocations.
// These allocations should ideally not be counted but since it is not possible
// to filter them out here we just cap the fraction to be at most 1.0.
double alloc_frac = MIN2(1.0, (double) allocated_since_last_gc / used);
_allocation_fraction.sample(alloc_frac);
}
stats->update_fast_allocations(_number_of_refills,
_allocated_size,
_gc_waste,
_fast_refill_waste,
_slow_refill_waste);
} else {
assert(_number_of_refills == 0 && _fast_refill_waste == 0 &&
_slow_refill_waste == 0 && _gc_waste == 0,
"tlab stats == 0");
}
stats->update_slow_allocations(_slow_allocations);
reset_statistics();
}
void ThreadLocalAllocBuffer::insert_filler() {
assert(end() != NULL, "Must not be retired");
if (top() < hard_end()) {
Universe::heap()->fill_with_dummy_object(top(), hard_end(), true);
}
}
void ThreadLocalAllocBuffer::make_parsable() {
if (end() != NULL) {
invariants();
if (ZeroTLAB) {
retire();
} else {
insert_filler();
}
}
}
void ThreadLocalAllocBuffer::retire(ThreadLocalAllocStats* stats) {
if (stats != NULL) {
accumulate_and_reset_statistics(stats);
}
if (end() != NULL) {
invariants();
thread()->incr_allocated_bytes(used_bytes());
insert_filler();
initialize(NULL, NULL, NULL);
}
}
void ThreadLocalAllocBuffer::retire_before_allocation() {
_slow_refill_waste += (unsigned int)remaining();
retire();
}
void ThreadLocalAllocBuffer::resize() {
// Compute the next tlab size using expected allocation amount
assert(ResizeTLAB, "Should not call this otherwise");
size_t alloc = (size_t)(_allocation_fraction.average() *
(Universe::heap()->tlab_capacity(thread()) / HeapWordSize));
size_t new_size = alloc / _target_refills;
new_size = clamp(new_size, min_size(), max_size());
size_t aligned_new_size = align_object_size(new_size);
log_trace(gc, tlab)("TLAB new size: thread: " INTPTR_FORMAT " [id: %2d]"
" refills %d alloc: %8.6f desired_size: " SIZE_FORMAT " -> " SIZE_FORMAT,
p2i(thread()), thread()->osthread()->thread_id(),
_target_refills, _allocation_fraction.average(), desired_size(), aligned_new_size);
set_desired_size(aligned_new_size);
set_refill_waste_limit(initial_refill_waste_limit());
}
void ThreadLocalAllocBuffer::reset_statistics() {
_number_of_refills = 0;
_fast_refill_waste = 0;
_slow_refill_waste = 0;
_gc_waste = 0;
_slow_allocations = 0;
_allocated_size = 0;
}
void ThreadLocalAllocBuffer::fill(HeapWord* start,
HeapWord* top,
size_t new_size) {
_number_of_refills++;
_allocated_size += new_size;
print_stats("fill");
assert(top <= start + new_size - alignment_reserve(), "size too small");
initialize(start, top, start + new_size - alignment_reserve());
// Reset amount of internal fragmentation
set_refill_waste_limit(initial_refill_waste_limit());
}
void ThreadLocalAllocBuffer::initialize(HeapWord* start,
HeapWord* top,
HeapWord* end) {
set_start(start);
set_top(top);
set_pf_top(top);
set_end(end);
set_allocation_end(end);
invariants();
}
void ThreadLocalAllocBuffer::initialize() {
initialize(NULL, // start
NULL, // top
NULL); // end
set_desired_size(initial_desired_size());
size_t capacity = Universe::heap()->tlab_capacity(thread()) / HeapWordSize;
double alloc_frac = desired_size() * target_refills() / (double) capacity;
_allocation_fraction.sample(alloc_frac);
set_refill_waste_limit(initial_refill_waste_limit());
reset_statistics();
}
void ThreadLocalAllocBuffer::startup_initialization() {
ThreadLocalAllocStats::initialize();
// Assuming each thread's active tlab is, on average,
// 1/2 full at a GC
_target_refills = 100 / (2 * TLABWasteTargetPercent);
// We need to set initial target refills to 2 to avoid a GC which causes VM
// abort during VM initialization.
_target_refills = MAX2(_target_refills, 2U);
#ifdef COMPILER2
// If the C2 compiler is present, extra space is needed at the end of
// TLABs, otherwise prefetching instructions generated by the C2
// compiler will fault (due to accessing memory outside of heap).
// The amount of space is the max of the number of lines to
// prefetch for array and for instance allocations. (Extra space must be
// reserved to accommodate both types of allocations.)
//
// Only SPARC-specific BIS instructions are known to fault. (Those
// instructions are generated if AllocatePrefetchStyle==3 and
// AllocatePrefetchInstr==1). To be on the safe side, however,
// extra space is reserved for all combinations of
// AllocatePrefetchStyle and AllocatePrefetchInstr.
