/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/oopStorage.inline.hpp"
#include "gc/shared/oopStorageParState.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/globals.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.hpp"
#include "utilities/align.hpp"
#include "utilities/count_trailing_zeros.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
OopStorage::AllocationListEntry::AllocationListEntry() : _prev(NULL), _next(NULL) {}
OopStorage::AllocationListEntry::~AllocationListEntry() {
assert(_prev == NULL, "deleting attached block");
assert(_next == NULL, "deleting attached block");
}
OopStorage::AllocationList::AllocationList() : _head(NULL), _tail(NULL) {}
OopStorage::AllocationList::~AllocationList() {
// ~OopStorage() empties its lists before destroying them.
assert(_head == NULL, "deleting non-empty block list");
assert(_tail == NULL, "deleting non-empty block list");
}
void OopStorage::AllocationList::push_front(const Block& block) {
const Block* old = _head;
if (old == NULL) {
assert(_tail == NULL, "invariant");
_head = _tail = █
} else {
block.allocation_list_entry()._next = old;
old->allocation_list_entry()._prev = █
_head = █
}
}
void OopStorage::AllocationList::push_back(const Block& block) {
const Block* old = _tail;
if (old == NULL) {
assert(_head == NULL, "invariant");
_head = _tail = █
} else {
old->allocation_list_entry()._next = █
block.allocation_list_entry()._prev = old;
_tail = █
}
}
void OopStorage::AllocationList::unlink(const Block& block) {
const AllocationListEntry& block_entry = block.allocation_list_entry();
const Block* prev_blk = block_entry._prev;
const Block* next_blk = block_entry._next;
block_entry._prev = NULL;
block_entry._next = NULL;
if ((prev_blk == NULL) && (next_blk == NULL)) {
assert(_head == &block, "invariant");
assert(_tail == &block, "invariant");
_head = _tail = NULL;
} else if (prev_blk == NULL) {
assert(_head == &block, "invariant");
next_blk->allocation_list_entry()._prev = NULL;
_head = next_blk;
} else if (next_blk == NULL) {
assert(_tail == &block, "invariant");
prev_blk->allocation_list_entry()._next = NULL;
_tail = prev_blk;
} else {
next_blk->allocation_list_entry()._prev = prev_blk;
prev_blk->allocation_list_entry()._next = next_blk;
}
}
OopStorage::ActiveArray::ActiveArray(size_t size) :
_size(size),
_block_count(0),
_refcount(0)
{}
OopStorage::ActiveArray::~ActiveArray() {
assert(_refcount == 0, "precondition");
}
OopStorage::ActiveArray* OopStorage::ActiveArray::create(size_t size, AllocFailType alloc_fail) {
size_t size_in_bytes = blocks_offset() + sizeof(Block*) * size;
void* mem = NEW_C_HEAP_ARRAY3(char, size_in_bytes, mtGC, CURRENT_PC, alloc_fail);
if (mem == NULL) return NULL;
return new (mem) ActiveArray(size);
}
void OopStorage::ActiveArray::destroy(ActiveArray* ba) {
ba->~ActiveArray();
FREE_C_HEAP_ARRAY(char, ba);
}
size_t OopStorage::ActiveArray::size() const {
return _size;
}
size_t OopStorage::ActiveArray::block_count() const {
return _block_count;
}
size_t OopStorage::ActiveArray::block_count_acquire() const {
return Atomic::load_acquire(&_block_count);
}
void OopStorage::ActiveArray::increment_refcount() const {
int new_value = Atomic::add(&_refcount, 1);
assert(new_value >= 1, "negative refcount %d", new_value - 1);
}
bool OopStorage::ActiveArray::decrement_refcount() const {
int new_value = Atomic::sub(&_refcount, 1);
assert(new_value >= 0, "negative refcount %d", new_value);
return new_value == 0;
}
bool OopStorage::ActiveArray::push(Block* block) {
size_t index = _block_count;
if (index < _size) {
block->set_active_index(index);
*block_ptr(index) = block;
// Use a release_store to ensure all the setup is complete before
// making the block visible.
