JDK14/Java14源码在线阅读

/*
 * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_GC_SHARED_OOPSTORAGE_HPP
#define SHARE_GC_SHARED_OOPSTORAGE_HPP

#include "memory/allocation.hpp"
#include "oops/oop.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/singleWriterSynchronizer.hpp"

class Mutex;
class outputStream;

// OopStorage supports management of off-heap references to objects allocated
// in the Java heap.  An OopStorage object provides a set of Java object
// references (oop values), which clients refer to via oop* handles to the
// associated OopStorage entries.  Clients allocate entries to create a
// (possibly weak) reference to a Java object, use that reference, and release
// the reference when no longer needed.
//
// The garbage collector must know about all OopStorage objects and their
// reference strength.  OopStorage provides the garbage collector with support
// for iteration over all the allocated entries.
//
// There are several categories of interaction with an OopStorage object.
//
// (1) allocation and release of entries, by the mutator or the VM.
// (2) iteration by the garbage collector, possibly concurrent with mutator.
// (3) iteration by other, non-GC, tools (only at safepoints).
// (4) cleanup of unused internal storage, possibly concurrent with mutator.
//
// A goal of OopStorage is to make these interactions thread-safe, while
// minimizing potential lock contention issues within and between these
// categories.  In particular, support for concurrent iteration by the garbage
// collector, under certain restrictions, is required.  Further, it must not
// block nor be blocked by other operations for long periods.
//
// Internally, OopStorage is a set of Block objects, from which entries are
// allocated and released.  A block contains an oop[] and a bitmask indicating
// which entries are in use (have been allocated and not yet released).  New
// blocks are constructed and added to the storage object when an entry
// allocation request is made and there are no blocks with unused entries.
// Blocks may be removed and deleted when empty.
//
// There are two important (and somewhat intertwined) protocols governing
// concurrent access to a storage object.  These are the Concurrent Iteration
// Protocol and the Allocation Protocol.  See the ParState class for a
// discussion of concurrent iteration and the management of thread
// interactions for this protocol.  Similarly, see the allocate() function for
// a discussion of allocation.

class OopStorage : public CHeapObj<mtGC> {
public:
  OopStorage(const char* name, Mutex* allocation_mutex, Mutex* active_mutex);
  ~OopStorage();

  // These count and usage accessors are racy unless at a safepoint.

  // The number of allocated and not yet released entries.
  size_t allocation_count() const;

  // The number of blocks of entries.  Useful for sizing parallel iteration.
  size_t block_count() const;

  // Total number of blocks * memory allocation per block, plus
  // bookkeeping overhead, including this storage object.
  size_t total_memory_usage() const;

  enum EntryStatus {
    INVALID_ENTRY,
    UNALLOCATED_ENTRY,
    ALLOCATED_ENTRY
  };

  // Locks _allocation_mutex.
  // precondition: ptr != NULL.
  EntryStatus allocation_status(const oop* ptr) const;

  // Allocates and returns a new entry.  Returns NULL if memory allocation
  // failed.  Locks _allocation_mutex.
  // postcondition: *result == NULL.
  oop* allocate();

  // Deallocates ptr.  No locking.
  // precondition: ptr is a valid allocated entry.
  // precondition: *ptr == NULL.
  void release(const oop* ptr);

  // Releases all the ptrs.  Possibly faster than individual calls to
  // release(oop*).  Best if ptrs is sorted by address.  No locking.
  // precondition: All elements of ptrs are valid allocated entries.
  // precondition: *ptrs[i] == NULL, for i in [0,size).
  void release(const oop* const* ptrs, size_t size);

  // Applies f to each allocated entry's location.  f must be a function or
  // function object.  Assume p is either a const oop* or an oop*, depending
  // on whether the associated storage is const or non-const, respectively.
  // Then f(p) must be a valid expression.  The result of invoking f(p) must
  // be implicitly convertible to bool.  Iteration terminates and returns
  // false if any invocation of f returns false.  Otherwise, the result of
  // iteration is true.
  // precondition: at safepoint.
  template<typename F> inline bool iterate_safepoint(F f);
  template<typename F> inline bool iterate_safepoint(F f) const;