//
// If the C2 compiler is not present, no space is reserved.
// +1 for rounding up to next cache line, +1 to be safe
if (is_server_compilation_mode_vm()) {
int lines = MAX2(AllocatePrefetchLines, AllocateInstancePrefetchLines) + 2;
_reserve_for_allocation_prefetch = (AllocatePrefetchDistance + AllocatePrefetchStepSize * lines) /
(int)HeapWordSize;
}
#endif
// During jvm startup, the main thread is initialized
// before the heap is initialized. So reinitialize it now.
guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread");
Thread::current()->tlab().initialize();
log_develop_trace(gc, tlab)("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT,
min_size(), Thread::current()->tlab().initial_desired_size(), max_size());
}
size_t ThreadLocalAllocBuffer::initial_desired_size() {
size_t init_sz = 0;
if (TLABSize > 0) {
init_sz = TLABSize / HeapWordSize;
} else {
// Initial size is a function of the average number of allocating threads.
unsigned int nof_threads = ThreadLocalAllocStats::allocating_threads_avg();
init_sz = (Universe::heap()->tlab_capacity(thread()) / HeapWordSize) /
(nof_threads * target_refills());
init_sz = align_object_size(init_sz);
}
// We can't use clamp() between min_size() and max_size() here because some
// options based on them may still be inconsistent and so it may assert;
// inconsistencies between those will be caught by following AfterMemoryInit
// constraint checking.
init_sz = MIN2(MAX2(init_sz, min_size()), max_size());
return init_sz;
}
void ThreadLocalAllocBuffer::print_stats(const char* tag) {
Log(gc, tlab) log;
if (!log.is_trace()) {
return;
}
Thread* thrd = thread();
size_t waste = _gc_waste + _slow_refill_waste + _fast_refill_waste;
double waste_percent = percent_of(waste, _allocated_size);
size_t tlab_used = Universe::heap()->tlab_used(thrd);
log.trace("TLAB: %s thread: " INTPTR_FORMAT " [id: %2d]"
" desired_size: " SIZE_FORMAT "KB"
" slow allocs: %d refill waste: " SIZE_FORMAT "B"
" alloc:%8.5f %8.0fKB refills: %d waste %4.1f%% gc: %dB"
" slow: %dB fast: %dB",
tag, p2i(thrd), thrd->osthread()->thread_id(),
_desired_size / (K / HeapWordSize),
_slow_allocations, _refill_waste_limit * HeapWordSize,
_allocation_fraction.average(),
_allocation_fraction.average() * tlab_used / K,
_number_of_refills, waste_percent,
_gc_waste * HeapWordSize,
_slow_refill_waste * HeapWordSize,
_fast_refill_waste * HeapWordSize);
}
void ThreadLocalAllocBuffer::set_sample_end(bool reset_byte_accumulation) {
size_t heap_words_remaining = pointer_delta(_end, _top);
size_t bytes_until_sample = thread()->heap_sampler().bytes_until_sample();
size_t words_until_sample = bytes_until_sample / HeapWordSize;
if (reset_byte_accumulation) {
_bytes_since_last_sample_point = 0;
}
if (heap_words_remaining > words_until_sample) {
HeapWord* new_end = _top + words_until_sample;
set_end(new_end);
_bytes_since_last_sample_point += bytes_until_sample;
} else {
_bytes_since_last_sample_point += heap_words_remaining * HeapWordSize;
}
}
Thread* ThreadLocalAllocBuffer::thread() {
return (Thread*)(((char*)this) + in_bytes(start_offset()) - in_bytes(Thread::tlab_start_offset()));
}
void ThreadLocalAllocBuffer::set_back_allocation_end() {
_end = _allocation_end;
}
HeapWord* ThreadLocalAllocBuffer::hard_end() {
return _allocation_end + alignment_reserve();
}
PerfVariable* ThreadLocalAllocStats::_perf_allocating_threads;
PerfVariable* ThreadLocalAllocStats::_perf_total_refills;
PerfVariable* ThreadLocalAllocStats::_perf_max_refills;
PerfVariable* ThreadLocalAllocStats::_perf_total_allocations;
PerfVariable* ThreadLocalAllocStats::_perf_total_gc_waste;
PerfVariable* ThreadLocalAllocStats::_perf_max_gc_waste;
PerfVariable* ThreadLocalAllocStats::_perf_total_slow_refill_waste;
PerfVariable* ThreadLocalAllocStats::_perf_max_slow_refill_waste;
PerfVariable* ThreadLocalAllocStats::_perf_total_fast_refill_waste;
PerfVariable* ThreadLocalAllocStats::_perf_max_fast_refill_waste;
PerfVariable* ThreadLocalAllocStats::_perf_total_slow_allocations;
PerfVariable* ThreadLocalAllocStats::_perf_max_slow_allocations;
AdaptiveWeightedAverage ThreadLocalAllocStats::_allocating_threads_avg(0);