Atomic::release_store(&_block_count, index + 1);
return true;
} else {
return false;
}
}
void OopStorage::ActiveArray::remove(Block* block) {
assert(_block_count > 0, "array is empty");
size_t index = block->active_index();
assert(*block_ptr(index) == block, "block not present");
size_t last_index = _block_count - 1;
Block* last_block = *block_ptr(last_index);
last_block->set_active_index(index);
*block_ptr(index) = last_block;
_block_count = last_index;
}
void OopStorage::ActiveArray::copy_from(const ActiveArray* from) {
assert(_block_count == 0, "array must be empty");
size_t count = from->_block_count;
assert(count <= _size, "precondition");
Block* const* from_ptr = from->block_ptr(0);
Block** to_ptr = block_ptr(0);
for (size_t i = 0; i < count; ++i) {
Block* block = *from_ptr++;
assert(block->active_index() == i, "invariant");
*to_ptr++ = block;
}
_block_count = count;
}
// Blocks start with an array of BitsPerWord oop entries. That array
// is divided into conceptual BytesPerWord sections of BitsPerByte
// entries. Blocks are allocated aligned on section boundaries, for
// the convenience of mapping from an entry to the containing block;
// see block_for_ptr(). Aligning on section boundary rather than on
// the full _data wastes a lot less space, but makes for a bit more
// work in block_for_ptr().
const unsigned section_size = BitsPerByte;
const unsigned section_count = BytesPerWord;
const unsigned block_alignment = sizeof(oop) * section_size;
OopStorage::Block::Block(const OopStorage* owner, void* memory) :
_data(),
_allocated_bitmask(0),
_owner_address(reinterpret_cast<intptr_t>(owner)),
_memory(memory),
_active_index(0),
_allocation_list_entry(),
_deferred_updates_next(NULL),
_release_refcount(0)
{
STATIC_ASSERT(_data_pos == 0);
STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data));
assert(offset_of(Block, _data) == _data_pos, "invariant");
assert(owner != NULL, "NULL owner");
assert(is_aligned(this, block_alignment), "misaligned block");
}
OopStorage::Block::~Block() {
assert(_release_refcount == 0, "deleting block while releasing");
assert(_deferred_updates_next == NULL, "deleting block with deferred update");
// Clear fields used by block_for_ptr and entry validation, which
// might help catch bugs. Volatile to prevent dead-store elimination.
const_cast<uintx volatile&>(_allocated_bitmask) = 0;
const_cast<intptr_t volatile&>(_owner_address) = 0;
}
size_t OopStorage::Block::allocation_size() {
// _data must be first member, so aligning Block aligns _data.
STATIC_ASSERT(_data_pos == 0);
return sizeof(Block) + block_alignment - sizeof(void*);
}
size_t OopStorage::Block::allocation_alignment_shift() {
return exact_log2(block_alignment);
}
inline bool is_full_bitmask(uintx bitmask) { return ~bitmask == 0; }
inline bool is_empty_bitmask(uintx bitmask) { return bitmask == 0; }
bool OopStorage::Block::is_full() const {
return is_full_bitmask(allocated_bitmask());
}
bool OopStorage::Block::is_empty() const {
return is_empty_bitmask(allocated_bitmask());
}
uintx OopStorage::Block::bitmask_for_entry(const oop* ptr) const {
return bitmask_for_index(get_index(ptr));
}
// An empty block is not yet deletable if either:
// (1) There is a release() operation currently operating on it.
// (2) It is in the deferred updates list.
// For interaction with release(), these must follow the empty check,
// and the order of these checks is important.
bool OopStorage::Block::is_safe_to_delete() const {
assert(is_empty(), "precondition");
OrderAccess::loadload();
return (Atomic::load_acquire(&_release_refcount) == 0) &&
(Atomic::load_acquire(&_deferred_updates_next) == NULL);
}
OopStorage::Block* OopStorage::Block::deferred_updates_next() const {
return _deferred_updates_next;
}
void OopStorage::Block::set_deferred_updates_next(Block* block) {
_deferred_updates_next = block;
}
bool OopStorage::Block::contains(const oop* ptr) const {
const oop* base = get_pointer(0);
return (base <= ptr) && (ptr < (base + ARRAY_SIZE(_data)));
}
size_t OopStorage::Block::active_index() const {
return _active_index;
}
void OopStorage::Block::set_active_index(size_t index) {
_active_index = index;
}
size_t OopStorage::Block::active_index_safe(const Block* block) {
STATIC_ASSERT(sizeof(intptr_t) == sizeof(block->_active_index));
assert(CanUseSafeFetchN(), "precondition");
return SafeFetchN((intptr_t*)&block->_active_index, 0);
}
unsigned OopStorage::Block::get_index(const oop* ptr) const {
assert(contains(ptr), PTR_FORMAT " not in block " PTR_FORMAT, p2i(ptr), p2i(this));
return static_cast<unsigned>(ptr - get_pointer(0));
}
oop* OopStorage::Block::allocate() {
// Use CAS loop because release may change bitmask outside of lock.