  // oops_do and weak_oops_do are wrappers around iterate_safepoint, providing
  // an adaptation layer allowing the use of existing is-alive closures and
  // OopClosures.  Assume p is either const oop* or oop*, depending on whether
  // the associated storage is const or non-const, respectively.  Then
  //
  // - closure->do_oop(p) must be a valid expression whose value is ignored.
  //
  // - is_alive->do_object_b(*p) must be a valid expression whose value is
  // convertible to bool.
  //
  // For weak_oops_do, if *p == NULL then neither is_alive nor closure will be
  // invoked for p.  If is_alive->do_object_b(*p) is false, then closure will
  // not be invoked on p, and *p will be set to NULL.

  template<typename Closure> inline void oops_do(Closure* closure);
  template<typename Closure> inline void oops_do(Closure* closure) const;
  template<typename Closure> inline void weak_oops_do(Closure* closure);

  template<typename IsAliveClosure, typename Closure>
  inline void weak_oops_do(IsAliveClosure* is_alive, Closure* closure);

  // Parallel iteration is for the exclusive use of the GC.
  // Other clients must use serial iteration.
  template<bool concurrent, bool is_const> class ParState;

  // Service thread cleanup support.

  // Called by the service thread to process any pending cleanups for this
  // storage object.  Drains the _deferred_updates list, and deletes empty
  // blocks.  Stops deleting if there is an in-progress concurrent
  // iteration.  Locks both the _allocation_mutex and the _active_mutex, and
  // may safepoint.  Deletion may be throttled, with only some available
  // work performed, in order to allow other Service thread subtasks to run.
  // Returns true if there may be more work to do, false if nothing to do.
  bool delete_empty_blocks();

  // Called by safepoint cleanup to notify the service thread (via
  // Service_lock) that there may be some OopStorage objects with pending
  // cleanups to process.
  static void trigger_cleanup_if_needed();

  // Called by the service thread (while holding Service_lock) to to test
  // for pending cleanup requests, and resets the request state to allow
  // recognition of new requests.  Returns true if there was a pending
  // request.
  static bool has_cleanup_work_and_reset();

  // Debugging and logging support.
  const char* name() const;
  void print_on(outputStream* st) const PRODUCT_RETURN;

  // Provides access to storage internals, for unit testing.
  // Declare, but not define, the public class OopStorage::TestAccess.
  // That class is defined as part of the unit-test. It "exports" the needed
  // private types by providing public typedefs for them.
  class TestAccess;

private:
  class Block;                  // Fixed-size array of oops, plus bookkeeping.
  class ActiveArray;            // Array of Blocks, plus bookkeeping.
  class AllocationListEntry;    // Provides AllocationList links in a Block.

  // Doubly-linked list of Blocks.
  class AllocationList {
    const Block* _head;
    const Block* _tail;

    NONCOPYABLE(AllocationList);

  public:
    AllocationList();
    ~AllocationList();

    Block* head();
    Block* tail();
    const Block* chead() const;
    const Block* ctail() const;

    Block* prev(Block& block);
    Block* next(Block& block);

    const Block* prev(const Block& block) const;
    const Block* next(const Block& block) const;

    void push_front(const Block& block);
    void push_back(const Block& block);
    void unlink(const Block& block);
  };

private:
  const char* _name;
  ActiveArray* _active_array;
  AllocationList _allocation_list;
  Block* volatile _deferred_updates;
  Mutex* _allocation_mutex;
  Mutex* _active_mutex;

  // Volatile for racy unlocked accesses.
  volatile size_t _allocation_count;

  // Protection for _active_array.
  mutable SingleWriterSynchronizer _protect_active;

  // mutable because this gets set even for const iteration.
  mutable int _concurrent_iteration_count;

  volatile bool _needs_cleanup;

  bool try_add_block();
  Block* block_for_allocation();

  Block* find_block_or_null(const oop* ptr) const;
  void delete_empty_block(const Block& block);
  bool reduce_deferred_updates();
  void record_needs_cleanup();

  // Managing _active_array.
  bool expand_active_array();
  void replace_active_array(ActiveArray* new_array);

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java