static PerfVariable* create_perf_variable(const char* name, PerfData::Units unit, TRAPS) {
ResourceMark rm;
return PerfDataManager::create_variable(SUN_GC, PerfDataManager::counter_name("tlab", name), unit, THREAD);
}
void ThreadLocalAllocStats::initialize() {
_allocating_threads_avg = AdaptiveWeightedAverage(TLABAllocationWeight);
_allocating_threads_avg.sample(1); // One allocating thread at startup
if (UsePerfData) {
EXCEPTION_MARK;
_perf_allocating_threads = create_perf_variable("allocThreads", PerfData::U_None, CHECK);
_perf_total_refills = create_perf_variable("fills", PerfData::U_None, CHECK);
_perf_max_refills = create_perf_variable("maxFills", PerfData::U_None, CHECK);
_perf_total_allocations = create_perf_variable("alloc", PerfData::U_Bytes, CHECK);
_perf_total_gc_waste = create_perf_variable("gcWaste", PerfData::U_Bytes, CHECK);
_perf_max_gc_waste = create_perf_variable("maxGcWaste", PerfData::U_Bytes, CHECK);
_perf_total_slow_refill_waste = create_perf_variable("slowWaste", PerfData::U_Bytes, CHECK);
_perf_max_slow_refill_waste = create_perf_variable("maxSlowWaste", PerfData::U_Bytes, CHECK);
_perf_total_fast_refill_waste = create_perf_variable("fastWaste", PerfData::U_Bytes, CHECK);
_perf_max_fast_refill_waste = create_perf_variable("maxFastWaste", PerfData::U_Bytes, CHECK);
_perf_total_slow_allocations = create_perf_variable("slowAlloc", PerfData::U_None, CHECK);
_perf_max_slow_allocations = create_perf_variable("maxSlowAlloc", PerfData::U_None, CHECK);
}
}
ThreadLocalAllocStats::ThreadLocalAllocStats() :
_allocating_threads(0),
_total_refills(0),
_max_refills(0),
_total_allocations(0),
_total_gc_waste(0),
_max_gc_waste(0),
_total_fast_refill_waste(0),
_max_fast_refill_waste(0),
_total_slow_refill_waste(0),
_max_slow_refill_waste(0),
_total_slow_allocations(0),
_max_slow_allocations(0) {}
unsigned int ThreadLocalAllocStats::allocating_threads_avg() {
return MAX2((unsigned int)(_allocating_threads_avg.average() + 0.5), 1U);
}
void ThreadLocalAllocStats::update_fast_allocations(unsigned int refills,
size_t allocations,
size_t gc_waste,
size_t fast_refill_waste,
size_t slow_refill_waste) {
_allocating_threads += 1;
_total_refills += refills;
_max_refills = MAX2(_max_refills, refills);
_total_allocations += allocations;
_total_gc_waste += gc_waste;
_max_gc_waste = MAX2(_max_gc_waste, gc_waste);
_total_fast_refill_waste += fast_refill_waste;
_max_fast_refill_waste = MAX2(_max_fast_refill_waste, fast_refill_waste);
_total_slow_refill_waste += slow_refill_waste;
_max_slow_refill_waste = MAX2(_max_slow_refill_waste, slow_refill_waste);
}
void ThreadLocalAllocStats::update_slow_allocations(unsigned int allocations) {
_total_slow_allocations += allocations;
_max_slow_allocations = MAX2(_max_slow_allocations, allocations);
}
void ThreadLocalAllocStats::update(const ThreadLocalAllocStats& other) {
_allocating_threads += other._allocating_threads;
_total_refills += other._total_refills;
_max_refills = MAX2(_max_refills, other._max_refills);
_total_allocations += other._total_allocations;
_total_gc_waste += other._total_gc_waste;
_max_gc_waste = MAX2(_max_gc_waste, other._max_gc_waste);
_total_fast_refill_waste += other._total_fast_refill_waste;
_max_fast_refill_waste = MAX2(_max_fast_refill_waste, other._max_fast_refill_waste);
_total_slow_refill_waste += other._total_slow_refill_waste;
_max_slow_refill_waste = MAX2(_max_slow_refill_waste, other._max_slow_refill_waste);
_total_slow_allocations += other._total_slow_allocations;
_max_slow_allocations = MAX2(_max_slow_allocations, other._max_slow_allocations);
}
void ThreadLocalAllocStats::reset() {
_allocating_threads = 0;
_total_refills = 0;
_max_refills = 0;
_total_allocations = 0;
_total_gc_waste = 0;
_max_gc_waste = 0;
_total_fast_refill_waste = 0;
_max_fast_refill_waste = 0;
_total_slow_refill_waste = 0;
_max_slow_refill_waste = 0;
_total_slow_allocations = 0;
_max_slow_allocations = 0;
}
void ThreadLocalAllocStats::publish() {
if (_total_allocations == 0) {
return;
}
_allocating_threads_avg.sample(_allocating_threads);
/**代码未完, 请加载全部代码(NowJava.com).**/