uintx allocated = allocated_bitmask();
while (true) {
assert(!is_full_bitmask(allocated), "attempt to allocate from full block");
unsigned index = count_trailing_zeros(~allocated);
uintx new_value = allocated | bitmask_for_index(index);
uintx fetched = Atomic::cmpxchg(&_allocated_bitmask, allocated, new_value);
if (fetched == allocated) {
return get_pointer(index); // CAS succeeded; return entry for index.
}
allocated = fetched; // CAS failed; retry with latest value.
}
}
OopStorage::Block* OopStorage::Block::new_block(const OopStorage* owner) {
// _data must be first member: aligning block => aligning _data.
STATIC_ASSERT(_data_pos == 0);
size_t size_needed = allocation_size();
void* memory = NEW_C_HEAP_ARRAY_RETURN_NULL(char, size_needed, mtGC);
if (memory == NULL) {
return NULL;
}
void* block_mem = align_up(memory, block_alignment);
assert(sizeof(Block) + pointer_delta(block_mem, memory, 1) <= size_needed,
"allocated insufficient space for aligned block");
return ::new (block_mem) Block(owner, memory);
}
void OopStorage::Block::delete_block(const Block& block) {
void* memory = block._memory;
block.Block::~Block();
FREE_C_HEAP_ARRAY(char, memory);
}
// This can return a false positive if ptr is not contained by some
// block. For some uses, it is a precondition that ptr is valid,
// e.g. contained in some block in owner's _active_array. Other uses
// require additional validation of the result.
OopStorage::Block*
OopStorage::Block::block_for_ptr(const OopStorage* owner, const oop* ptr) {
assert(CanUseSafeFetchN(), "precondition");
STATIC_ASSERT(_data_pos == 0);
// Const-ness of ptr is not related to const-ness of containing block.
// Blocks are allocated section-aligned, so get the containing section.
oop* section_start = align_down(const_cast<oop*>(ptr), block_alignment);
// Start with a guess that the containing section is the last section,
// so the block starts section_count-1 sections earlier.
oop* section = section_start - (section_size * (section_count - 1));
// Walk up through the potential block start positions, looking for
// the owner in the expected location. If we're below the actual block
// start position, the value at the owner position will be some oop
// (possibly NULL), which can never match the owner.
intptr_t owner_addr = reinterpret_cast<intptr_t>(owner);
for (unsigned i = 0; i < section_count; ++i, section += section_size) {
Block* candidate = reinterpret_cast<Block*>(section);
if (SafeFetchN(&candidate->_owner_address, 0) == owner_addr) {
return candidate;
}
}
return NULL;
}
//////////////////////////////////////////////////////////////////////////////
// Allocation
//
// Allocation involves the _allocation_list, which contains a subset of the
// blocks owned by a storage object. This is a doubly-linked list, linked
// through dedicated fields in the blocks. Full blocks are removed from this
// list, though they are still present in the _active_array. Empty blocks are
// kept at the end of the _allocation_list, to make it easy for empty block
// deletion to find them.
//
// allocate(), and delete_empty_blocks() lock the
// _allocation_mutex while performing any list and array modifications.
//
// allocate() and release() update a block's _allocated_bitmask using CAS
// loops. This prevents loss of updates even though release() performs
// its updates without any locking.
//
// allocate() obtains the entry from the first block in the _allocation_list,
// and updates that block's _allocated_bitmask to indicate the entry is in
// use. If this makes the block full (all entries in use), the block is
// removed from the _allocation_list so it won't be considered by future
// allocations until some entries in it are released.
//
// release() is performed lock-free. (Note: This means it can't notify the
// service thread of pending cleanup work. It must be lock-free because
// it is called in all kinds of contexts where even quite low ranked locks
// may be held.) release() first looks up the block for
// the entry, using address alignment to find the enclosing block (thereby
// avoiding iteration over the _active_array). Once the block has been
// determined, its _allocated_bitmask needs to be updated, and its position in
// the _allocation_list may need to be updated. There are two cases:
//
// (a) If the block is neither full nor would become empty with the release of
// the entry, only its _allocated_bitmask needs to be updated. But if the CAS
// update fails, the applicable case may change for the retry.
//
// (b) Otherwise, the _allocation_list also needs to be modified. This requires
// locking the _allocation_mutex. To keep the release() operation lock-free,
// rather than updating the _allocation_list itself, it instead performs a
// lock-free push of the block onto the _deferred_updates list. Entries on
// that list are processed by allocate() and delete_empty_blocks(), while
// they already hold the necessary lock. That processing makes the block's
// list state consistent with its current _allocated_bitmask. The block is
// added to the _allocation_list if not already present and the bitmask is not
// full. The block is moved to the end of the _allocation_list if the bitmask
// is empty, for ease of empty block deletion processing.
oop* OopStorage::allocate() {
MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag);
Block* block = block_for_allocation();
if (block == NULL) return NULL; // Block allocation failed.
assert(!block->is_full(), "invariant");
if (block->is_empty()) {
// Transitioning from empty to not empty.
log_trace(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block));
}
oop* result = block->allocate();
assert(result != NULL, "allocation failed");
assert(!block->is_empty(), "postcondition");
Atomic::inc(&_allocation_count); // release updates outside lock.
if (block->is_full()) {
// Transitioning from not full to full.
// Remove full blocks from consideration by future allocates.
log_trace(oopstorage, blocks)("%s: block full " PTR_FORMAT, name(), p2i(block));
_allocation_list.unlink(*block);
}
log_trace(oopstorage, ref)("%s: allocated " PTR_FORMAT, name(), p2i(result));
return result;
}
bool OopStorage::try_add_block() {
assert_lock_strong(_allocation_mutex);
Block* block;
{
MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag);
block = Block::new_block(this);
}
if (block == NULL) return false;
// Add new block to the _active_array, growing if needed.
if (!_active_array->push(block)) {
if (expand_active_array()) {
guarantee(_active_array->push(block), "push failed after expansion");
} else {
log_debug(oopstorage, blocks)("%s: failed active array expand", name());
Block::delete_block(*block);
return false;
}
}
// Add to end of _allocation_list. The mutex release allowed other
// threads to add blocks to the _allocation_list. We prefer to
// allocate from non-empty blocks, to allow empty blocks to be
// deleted. But we don't bother notifying about the empty block
// because we're (probably) about to allocate an entry from it.
_allocation_list.push_back(*block);
log_debug(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block));
return true;
}
OopStorage::Block* OopStorage::block_for_allocation() {
assert_lock_strong(_allocation_mutex);
while (true) {
// Use the first block in _allocation_list for the allocation.
Block* block = _allocation_list.head();
if (block != NULL) {
return block;
} else if (reduce_deferred_updates()) {
// Might have added a block to the _allocation_list, so retry.
} else if (try_add_block()) {
// Successfully added a new block to the list, so retry.
assert(_allocation_list.chead() != NULL, "invariant");
} else if (_allocation_list.chead() != NULL) {
// Trying to add a block failed, but some other thread added to the
// list while we'd dropped the lock over the new block allocation.
} else if (!reduce_deferred_updates()) { // Once more before failure.
// Attempt to add a block failed, no other thread added a block,
// and no deferred updated added a block, then allocation failed.
log_info(oopstorage, blocks)("%s: failed block allocation", name());
return NULL;
}
}
}
// Create a new, larger, active array with the same content as the
// current array, and then replace, relinquishing the old array.
// Return true if the array was successfully expanded, false to
// indicate allocation failure.
bool OopStorage::expand_active_array() {
assert_lock_strong(_allocation_mutex);
ActiveArray* old_array = _active_array;
size_t new_size = 2 * old_array->size();
log_debug(oopstorage, blocks)("%s: expand active array " SIZE_FORMAT,
name(), new_size);
ActiveArray* new_array = ActiveArray::create(new_size, AllocFailStrategy::RETURN_NULL);
if (new_array == NULL) return false;
new_array->copy_from(old_array);
replace_active_array(new_array);
relinquish_block_array(old_array);
return true;
}
// Make new_array the _active_array. Increments new_array's refcount
// to account for the new reference. The assignment is atomic wrto
// obtain_active_array; once this function returns, it is safe for the
// caller to relinquish the old array.
void OopStorage::replace_active_array(ActiveArray* new_array) {
// Caller has the old array that is the current value of _active_array.
// Update new_array refcount to account for the new reference.
new_array->increment_refcount();
// Install new_array, ensuring its initialization is complete first.
Atomic::release_store(&_active_array, new_array);
// Wait for any readers that could read the old array from _active_array.
// Can't use GlobalCounter here, because this is called from allocate(),
// which may be called in the scope of a GlobalCounter critical section
// when inserting a StringTable entry.
_protect_active.synchronize();
// All obtain critical sections that could see the old array have
// completed, having incremented the refcount of the old array. The
// caller can now safely relinquish the old array.
}
// Atomically (wrto replace_active_array) get the active array and
// increment its refcount. This provides safe access to the array,
// even if an allocate operation expands and replaces the value of
// _active_array. The caller must relinquish the array when done
// using it.
OopStorage::ActiveArray* OopStorage::obtain_active_array() const {
SingleWriterSynchronizer::CriticalSection cs(&_protect_active);
ActiveArray* result = Atomic::load_acquire(&_active_array);
result->increment_refcount();
return result;
}
// Decrement refcount of array and destroy if refcount is zero.
void OopStorage::relinquish_block_array(ActiveArray* array) const {
if (array->decrement_refcount()) {
assert(array != _active_array, "invariant");
ActiveArray::destroy(array);
}
}
class OopStorage::WithActiveArray : public StackObj {
const OopStorage* _storage;
ActiveArray* _active_array;
public:
WithActiveArray(const OopStorage* storage) :
_storage(storage),
_active_array(storage->obtain_active_array())
{}
~WithActiveArray() {
_storage->relinquish_block_array(_active_array);
}
ActiveArray& active_array() const {
return *_active_array;
}
};
OopStorage::Block* OopStorage::find_block_or_null(const oop* ptr) const {
assert(ptr != NULL, "precondition");
return Block::block_for_ptr(this, ptr);
}
static void log_release_transitions(uintx releasing,
uintx old_allocated,
const OopStorage* owner,
const void* block) {
LogTarget(Trace, oopstorage, blocks) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
if (is_full_bitmask(old_allocated)) {
ls.print_cr("%s: block not full " PTR_FORMAT, owner->name(), p2i(block));
}
if (releasing == old_allocated) {
ls.print_cr("%s: block empty " PTR_FORMAT, owner->name(), p2i(block));
}
}
}
void OopStorage::Block::release_entries(uintx releasing, OopStorage* owner) {
assert(releasing != 0, "preconditon");
// Prevent empty block deletion when transitioning to empty.
Atomic::inc(&_release_refcount);
// Atomically update allocated bitmask.
uintx old_allocated = _allocated_bitmask;
while (true) {
assert((releasing & ~old_allocated) == 0, "releasing unallocated entries");
uintx new_value = old_allocated ^ releasing;
uintx fetched = Atomic::cmpxchg(&_allocated_bitmask, old_allocated, new_value);
if (fetched == old_allocated) break; // Successful update.
old_allocated = fetched; // Retry with updated bitmask.
}
// Now that the bitmask has been updated, if we have a state transition
// (updated bitmask is empty or old bitmask was full), atomically push
// this block onto the deferred updates list. Some future call to
// reduce_deferred_updates will make any needed changes related to this
// block and _allocation_list. This deferral avoids _allocation_list
// updates and the associated locking here.
if ((releasing == old_allocated) || is_full_bitmask(old_allocated)) {
// Log transitions. Both transitions are possible in a single update.
log_release_transitions(releasing, old_allocated, owner, this);
// Attempt to claim responsibility for adding this block to the deferred
// list, by setting the link to non-NULL by self-looping. If this fails,
// then someone else has made such a claim and the deferred update has not
// yet been processed and will include our change, so we don't need to do
// anything further.
if (Atomic::replace_if_null(&_deferred_updates_next, this)) {
// Successfully claimed. Push, with self-loop for end-of-list.
Block* head = owner->_deferred_updates;
while (true) {
_deferred_updates_next = (head == NULL) ? this : head;
Block* fetched = Atomic::cmpxchg(&owner->_deferred_updates, head, this);
if (fetched == head) break; // Successful update.
head = fetched; // Retry with updated head.
}
// Only request cleanup for to-empty transitions, not for from-full.
// There isn't any rush to process from-full transitions. Allocation
// will reduce deferrals before allocating new blocks, so may process
// some. And the service thread will drain the entire deferred list
// if there are any pending to-empty transitions.
if (releasing == old_allocated) {
owner->record_needs_cleanup();
}
log_trace(oopstorage, blocks)("%s: deferred update " PTR_FORMAT,
owner->name(), p2i(this));
}
}
// Release hold on empty block deletion.
Atomic::dec(&_release_refcount);
}
// Process one available deferred update. Returns true if one was processed.
bool OopStorage::reduce_deferred_updates() {
assert_lock_strong(_allocation_mutex);
// Atomically pop a block off the list, if any available.
// No ABA issue because this is only called by one thread at a time.
// The atomicity is wrto pushes by release().
Block* block = Atomic::load_acquire(&_deferred_updates);
while (true) {
if (block == NULL) return false;
// Try atomic pop of block from list.
Block* tail = block->deferred_updates_next();
if (block == tail) tail = NULL; // Handle self-loop end marker.
Block* fetched = Atomic::cmpxchg(&_deferred_updates, block, tail);
if (fetched == block) break; // Update successful.
block = fetched; // Retry with updated block.
}
block->set_deferred_updates_next(NULL); // Clear tail after updating head.
// Ensure bitmask read after pop is complete, including clearing tail, for
// ordering with release(). Without this, we may be processing a stale
// bitmask state here while blocking a release() operation from recording
// the deferred update needed for its bitmask change.
OrderAccess::fence();
// Process popped block.
uintx allocated = block->allocated_bitmask();
// Make membership in list consistent with bitmask state.
if ((_allocation_list.ctail() != NULL) &&
((_allocation_list.ctail() == block) ||
(_allocation_list.next(*block) != NULL))) {
// Block is in the _allocation_list.
assert(!is_full_bitmask(allocated), "invariant");
} else if (!is_full_bitmask(allocated)) {
// Block is not in the _allocation_list, but now should be.
_allocation_list.push_front(*block);
} // Else block is full and not in list, which is correct.
// Move empty block to end of list, for possible deletion.
if (is_empty_bitmask(allocated)) {
_allocation_list.unlink(*block);
_allocation_list.push_back(*block);
}
log_trace(oopstorage, blocks)("%s: processed deferred update " PTR_FORMAT,
name(), p2i(block));
return true; // Processed one pending update.
}
inline void check_release_entry(const oop* entry) {
assert(entry != NULL, "Releasing NULL");
assert(*entry == NULL, "Releasing uncleared entry: " PTR_FORMAT, p2i(entry));
}
void OopStorage::release(const oop* ptr) {
check_release_entry(ptr);
Block* block = find_block_or_null(ptr);
assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptr));
log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr));
block->release_entries(block->bitmask_for_entry(ptr), this);
Atomic::dec(&_allocation_count);
}
void OopStorage::release(const oop* const* ptrs, size_t size) {
size_t i = 0;
while (i < size) {
check_release_entry(ptrs[i]);
Block* block = find_block_or_null(ptrs[i]);
assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptrs[i]));
log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i]));
size_t count = 0;
uintx releasing = 0;
for ( ; i < size; ++i) {
const oop* entry = ptrs[i];
check_release_entry(entry);
// If entry not in block, finish block and resume outer loop with entry.
if (!block->contains(entry)) break;
// Add entry to releasing bitmap.
log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry));
uintx entry_bitmask = block->bitmask_for_entry(entry);
assert((releasing & entry_bitmask) == 0,
"Duplicate entry: " PTR_FORMAT, p2i(entry));
releasing |= entry_bitmask;
++count;
}
// Release the contiguous entries that are in block.
block->release_entries(releasing, this);
Atomic::sub(&_allocation_count, count);
}
}
const size_t initial_active_array_size = 8;
OopStorage::OopStorage(const char* name,
Mutex* allocation_mutex,
Mutex* active_mutex) :
_name(os::strdup(name)),
_active_array(ActiveArray::create(initial_active_array_size)),
_allocation_list(),
_deferred_updates(NULL),
_allocation_mutex(allocation_mutex),
_active_mutex(active_mutex),
_allocation_count(0),
_concurrent_iteration_count(0),
_needs_cleanup(false)
{
_active_array->increment_refcount();
assert(_active_mutex->rank() < _allocation_mutex->rank(),
"%s: active_mutex must have lower rank than allocation_mutex", _name);
assert(Service_lock->rank() < _active_mutex->rank(),
"%s: active_mutex must have higher rank than Service_lock", _name);
assert(_active_mutex->_safepoint_check_required == Mutex::_safepoint_check_never,
"%s: active mutex requires never safepoint check", _name);
assert(_allocation_mutex->_safepoint_check_required == Mutex::_safepoint_check_never,
"%s: allocation mutex requires never safepoint check", _name);
}
void OopStorage::delete_empty_block(const Block& block) {
assert(block.is_empty(), "discarding non-empty block");
log_debug(oopstorage, blocks)("%s: delete empty block " PTR_FORMAT, name(), p2i(&block));
Block::delete_block(block);
}
OopStorage::~OopStorage() {
Block* block;
while ((block = _deferred_updates) != NULL) {
_deferred_updates = block->deferred_updates_next();
block->set_deferred_updates_next(NULL);
}
while ((block = _allocation_list.head()) != NULL) {
_allocation_list.unlink(*block);
}
bool unreferenced = _active_array->decrement_refcount();
assert(unreferenced, "deleting storage while _active_array is referenced");
for (size_t i = _active_array->block_count(); 0 < i; ) {
block = _active_array->at(--i);
Block::delete_block(*block);
}
ActiveArray::destroy(_active_array);
os::free(const_cast<char*>(_name));
}
// Managing service thread notifications.
//
// We don't want cleanup work to linger indefinitely, but we also don't want
// to run the service thread too often. We're also very limited in what we
// can do in a release operation, where cleanup work is created.
//
// When a release operation changes a block's state to empty, it records the
// need for cleanup in both the associated storage object and in the global
// request state. A safepoint cleanup task notifies the service thread when
// there may be cleanup work for any storage object, based on the global
// request state. But that notification is deferred if the service thread
// has run recently, and we also avoid duplicate notifications. The service
// thread updates the timestamp and resets the state flags on every iteration.
// Global cleanup request state.
static volatile bool needs_cleanup_requested = false;
// Flag for avoiding duplicate notifications.
static bool needs_cleanup_triggered = false;
// Time after which a notification can be made.
static jlong cleanup_trigger_permit_time = 0;
// Minimum time since last service thread check before notification is
// permitted. The value of 500ms was an arbitrary choice; frequent, but not
// too frequent.
const jlong cleanup_trigger_defer_period = 500 * NANOSECS_PER_MILLISEC;
void OopStorage::trigger_cleanup_if_needed() {
MonitorLocker ml(Service_lock, Monitor::_no_safepoint_check_flag);
if (Atomic::load(&needs_cleanup_requested) &&
!needs_cleanup_triggered &&
(os::javaTimeNanos() > cleanup_trigger_permit_time)) {
needs_cleanup_triggered = true;
ml.notify_all();
}
}
bool OopStorage::has_cleanup_work_and_reset() {
assert_lock_strong(Service_lock);
cleanup_trigger_permit_time =
os::javaTimeNanos() + cleanup_trigger_defer_period;
needs_cleanup_triggered = false;
// Set the request flag false and return its old value.
// Needs to be atomic to avoid dropping a concurrent request.
// Can't use Atomic::xchg, which may not support bool.
return Atomic::cmpxchg(&needs_cleanup_requested, true, false);
}
// Record that cleanup is needed, without notifying the Service thread.
// Used by release(), where we can't lock even Service_lock.
void OopStorage::record_needs_cleanup() {
// Set local flag first, else service thread could wake up and miss
// the request. This order may instead (rarely) unnecessarily notify.
Atomic::release_store(&_needs_cleanup, true);
Atomic::release_store_fence(&needs_cleanup_requested, true);
}
bool OopStorage::delete_empty_blocks() {
// Service thread might have oopstorage work, but not for this object.
// Check for deferred updates even though that's not a service thread
// trigger; since we're here, we might as well process them.
if (!Atomic::load_acquire(&_needs_cleanup) &&
(Atomic::load_acquire(&_deferred_updates) == NULL)) {
return false;
}
MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag);
// Clear the request before processing.
Atomic::release_store_fence(&_needs_cleanup, false);
// Other threads could be adding to the empty block count or the
// deferred update list while we're working. Set an upper bound on
// how many updates we'll process and blocks we'll try to release,
// so other threads can't cause an unbounded stay in this function.
// We add a bit of slop because the reduce_deferred_updates clause
// can cause blocks to be double counted. If there are few blocks
// and many of them are deferred and empty, we might hit the limit
// and spin the caller without doing very much work. Otherwise,
// we don't normally hit the limit anyway, instead running out of
// work to do.
size_t limit = block_count() + 10;
for (size_t i = 0; i < limit; ++i) {
// Process deferred updates, which might make empty blocks available.
// Continue checking once deletion starts, since additional updates
// might become available while we're working.
if (reduce_deferred_updates()) {
// Be safepoint-polite while looping.
MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag);
ThreadBlockInVM tbiv(JavaThread::current());
} else {
Block* block = _allocation_list.tail();
if ((block == NULL) || !block->is_empty()) {
return false;
} else if (!block->is_safe_to_delete()) {
// Look for other work while waiting for block to be deletable.
break;
}
// Try to delete the block. First, try to remove from _active_array.
{
MutexLocker aml(_active_mutex, Mutex::_no_safepoint_check_flag);
// Don't interfere with an active concurrent iteration.
// Instead, give up immediately. There is more work to do,
// but don't re-notify, to avoid useless spinning of the
// service thread. Instead, iteration completion notifies.
if (_concurrent_iteration_count > 0) return true;
_active_array->remove(block);
}
// Remove block from _allocation_list and delete it.
_allocation_list.unlink(*block);
// Be safepoint-polite while deleting and looping.
MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag);
delete_empty_block(*block);
ThreadBlockInVM tbiv(JavaThread::current());
}
}
// Exceeded work limit or can't delete last block. This will
// cause the service thread to loop, giving other subtasks an
// opportunity to run too. There's no need for a notification,
// because we are part of the service thread (unless gtesting).
record_needs_cleanup();
return true;
}
OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const {
const Block* block = find_block_or_null(ptr);
if (block != NULL) {
// Prevent block deletion and _active_array modification.
MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag);
// Block could be a false positive, so get index carefully.
size_t index = Block::active_index_safe(block);
if ((index < _active_array->block_count()) &&
(block == _active_array->at(index)) &&
block->contains(ptr)) {
if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) {
return ALLOCATED_ENTRY;
} else {
return UNALLOCATED_ENTRY;
}
}
}
return INVALID_ENTRY;
}
size_t OopStorage::allocation_count() const {
return _allocation_count;
}
size_t OopStorage::block_count() const {
WithActiveArray wab(this);
// Count access is racy, but don't care.
return wab.active_array().block_count();
}
size_t OopStorage::total_memory_usage() const {
size_t total_size = sizeof(OopStorage);
total_size += strlen(name()) + 1;
total_size += sizeof(ActiveArray);
WithActiveArray wab(this);
const ActiveArray& blocks = wab.active_array();
// Count access is racy, but don't care.
total_size += blocks.block_count() * Block::allocation_size();
total_size += blocks.size() * sizeof(Block*);
return total_size;
}
// Parallel iteration support
uint OopStorage::BasicParState::default_estimated_thread_count(bool concurrent) {
/**代码未完, 请加载全部代码(NowJava.com).**/